Lecture 6 Symmetric SOR (SSOR) $_{2017/4/18}$

Example 6.1. Consider the linear system

$$\begin{bmatrix} 1 & 2 \\ 2 & 3.999 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 7.999 \end{bmatrix}, \quad (A\overrightarrow{x} = \overrightarrow{b})$$
(6.1)

The solution is $\overrightarrow{x} = \begin{bmatrix} 2\\1 \end{bmatrix}$. Making a small change in the right hand side of the equations to

$$\begin{bmatrix} 1 & 2 \\ 2 & 3.999 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4.001 \\ 7.998 \end{bmatrix}, \quad (A\widetilde{x} = \widetilde{b})$$
(6.2)

gives the solution $\widetilde{x} = \begin{bmatrix} -3.999\\ 4 \end{bmatrix}$. We only perturb $\overrightarrow{b} = \begin{bmatrix} 4\\ 7.999 \end{bmatrix}$ to $\widetilde{b} = \begin{bmatrix} 4.001\\ 7.998 \end{bmatrix}$, why does the solution $\overrightarrow{x} = \begin{bmatrix} 2\\ 1 \end{bmatrix}$ change to $\widetilde{x} = \begin{bmatrix} -3.999\\ 4 \end{bmatrix}$ by so much? $(\|\overrightarrow{b} - \widetilde{b}\|_{\infty} = ?, \|\overrightarrow{x} - \widetilde{x}\|_{\infty} = ?)$

The condition number associated with the linear system

$$A\overrightarrow{x} = \overrightarrow{b} \tag{6.3}$$

gives a bound on how inaccurate the approximation of \vec{x} will be when the system is solved by an approximation method. Note that for iterative methods such as JM, GS, and SOR we only obtain an approximate solution $\vec{x}^{(k)}$ to the exact solution \vec{x} . Another way to view this is that the vector \vec{b} is perturbed to \tilde{b} so that

$$A\overrightarrow{x}^{(k)} = \widetilde{b}.\tag{6.4}$$

The condition number of (6.1) denoted by $\operatorname{Cond}(A)$ is defined to be the maximum ratio of the relative error in \overrightarrow{x} divided by the relative error in \overrightarrow{b} in some norm $\|\cdot\|$, i.e.,

$$\operatorname{Cond}(A) = \max_{\overrightarrow{b}} \frac{\left\| \overrightarrow{x} - \overrightarrow{x}^{(k)} \right\| \left\| \overrightarrow{b} \right\|}{\left\| \overrightarrow{x} \right\| \left\| \overrightarrow{b} - \widetilde{b} \right\|}.$$
(6.5)

So now the question is: If the data \overrightarrow{b} is perturbed a little bit, will we get very large error in \overrightarrow{x} ? If yes, we say that the matrix A is *ill-conditioned* and is *well-conditioned* otherwise. The larger the Cond(A), the more ill-condition of A will be. Further computations on (6.5) yield

$$\operatorname{Cond}(A) = \max \frac{\left\| A^{-1} \overrightarrow{b} - A^{-1} \widetilde{b} \right\| \left\| \overrightarrow{b} \right\|}{\left\| A^{-1} \overrightarrow{b} - \widetilde{b} \right\|} = \max \frac{\left\| A^{-1} \overrightarrow{b} - A^{-1} \widetilde{b} \right\|}{\left\| \overrightarrow{b} - \widetilde{b} \right\|} \frac{\left\| \overrightarrow{b} \right\|}{\left\| A^{-1} \overrightarrow{b} \right\|}$$
$$= \max \frac{\left\| A^{-1} \overrightarrow{b} - A^{-1} \widetilde{b} \right\|}{\left\| \overrightarrow{b} - \widetilde{b} \right\|} \frac{\left\| A \overrightarrow{x} \right\|}{\left\| \overrightarrow{x} \right\|} = \left\| A^{-1} \right\| \cdot \left\| A \right\|$$
(6.6)

where the matrix norm of any matrix A is defined by

$$\|A\| = \max\left\{ \|A\overrightarrow{y}\| : \text{ for any } \overrightarrow{y} \in \mathcal{R}^{N} \text{ with } \|\overrightarrow{y}\| \le 1 \right\}$$
$$= \max_{\overrightarrow{y} \neq 0} \frac{\|A\overrightarrow{y}\|}{\|\overrightarrow{y}\|}$$
(6.7)

Theorem 6.1. Let A be an $m \times n$ real matrix. Then

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}| \quad \text{(the maximum of absolute row sums)}. \tag{6.8}$$

Example 6.2. Find the condition number of A in Example 6.1.

