Lecture 6 Symmetric SOR (SSOR)
 Jinn-Liang Liu
 2017/4/18

Example 6.1. Consider the linear system

$$
\left[\begin{array}{cc}
1 & 2 \tag{6.1}\\
2 & 3.999
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
4 \\
7.999
\end{array}\right], \quad(A \vec{x}=\vec{b})
$$

The solution is $\vec{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Making a small change in the right hand side of the equations to

$$
\left[\begin{array}{cc}
1 & 2 \tag{6.2}\\
2 & 3.999
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
4.001 \\
7.998
\end{array}\right], \quad(A \widetilde{x}=\widetilde{b})
$$

gives the solution $\widetilde{x}=\left[\begin{array}{c}-3.999 \\ 4\end{array}\right]$. We only perturb $\vec{b}=\left[\begin{array}{c}4 \\ 7.999\end{array}\right]$ to $\widetilde{b}=\left[\begin{array}{l}4.001 \\ 7.998\end{array}\right]$, why does the solution $\vec{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ change to $\widetilde{x}=\left[\begin{array}{c}-3.999 \\ 4\end{array}\right]$ by so much? $\left(\|\vec{b}-\widetilde{b}\|_{\infty}=\right.$?, $\|\vec{x}-\widetilde{x}\|_{\infty}=$?)

The condition number associated with the linear system

$$
\begin{equation*}
A \vec{x}=\vec{b} \tag{6.3}
\end{equation*}
$$

gives a bound on how inaccurate the approximation of \vec{x} will be when the system is solved by an approximation method. Note that for iterative methods such as JM, GS, and SOR we only obtain an approximate solution $\vec{x}^{(k)}$ to the exact solution \vec{x}. Another way to view this is that the vector \vec{b} is perturbed to \widetilde{b} so that

$$
\begin{equation*}
A \vec{x}^{(k)}=\widetilde{b} . \tag{6.4}
\end{equation*}
$$

The condition number of (6.1) denoted by $\operatorname{Cond}(A)$ is defined to be the maximum ratio of the relative error in \vec{x} divided by the relative error in \vec{b} in some norm $\|\cdot\|$, i.e.,

$$
\begin{equation*}
\operatorname{Cond}(A)=\max _{\vec{b}} \frac{\left\|\vec{x}-\vec{x}^{(k)}\right\|\|\vec{b}\|}{\|\vec{x}\|\|\vec{b}-\widetilde{b}\|} \tag{6.5}
\end{equation*}
$$

So now the question is: If the data \vec{b} is perturbed a little bit, will we get very large error in \vec{x} ? If yes, we say that the matrix A is ill-conditioned and is well-conditioned otherwise. The larger the $\operatorname{Cond}(A)$, the more ill-condition of A will be. Further computations on (6.5) yield

$$
\begin{align*}
\operatorname{Cond}(A) & =\max \frac{\left\|A^{-1} \vec{b}-A^{-1} \widetilde{b}\right\|\|\vec{b}\|}{\left\|A^{-1} \vec{b}\right\|\|\vec{b}-\widetilde{b}\|}=\max \frac{\left\|A^{-1} \vec{b}-A^{-1} \widetilde{b}\right\|}{\|\vec{b}-\widetilde{b}\|} \frac{\|\vec{b}\|}{\left\|A^{-1} \vec{b}\right\|} \\
& =\max \frac{\left\|A^{-1} \vec{b}-A^{-1}\right\|}{\|\vec{b}\|} \frac{\|A \vec{x}\|}{\|\vec{x}\|}=\left\|A^{-1}\right\| \cdot\|A\| \tag{6.6}
\end{align*}
$$

where the matrix norm of any matrix A is defined by

$$
\begin{align*}
\|A\| & =\max \left\{\|A \vec{y}\|: \text { for any } \vec{y} \in \mathcal{R}^{N} \text { with }\|\vec{y}\| \leq 1\right\} \\
& =\max _{\vec{y} \neq 0} \frac{\|A \vec{y}\|}{\|\vec{y}\|} \tag{6.7}
\end{align*}
$$

Theorem 6.1. Let A be an $m \times n$ real matrix. Then

$$
\begin{equation*}
\|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right| \quad \text { (the maximum of absolute row sums). } \tag{6.8}
\end{equation*}
$$

Example 6.2. Find the condition number of A in Example 6.1.

$$
\begin{align*}
A & =\left[\begin{array}{cc}
1 & 2 \\
2 & 3.999
\end{array}\right], \quad A^{-1}=\left[\begin{array}{cc}
-3999 & 2000 \\
2000 & -1000
\end{array}\right], \tag{6.9}\\
\|A\|_{\infty} & =5.999, \quad\left\|A^{-1}\right\|_{\infty}=5999, \\
\operatorname{Cond}(A) & =\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=5.999 \times 5999 \approx 36000 \tag{6.10}
\end{align*}
$$

It is very large and hence (6.1) is very ill-conditioned.
Question: If we are given an ill system, can we make it better before solving it?

