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The CG method is used for solving symmetric and positive definite (SPD)
systems

A−→x = −→b (7.1)

with

A = AT , (7.2)
−→x TA−→x > 0 for all non-zero vectors −→x ∈ RN . (7.3)

Algorithm CG: Conjugate Gradient Method

−→x (0) = −→0 (Arbitrary)
−→r (0) = −→b −A−→x (0) (Residual vector)
−→p (1) = −→r (0)
for k = 1, · · · , N (Why N not kmax ?)

(S1) αk :=

〈−→p (k),−→r (k−1)
〉

〈−→p (k), A−→p (k)〉 =
〈−→r (k−1),−→r (k−1)〉
〈−→p (k),A−→p (k)〉 (Why ??)

(S2) −→x (k) = −→x (k−1) + αk−→p (k)
(S3) −→r (k) = −→b − A−→x (k) = −→r (k−1) − αkA−→p (k) (Why ?)

check convergence; continue if necessary

(S4) βk := −
〈−→r (k),A−→p (k)〉
〈−→p (k),A−→p (k)〉 =

〈−→r (k),−→r (k)〉
〈−→r (k−1),−→r (k−1)〉 (Why ??)

(S5) −→p (k+1) = −→r (k) + βk−→p (k)
end for

In this algorithm, αk is called a stepping length and −→p (k) is called a search
direction (or predictor, or prediction vector). We can geometrically interpret
(S2) as that we are currently at −→x (k−1) and then take a next step with the
length αk in the direction of −→p (k) to go to the point −→x (k). Therefore, it is
critical to determine the next αk and −→p (k).

29



Example 7.1. Given A =

[
1 0
0 9

]
and

−→
b =

[
0
0

]
, find the solution

of A−→x =
−→
b by using the conjugate method with the initial guess −→x (0) =[

1
1/9

]
.

Project 7.1. First, write a program for the CG algorithm and test it by Ex-
ample 7.1. Second, run your CG program for the 1D Poisson Problem
(1.1) (with f(x) = 2, gD = 0, and gN = 0) discretized by FDM.

Input: N , A,
⇀

b , TOL (write the input in the program).

Output:

N k E
−→x Eu α

5
9
17
33
65
129

The CG is a nonstationary iterative method, i.e., in matrix form

−→x (k) = B−→x (k−1) +−→c (7.4)

where B and −→c depend on the iteration (i.e., B and −→c change from iteration
to iteration).

Table 7.1. Time Complexity of Various Methods
Method 2D 3D

GE O(N3) O(N3)

JM O(N2) O(N
5
3 )

GS O(N2) O(N
5
3 )

SOR O(N
3
2 ) O(N

4
3 )

CG O(N
3
2 ) O(N

4
3 )

PCG O(N1.2) O(N1.17)
Multigrid O(N logN) O(N logN)

Remark 7.1.
(1) CG can also be used to solve unconstrained optimization problems.
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(2) The biconjugate gradient method (BiCG) is a generalization of CG
for non-symmetric systems.

(3) CG with preconditioning requires about
√
N steps to determine an

approximate solution.
We say that two non-zero vectors −→u and −→v are conjugate with respect

to A if
〈−→u ,−→v 〉A := −→u TA−→v = 0 (7.5)

The left hand side defines an inner product since A is SPD, i.e.,

〈−→u ,−→v 〉A = −→u TA−→v = 〈−→u ,A−→v 〉
=

〈
AT−→u ,−→v

〉
= 〈A−→u ,−→v 〉

= 〈−→v ,−→u 〉A ,

where 〈·, ·〉 is the standard inner product defined in RN . This conjugate is
not related to the notion of complex conjugate.

Example 7.2. Show that A =

[
2 1
1 2

]
is SPD. Let −→u =

[
0
1

]
and

−→v =
[
1
0

]
. Show that 〈−→u ,−→v 〉 = 0, i.e., −→u ⊥ −→v in the sense of 〈·, ·〉. Does

〈−→u ,−→v 〉A = 0? Find any two vectors −→x and −→y such that 〈−→x ,−→y 〉A = 0, i.e.,
−→x ⊥ −→y in the sense of 〈·, ·〉A.