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3.999 \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} -3999 & 2000 \\ 2000 & -1000 \end{bmatrix}, \quad (6.9)$$
$$\|A\|_{\infty} = 5.999, \quad \|A^{-1}\|_{\infty} = 5999,$$
$$Cond(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty} = 5.999 \times 5999 \approx 36000. \quad (6.10)$$

It is very large and hence (6.1) is very ill-conditioned.

Question: If we are given an ill system, can we make it better before solving it?

Example 6.3. For the system

$$\begin{bmatrix} 1 & 2\\ 0 & 10^{-20} \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 3\\ 10^{-20} \end{bmatrix},$$
(6.11)

can you make it better conditioned without changing the solution? Compare the condition numbers between the old and new systems. A **preconditioner** P of a matrix A is a matrix such that $P^{-1}A$ has a smaller condition number than A. Preconditioners are useful when using an iterative method to solve a large, sparse linear system for \vec{x} since the rate of convergence for most iterative linear solvers degrades as the condition number of a matrix increases. Instead of solving the original linear system (6.1), one may solve either the left preconditioned system via

$$P^{-1}A\overrightarrow{x} = P^{-1}\overrightarrow{b} \tag{6.12}$$

or the right preconditioned system via

$$AP^{-1}\overrightarrow{y} = \overrightarrow{b}, \quad P^{-1}\overrightarrow{y} = \overrightarrow{x}$$
 (6.13)

in which we hope that the new matrix $P^{-1}A$ or AP^{-1} is much better conditioned than A provided that the computation of the new matrix is efficient. The three systems (6.1), (6.12), and (6.13) are equivalent so long as the preconditioner matrix P is nonsingular.

Example 6.4. What is your preconditioner for Example 6.3? Replacing $\overrightarrow{x}^{(k)}$ and $\overrightarrow{x}^{(k-1)}$ by \overrightarrow{x} , (3.7) is written as

$$\overrightarrow{x} = -D^{-1}(L+U)\overrightarrow{x} + D^{-1}\overrightarrow{b}$$
(6.14)

which is equivalent to

$$D^{-1}A\overrightarrow{x} = D^{-1}\overrightarrow{b} \tag{6.15}$$

Therefore, D^{-1} is the **Jacobi preconditioner** of the matrix A, which is one of the simplest forms of preconditioning. The preconditioners of A so far are:

Table 6.1. Preconditioners of A .					
JM	$A^{-1} \approx D^{-1} =: P_{\rm JM}^{-1}$	Symmetric			
GS	$A^{-1} \approx (D+L)^{-1} =: P_{\rm GS}^{-1}$	Non-symmetric			
SOR	$A^{-1} \approx (D + wL)^{-1} =: P_{\rm SOR}^{-1}$	Non-symmetric			
SSOR	$A^{-1} \approx (D + wL)^{-1} (D + wU)^{-1} =: P_{\text{SSOR}}^{-1}$	Symmetric?			

The convergence rate of iterative methods depends on spectral properties of the coefficient matrix A. $A\overrightarrow{x} = \lambda \overrightarrow{x}$, $(\lambda_i, \overrightarrow{x_i})$ is an eigenpair of A if $A\overrightarrow{x}_i = \lambda_i \overrightarrow{x}$ and $\overrightarrow{x}_i \neq 0$. The spectral radius of A is defined as $\rho(A) = \max_{1 \leq i \leq N} |\lambda_i|$ and the spectrum of A is denoted by $\sigma(A) = \{\lambda_i\}_{i=1}^N$. Hence one way attempt to transform $A\overrightarrow{x} = \overrightarrow{b}$ into one that is equivalent in the sense that it has the same solution, but that has more favorable spectral properties. If we assume that the coefficient matrix A is *symmetric*, then **SSOR** combines two SOR sweeps (a forward SOR sweep followed by a backward SOR sweep) together in such a way that the resulting iteration matrix is similar to a symmetric matrix. We say that

$$A \sim B$$
, if $\exists Q$ s.t. $Q^{-1}BQ = A$.

The similarity of the SSOR iteration matrix to a symmetric matrix permits the application of SSOR as a *preconditioner* for other iterative schemes for symmetric matrices. Indeed, this is the *primary motivation* for SSOR since its convergence rate, with an optimal value of ω , is usually *slower* than the convergence rate of SOR with optimal ω .

