
Lecture 6
Symmetric SOR (SSOR)

Jinn-Liang Liu
2017/4/18

Example 6.1. Consider the linear system
[
1 2
2 3.999

] [
x1
x2

]
=

[
4

7.999

]
, (A−→x =

−→
b) (6.1)

The solution is −→x =

[
2
1

]
. Making a small change in the right hand side

of the equations to
[
1 2
2 3.999

] [
x1
x2

]
=

[
4.001
7.998

]
, (Ax̃ = b̃) (6.2)

gives the solution x̃ =

[
−3.999
4

]
. We only perturb

−→
b =

[
4

7.999

]
to

b̃ =

[
4.001
7.998

]
, why does the solution −→x =

[
2
1

]
change to x̃ =

[
−3.999
4

]

by so much? (
∥∥∥
−→
b − b̃

∥∥∥
∞
=?, ‖−→x − x̃‖∞ =?)

The condition number associated with the linear system

A−→x =
−→
b (6.3)

gives a bound on how inaccurate the approximation of −→x will be when the
system is solved by an approximation method. Note that for iterative meth-
ods such as JM, GS, and SOR we only obtain an approximate solution −→x (k)

to the exact solution −→x . Another way to view this is that the vector
−→
b is

perturbed to b̃ so that
A−→x (k) = b̃. (6.4)

The condition number of (6.1) denoted by Cond(A) is defined to be the

maximum ratio of the relative error in −→x divided by the relative error in
−→
b

in some norm ‖·‖, i.e.,

Cond(A) = max
−→
b

∥∥−→x −−→x (k)
∥∥
∥∥∥
−→
b
∥∥∥

‖−→x ‖
∥∥∥
−→
b − b̃

∥∥∥
. (6.5)

23

So now the question is: If the data
−→
b is perturbed a little bit, will we get

very large error in −→x ? If yes, we say that the matrix A is ill-conditioned and
is well-conditioned otherwise. The larger the Cond(A), the more ill-condition
of A will be. Further computations on (6.5) yield

Cond(A) = max

∥∥∥A−1
−→
b − A−1b̃

∥∥∥
∥∥∥
−→
b
∥∥∥

∥∥∥A−1
−→
b
∥∥∥
∥∥∥
−→
b − b̃

∥∥∥
= max

∥∥∥A−1
−→
b −A−1b̃

∥∥∥
∥∥∥
−→
b − b̃

∥∥∥

∥∥∥
−→
b
∥∥∥

∥∥∥A−1
−→
b
∥∥∥

= max

∥∥∥A−1
−→
b − A−1b̃

∥∥∥
∥∥∥
−→
b − b̃

∥∥∥
‖A−→x ‖

‖−→x ‖
=
∥∥A−1

∥∥ · ‖A‖ (6.6)

where the matrix norm of any matrix A is defined by

‖A‖ = max
{
‖A−→y ‖ : for any −→y ∈ RN with ‖−→y ‖ ≤ 1

}

= max
−→y �=0

‖A−→y ‖

‖−→y ‖
(6.7)

Theorem 6.1. Let A be an m× n real matrix. Then

‖A‖∞ = max
1≤i≤m

n∑

j=1

|aij| (the maximum of absolute row sums). (6.8)

Example 6.2. Find the condition number of A in Example 6.1.

A =

[
1 2
2 3.999

]
, A−1 =

[
−3999 2000
2000 −1000

]
, (6.9)

‖A‖∞ = 5.999,
∥∥A−1

∥∥
∞
= 5999,

Cond(A) = ‖A‖∞
∥∥A−1

∥∥
∞
= 5.999× 5999 ≈ 36000. (6.10)

It is very large and hence (6.1) is very ill-conditioned.
Question: If we are given an ill system, can we make it better before

solving it?
Example 6.3. For the system

[
1 2
0 10−20

] [
x1
x2

]
=

[
3

10−20

]
, (6.11)

can you make it better conditioned without changing the solution? Compare
the condition numbers between the old and new systems.

24

A preconditioner P of a matrix A is a matrix such that P−1A has a
smaller condition number than A. Preconditioners are useful when using
an iterative method to solve a large, sparse linear system for −→x since the
rate of convergence for most iterative linear solvers degrades as the condition
number of a matrix increases. Instead of solving the original linear system
(6.1), one may solve either the left preconditioned system via

P−1A−→x = P−1
−→
b (6.12)

or the right preconditioned system via

AP−1−→y =
−→
b , P−1−→y = −→x (6.13)

in which we hope that the new matrix P−1A or AP−1 is much better condi-
tioned than A provided that the computation of the new matrix is efficient.
The three systems (6.1), (6.12), and (6.13) are equivalent so long as the
preconditioner matrix P is nonsingular.

Example 6.4. What is your preconditioner for Example 6.3?
Replacing −→x (k) and −→x (k−1) by −→x , (3.7) is written as

−→x = −D−1(L+ U)−→x +D−1−→b (6.14)

which is equivalent to

D−1A−→x = D−1−→b (6.15)

Therefore, D−1 is the Jacobi preconditioner of the matrix A, which is one
of the simplest forms of preconditioning. The preconditioners of A so far are:

Table 6.1. Preconditioners of A.
JM A−1 ≈ D−1 =: P−1JM Symmetric
GS A−1 ≈ (D + L)−1 =: P−1GS Non-symmetric
SOR A−1 ≈ (D + wL)−1 =: P−1SOR Non-symmetric
SSOR A−1 ≈ (D + wL)−1(D + wU)−1 =: P−1SSOR Symmetric?