Minimization Problem: With A being SPD, solve (7.1) for −→x via
minimizing the quadratic function

φ(−→x ) = 1

2
−→x TA−→x −−→x T−→b = 1

2
〈A−→x ,−→x 〉 −

〈−→
b ,−→x

〉
∀−→x ∈ RN (7.6)

Example 7.3. A simplest example for (7.1) and (7.6) is given by N = 1,

A = 2, b = 1. The solution of the linear problem 2x = 1 is x∗ = 1/2. Find
the minimizer x∗ for the following quadratic function (a nonlinear problem)

φ(−→x ) =
1

2
xTAx− xT b

=
1

2
· 2 · x2 − x = x2 − x (7.7)
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Example 7.4. Solve the linear problem

[
1 0
0 9

] [
x1
x2

]
=

[
0
0

]
and

then solve it via minimizing the quadratic function

φ(−→x ) =
1

2
xTAx− xT b

=
1

2

[
x1 x2

] [ 1 0
0 9

] [
x1
x2

]
−
[
x1 x2

] [ 0
0

]
(7.8)

1 Minimization of the Quadratic Function

As noted above, φ(−→x ) is nonlinear and A−→x = −→b is linear. Given any vectors
−→x and −→p , let h be a function of α defined by

h(α) = φ(−→x + α−→p ) (7.9)

=
1

2
〈A(−→x + α−→p ),−→x + α−→p 〉 −

〈−→
b ,−→x + α−→p

〉

=
α2

2
〈A−→p ,−→p 〉+ α 〈A−→p ,−→x 〉+ 1

2
〈A−→x ,−→x 〉 −

〈−→
b ,−→x + α−→p

〉

=
1

2
〈A−→p ,−→p 〉α2 +

〈
A−→x −−→b ,−→p

〉
α+ φ(−→x ) (7.10)

Theorem 7.1.

−→x ∗ minimizes φ(−→x ) ⇐⇒ A−→x ∗ = −→b (7.11)

Proof: (=⇒) For any vector −→p , define

h(α) = φ(−→x ∗ + α−→p )

Since φ(−→x ∗) is minimum, the function h(α) attains its minimum at α = 0
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with the minimum value of h(0) = φ(−→x ∗). This implies that

0 =
dh(0)

dα
= lim

α→0

h(α) −h(0)
α

= lim
α→0

φ(−→x ∗ + α−→p )−φ(−→x ∗)
α

= lim
α→0

1

2
〈A−→p ,−→p 〉α2 +

〈
A−→x ∗ −−→b ,−→p

〉
α+ φ(−→x ∗)−φ(−→x ∗)

α

= lim
α→0

(
1

2
〈A−→p ,−→p 〉α+

〈
A−→x ∗ −−→b ,−→p

〉)

=
〈
A−→x ∗ −−→b ,−→p

〉
, ∀−→p �= −→0 .

=⇒ A−→x ∗ = −→b .

(⇐=) A−→x ∗ = −→b =⇒

φ(−→x ∗ +−→p ) = φ(−→x ∗) +
〈
A−→x ∗ −−→b ,−→p

〉
+
1

2
〈A−→p ,−→p 〉 ≥ φ(−→x ∗), ∀−→p

=⇒ φ(−→x ∗) is minimum.

As a by-product from the proof, we see that, for any given vectors −→x and
−→p �= 0,

0 =
d

dα
φ(−→x + α−→p ) = h′(α) = 〈A−→p ,−→p 〉α+

〈
A−→x −−→b ,−→p

〉

=⇒ α =

〈
A−→x −−→b ,−→p

〉

〈A−→p ,−→p 〉 (7.12)

which gives an optimal stepping length as defined in (S1).
Remark 7.2. This theorem says that solving the linear system (7.1) is

equivalent to minimizing the nonlinear function. In general, a linear problem
is much easier to solve than a nonlinear one.

Question 7.1. Why do we make a detour from an easy road to a rough
road?
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2 Directional Derivative (Gradient Operator)

D−→p φ(
−→x ) = D−→p φ(x1, x2) = lim

t→0

φ(−→x+t−→p )−φ(−→x )
t

(7.13

(−→x = (x1, x2) any fixed point, −→p = (p1, p2) any unit direction.)