Example 6.3. For the system

$$
\left[\begin{array}{cc}
1 & 2 \tag{6.11}\\
0 & 10^{-20}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
10^{-20}
\end{array}\right]
$$

can you make it better conditioned without changing the solution? Compare the condition numbers between the old and new systems.

A preconditioner P of a matrix A is a matrix such that $P^{-1} A$ has a smaller condition number than A. Preconditioners are useful when using an iterative method to solve a large, sparse linear system for \vec{x} since the rate of convergence for most iterative linear solvers degrades as the condition number of a matrix increases. Instead of solving the original linear system (6.1), one may solve either the left preconditioned system via

$$
\begin{equation*}
P^{-1} A \vec{x}=P^{-1} \vec{b} \tag{6.12}
\end{equation*}
$$

or the right preconditioned system via

$$
\begin{equation*}
A P^{-1} \vec{y}=\vec{b}, \quad P^{-1} \vec{y}=\vec{x} \tag{6.13}
\end{equation*}
$$

in which we hope that the new matrix $P^{-1} A$ or $A P^{-1}$ is much better conditioned than A provided that the computation of the new matrix is efficient. The three systems (6.1), (6.12), and (6.13) are equivalent so long as the preconditioner matrix P is nonsingular.

Example 6.4. What is your preconditioner for Example 6.3?
Replacing $\vec{x}^{(k)}$ and $\vec{x}^{(k-1)}$ by $\vec{x},(3.7)$ is written as

$$
\begin{equation*}
\vec{x}=-D^{-1}(L+U) \vec{x}+D^{-1} \vec{b} \tag{6.14}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
D^{-1} A \vec{x}=D^{-1} \vec{b} \tag{6.15}
\end{equation*}
$$

Therefore, D^{-1} is the Jacobi preconditioner of the matrix A, which is one of the simplest forms of preconditioning. The preconditioners of A so far are:

Table 6.1. Preconditioners of A		
JM	$A^{-1} \approx D^{-1}=: P_{\mathrm{JM}}^{-1}$	Symmetric
GS	$A^{-1} \approx(D+L)^{-1}=: P_{\mathrm{GS}}^{-1}$	Non-symmetric
SOR	$A^{-1} \approx(D+w L)^{-1}=: P_{\mathrm{SOR}}^{-1}$	Non-symmetric
SSOR	$A^{-1} \approx(D+w L)^{-1}(D+w U)^{-1}=: P_{\mathrm{SSOR}}^{-1}$	Symmetric?

The convergence rate of iterative methods depends on spectral properties of the coefficient matrix $A . A \vec{x}=\lambda \vec{x},\left(\lambda_{i}, \overrightarrow{x_{i}}\right)$ is an eigenpair of A if $A \vec{x}_{i}=$ $\lambda_{i} \vec{x}$ and $\vec{x}_{i} \neq 0$. The spectral radius of A is defined as $\rho(A)=\max _{1 \leq i \leq N}\left|\lambda_{i}\right|$ and the spectrum of A is denoted by $\sigma(A)=\left\{\lambda_{i}\right\}_{i=1}^{N}$. Hence one way attempt to transform $A \vec{x}=\vec{b}$ into one that is equivalent in the sense that it has the same solution, but that has more favorable spectral properties.

If we assume that the coefficient matrix A is symmetric, then SSOR combines two SOR sweeps (a forward SOR sweep followed by a backward SOR sweep) together in such a way that the resulting iteration matrix is similar to a symmetric matrix. We say that

$$
A \sim B, \text { if } \exists Q \text { s.t. } Q^{-1} B Q=A .
$$

The similarity of the SSOR iteration matrix to a symmetric matrix permits the application of SSOR as a preconditioner for other iterative schemes for symmetric matrices. Indeed, this is the primary motivation for SSOR since its convergence rate, with an optimal value of ω, is usually slower than the convergence rate of SOR with optimal ω.