Table 6.2. Iterative Methods in Component Form				
JM	$x_i^{(k)} = (b_i - \sum_{i \neq j} a_{ij} x_j^{(k-1)}) / a_{ii}$			
GS	$x_i^{(k)} = (b_i - \sum_{j < i} a_{ij} x_j^{(k)} - \sum_{j > i} a_{ij} x_j^{(k-1)}) / a_{ii}$			
SOR	$x_i^{(k)} = \omega \overline{x}_i^{(k)} + (1 - \omega) x_i^{(k-1)}$			
FGS	$x_i^{(k)} = (b_i - \sum_{j < i} a_{ij} x_j^{(k)} - \sum_{j > i} a_{ij} x_j^{(k-1)}) / a_{ii}$			
BGS	$x_i^{(k)} = (b_i - \sum_{j>i} a_{ij} x_j^{(k)} - \sum_{j$			

Table 6.3. Iterative Methods in Matrix Form				
JM	$D\overrightarrow{x}^{(k)} = -(L+U)\overrightarrow{x}^{(k-1)} + \overrightarrow{b}$			
GS	$(D+L)\overrightarrow{x}^{(k)} = -U\overrightarrow{x}^{(k-1)} + \overrightarrow{b}$			
	$(D+\omega L)\overrightarrow{x}^{(k)} = (-\omega U + (1-\omega)D)\overrightarrow{x}^{(k-1)} + \omega \overrightarrow{b}$			
FGS	$(D+L)\overrightarrow{x}^{(k)} = -U\overrightarrow{x}^{(k-1)} + \overrightarrow{b}$			
BGS	$(D+U)\overrightarrow{x}^{(k)} = -L\overrightarrow{x}^{(k-1)} + \overrightarrow{b}$			
	$\overrightarrow{x}^{(k)} = B_1 B_2 \overrightarrow{x}^{(k-1)} + \omega (2-\omega) (D+\omega U)^{-1} D (D+\omega L)^{-1} \overrightarrow{b}$			
SSOR	$B_1 = (D + \omega U)^{-1} (-\omega L + (1 - \omega)D)$: Backward SOR Sweep			
	$B_2 = (D + \omega L)^{-1} (-\omega U + (1 - \omega)D)$: Forward SOR Sweep			

Algorithm SSOR: Symmetric Successive Overrelaxation Method

Input: N: Number of unknowns and equations; a_{ij} : Entries of A, $i, j = 1 \cdots N$; b_i : Entries of $\vec{b}, i = 1 \cdots N$. TOL: Error Tolerance; $\omega = 1.3$ (for example).

Output: $x_i^{(k)}$: Entries of $\vec{x}^{(k)}$ (approximate solution) or Error Message.

- **Step 1.** Choose an initial guess $\vec{x}^{(0)}$ to the solution \vec{x} .
- **Step 2.** For $k = 1, 2, 3 \cdots, k_{\text{max}}$
- **Step 3.** For $i = 1, 2, \dots, N$ (Forward)
- Step 4. $\sigma = 0$
- **Step 5.** For $j = 1, 2, \cdots, i 1$
- Step 6. $\sigma = \sigma + a_{ij} x_i^{(k-\frac{1}{2})}$
- Step 7. End j loop
- **Step 8.** For j = i + 1, ..., N
- Step 9. $\sigma = \sigma + a_{ij} x_i^{(k-1)}$
- Step 10. End j loop
- Step 11. $\sigma = (b_i \sigma)/a_{ii}$
- **Step 12.** $x_i^{(k-\frac{1}{2})} = \omega \sigma + (1-\omega) x_i^{(k-1)}$
- **Step 13.** For i = N, N 1, ..., 1 (Backward)
- Step 14. $\sigma = 0$
- **Step 15.** For j = 1, 2, ..., i 1
- Step 16. $\sigma = \sigma + a_{ij} x_j^{(k-\frac{1}{2})}$
- Step 17. End j loop
- **Step 18.** For j = i + 1, ..., N
- Step 19. $\sigma = \sigma + a_{ij} x_j^{(k)}$
- Step 20. End j loop
- Step 21. $\sigma = (b_i \sigma)/a_{ii}$

Step 22. $x_i^{(k)} = \omega \sigma + (1 - \omega) x_i^{(k - \frac{1}{2})}$

- Step 23. End *i* loop
- Step 24. If $||\vec{r}^{(k)}||_{\infty} < \text{TOL} = 10^{-6}$ then Stop otherwise Set $\vec{x}^{(k-1)} = \vec{x}^{(k)}$ and Go To Step 2.
- Step 25. End k loop
- **Step 26.** Error: Not convergent with the max number of iterations k_{max} and TOL.
- **Project 6.1.** Consider the 1D Poisson Problem (1.1) (with f(x) = 2, $g_D = 0$, and $g_N = 0$) and implement the methods FDM and SSOR.

Input: $N, A, \vec{b}, k_{\text{max}}$, TOL, ω (write the input in the program).

	N	k	$E^{\overrightarrow{x}}$	E^u	α
	5				
	9				
Output:	17				
	33 65				
	129				