The convergence rate of iterative methods depends on spectral properties
of the coefficient matrix A. A−→x = λ−→x , (λi,

−→xi) is an eigenpair of A if A−→x i =
λi
−→x and −→x i �= 0. The spectral radius of A is defined as ρ(A) = max

1≤ i ≤ N
|λi|

and the spectrum of A is denoted by σ(A) = {λi}
N

i=1. Hence one way attempt

to transform A−→x =
−→
b into one that is equivalent in the sense that it has

the same solution, but that has more favorable spectral properties.

25

If we assume that the coefficient matrix A is symmetric, then SSOR

combines two SOR sweeps (a forward SOR sweep followed by a backward
SOR sweep) together in such a way that the resulting iteration matrix is
similar to a symmetric matrix. We say that

A ∼ B, if ∃Q s.t. Q−1BQ = A.

The similarity of the SSOR iteration matrix to a symmetric matrix permits
the application of SSOR as a preconditioner for other iterative schemes for
symmetric matrices. Indeed, this is the primary motivation for SSOR since
its convergence rate, with an optimal value of ω, is usually slower than the
convergence rate of SOR with optimal ω.

Table 6.2. Iterative Methods in Component Form

JM x
(k)
i = (bi −

∑
i�=j

aijx
(k−1)
j)/aii

GS x
(k)
i = (bi −

∑
j<i aijx

(k)
j −

∑
j>i aijx

(k−1)
j)/aii

SOR x
(k)
i = ωx

(k)
i + (1− ω)x

(k−1)
i

FGS x
(k)
i = (bi −

∑
j<i aijx

(k)
j −

∑
j>i aijx

(k−1)
j)/aii

BGS x
(k)
i = (bi −

∑
j>i aijx

(k)
j −

∑
j<i aijx

(k−1)
j)/aii

Table 6.3. Iterative Methods in Matrix Form

JM D−→x (k) = −(L+ U)−→x (k−1) +
−→
b

GS (D + L)−→x (k) = −U−→x (k−1) +
−→
b

SOR (D + ωL)−→x (k) = (−ωU + (1− ω)D)−→x (k−1) + ω
−→
b

FGS (D + L)−→x (k) = −U−→x (k−1) +
−→
b

BGS (D + U)−→x (k) = −L−→x (k−1) +
−→
b

SSOR

−→x (k) = B1B2
−→x (k−1) + ω(2− ω)(D + ωU)−1D(D + ωL)−1

−→
b

B1 = (D + ωU)
−1(−ωL+ (1− ω)D) : Backward SOR Sweep

B2 = (D + ωL)
−1(−ωU + (1− ω)D) : Forward SOR Sweep

Algorithm SSOR: Symmetric Successive Overrelaxation Method

Input: N : Number of unknowns and equations; aij: Entries of A, i, j =

1 · · ·N ; bi: Entries of
⇀

b , i = 1 · · ·N . TOL: Error Tolerance; ω = 1.3
(for example).

26

Output: x
(k)
i : Entries of

⇀
x
(k)
(approximate solution) or Error Message.

Step 1. Choose an initial guess
⇀
x
(0)
to the solution

⇀
x.

Step 2. For k = 1, 2, 3 · · · , kmax

Step 3. For i = 1, 2, · · · , N (Forward)

Step 4. σ = 0

Step 5. For j = 1, 2, · · · , i− 1

Step 6. σ = σ + aijx
(k− 1

2
)

j

Step 7. End j loop

Step 8. For j = i+ 1, ..., N

Step 9. σ = σ + aijx
(k−1)
j

Step 10. End j loop

Step 11. σ = (bi − σ)/aii

Step 12. x
(k− 1

2
)

i = ωσ + (1− ω)x
(k−1)
i

Step 13. For i = N,N − 1,, 1 (Backward)

Step 14. σ = 0

Step 15. For j = 1, 2,, i− 1

Step 16. σ = σ + aijx
(k− 1

2
)

j

Step 17. End j loop

Step 18. For j = i+ 1,, N

Step 19. σ = σ + aijx
(k)
j

Step 20. End j loop

Step 21. σ = (bi − σ)/aii

27

Step 22. x
(k)
i = ωσ + (1− ω)x

(k− 1

2
)

i

Step 23. End i loop

Step 24. If ||
⇀
r
(k)
||∞ < TOL = 10−6 then Stop otherwise Set

⇀
x
(k−1)

=
⇀
x
(k)
and Go To Step 2.

Step 25. End k loop

Step 26. Error: Not convergent with the max number of iterations kmax and
TOL.

Project 6.1. Consider the 1D Poisson Problem (1.1) (with f(x) = 2, gD =
0, and gN = 0) and implement the methods FDM and SSOR.

Input: N , A,
⇀

b , kmax , TOL, ω (write the input in the program).

Output:

N k E
−→x Eu α

5
9
17
33
65
129

28