Table 6.2. Iterative Methods in Component Form	
JM	$x_{i}^{(k)}=\left(b_{i}-\sum_{i \neq j} a_{i j} x_{j}^{(k-1)}\right) / a_{i i}$
GS	$x_{i}^{(k)}=\left(b_{i}-\sum_{j<i} a_{i j} x_{j}^{(k)}-\sum_{j>i} a_{i j} x_{j}^{(k-1)}\right) / a_{i i}$
SOR	$x_{i}^{(k)}=\omega \bar{x}_{i}^{(k)}+(1-\omega) x_{i}^{(k-1)}$
FGS	$x_{i}^{(k)}=\left(b_{i}-\sum_{j<i} a_{i j} x_{j}^{(k)}-\sum_{j>i} a_{i j} x_{j}^{(k-1)}\right) / a_{i i}$
BGS	$x_{i}^{(k)}=\left(b_{i}-\sum_{j>i} a_{i j} x_{j}^{(k)}-\sum_{j<i} a_{i j} x_{j}^{(k-1)}\right) / a_{i i}$

Table 6.3. Iterative Methods in Matrix Form	
JM	$D \vec{x}^{(k)}=-(L+U) \vec{x}^{(k-1)}+\vec{b}$
GS	$(D+L) \vec{x}^{(k)}=-U \vec{x}^{(k-1)}+\vec{b}$
SOR	$(D+\omega L) \vec{x}^{(k)}=(-\omega U+(1-\omega) D) \vec{x}^{(k-1)}+\omega \vec{b}$
FGS	$(D+L) \vec{x}^{(k)}=-U \vec{x}^{(k-1)}+\vec{b}$
BGS	$(D+U) \vec{x}^{(k)}=-L \vec{x}^{(k-1)}+\vec{b}$
	$\vec{x}^{(k)}=B_{1} B_{2} \vec{x}^{(k-1)}+\omega(2-\omega)(D+\omega U)^{-1} D(D+\omega L)^{-1} \vec{b}$
SSOR	$B_{1}=(D+\omega U)^{-1}(-\omega L+(1-\omega) D)$: Backward SOR Sweep
	$B_{2}=(D+\omega L)^{-1}(-\omega U+(1-\omega) D)$: Forward SOR Sweep

Algorithm SSOR: Symmetric Successive Overrelaxation Method

Input: N : Number of unknowns and equations; $a_{i j}$: Entries of $A, i, j=$ $1 \cdots N ; \quad b_{i}$: Entries of $\vec{b}, i=1 \cdots N$. TOL: Error Tolerance; $\omega=1.3$ (for example).

Output: $x_{i}^{(k)}$: Entries of $\vec{x}^{(k)}$ (approximate solution) or Error Message.
Step 1. Choose an initial guess $\vec{x}^{(0)}$ to the solution \vec{x}.
Step 2. For $k=1,2,3 \cdots, k_{\max }$
Step 3. For $i=1,2, \cdots, N \quad$ (Forward)
Step 4. $\quad \sigma=0$
Step 5. For $j=1,2, \cdots, i-1$
Step 6. $\sigma=\sigma+a_{i j} x_{j}^{\left(k-\frac{1}{2}\right)}$
Step 7. End j loop
Step 8. For $j=i+1, \ldots, N$
Step 9. $\quad \sigma=\sigma+a_{i j} x_{j}^{(k-1)}$
Step 10. End j loop
Step 11. $\sigma=\left(b_{i}-\sigma\right) / a_{i i}$
Step 12. $\quad x_{i}^{\left(k-\frac{1}{2}\right)}=\omega \sigma+(1-\omega) x_{i}^{(k-1)}$
Step 13. For $i=N, N-1, \ldots \ldots, 1$ (Backward)
Step 14. $\quad \sigma=0$
Step 15. For $j=1,2, \ldots \ldots, i-1$
Step 16. $\quad \sigma=\sigma+a_{i j} x_{j}^{\left(k-\frac{1}{2}\right)}$
Step 17. End j loop
Step 18. For $j=i+1, \ldots \ldots, N$
Step 19. $\quad \sigma=\sigma+a_{i j} x_{j}^{(k)}$
Step 20. End j loop
Step 21. $\sigma=\left(b_{i}-\sigma\right) / a_{i i}$

Step 22. $\quad x_{i}^{(k)}=\omega \sigma+(1-\omega) x_{i}^{\left(k-\frac{1}{2}\right)}$
Step 23. End i loop
Step 24. If $\left\|\vec{r}^{(k)}\right\|_{\infty}<\mathrm{TOL}=10^{-6}$ then Stop otherwise Set $\vec{x}^{(k-1)}=$ $\stackrel{\rightharpoonup}{x}^{(k)}$ and Go To Step 2.

Step 25. End k loop
Step 26. Error: Not convergent with the max number of iterations $k_{\max }$ and TOL.

Project 6.1. Consider the 1D Poisson Problem (1.1) (with $f(x)=2, g_{D}=$ 0 , and $g_{N}=0$) and implement the methods FDM and SSOR.

Input: $N, A, \vec{b}, k_{\max }$, TOL, ω (write the input in the program).

Output:

N	k	$E^{\vec{x}}$	E^{u}	α
5				
9				
17				
33				
65				
129				