= lim
t→0

φ(x1 + tp1, x2 + tp2)−φ(x1, x2)
t

= lim
t→0

φ(x1 + tp1, x2 + tp2)−φ(x1, x2 + tp2) + φ(x1, x2 + tp2)− φ(x1, x2)
t

= lim
t→0

[φ(x1 + tp1, x2 + tp2)− φ(x1, x2 + tp2)]p1
tp1

+
[φ(x1, x2 + tp2)− φ(x1, x2)]p2

tp2

= lim
t→0

[φ(x1 +∆x1, x2 + tp2)− φ(x1, x2 + tp2)]p1
∆x

+
[φ(x1, x2 +∆x2)− φ(x1, x2)]p2

∆x2

=
∂φ(x1, x2)

∂x1
p1 +

∂φ(x1, x2)

∂x2
p2

(∇ =

〈
∂

∂x1
,
∂

∂x2

〉
= grad = del, the vector differential operator gradient)

= ∇φ(x1, x2) · −→p (7.14

= |∇φ| |−→p | cos θ (7.15

⇒ Max value of D�pφ is |∇φ| with θ = 0 and |−→p | = 1
⇒ Min value of D�pφ is− |∇φ| in −→p = −∇φ/ |∇φ| direction θ = 180◦

Conclusion 7.1. At any point −→x , the functional φ decreases most
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rapidly (steepest) in the direction of the negative gradient −∇φ(−→x ).

φ(−→x ) = φ(x1, x2, · · · · · · , xN)

=
1

2
〈A−→x ,−→x 〉 −

〈−→
b ,−→x

〉

=
1

2

[
x1 · · · · · · xN

]






a11 · · · · · · a1N
a21 · · · · · · a2N
...

...
aN1 · · · · · · aNN











x1
...
...
xN






−
[
b1 · · · · · · bN

]






x1
...
...
xN






=
1

2

N∑

i=1

N∑

j=1

aijxjxi −
N∑

i=1

xibi

=
1

2

N∑

i=1

(ai1x1 + ai2x2 + · · ·+ aiixi + · · ·+ aikxk + · · · )xi −
N∑

i=1

xibi

=
1

2
(a11x1 + a12x2 + · · ·+ a1ixi + · · ·+ a1kxk + · · · )x1

+
1

2
(a21x1 + a22x2 + · · ·+ a2ixi + · · ·+ a2kxk + · · · )x2

+ · · ·
+
1

2
(ak1x1 + ak2x2 + · · ·+ akixi + · · ·+ akkxk + · · · )xk (7.16)

+ · · ·

+
1

2
(aN1x1 + aN2x2 + · · ·+ aNixi + · · ·+ aNkxk + · · · )xN −

N∑

i

xibi

φxk(
−→x ) =

∂φ(−→x )
∂xk

=
N∑

i=1

aikxi − bk, (∵ aik = aki) (7.17)

−∇φ(−→x ) = −
(
φx1 , φx2 , · · · , φxN

)
=
−→
b − A−→x (7.18)
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The slope (grade) of a line φ(x) = ax + b (a scalar function) is defined as
the rise over the run, m = ∆φ

∆x
= φ′(x) = dφ

dx
. The gradient (or gradient

vector field) of a scalar function φ(−→x ) with respect to a vector variable −→x
is denoted by ∇φ = gradφ where ∇ (the nabla symbol) denotes the vector
differential operator del (grad). By definition, the gradient is a vector field
whose components are the partial derivatives of φ as (7.18).

HW 7.1. Consider a unit circle. Define the unit circle by using a
quadratic functional φ(−→x ). Find ∇φ at the point (1,0) on the circle. What
can you say (geometrically) about the gradient at that point and then at any
point? Tangent vector? Normal vector? So what is your conclusion? If we
change the unit circle to a set of level curves, does your conclusion still hold?
Prove and draw a picture to explain the conclusion.

3 Method of Steepest Descent

Therefore, we should choose the direction −→p as
−→
b − A−→x if we want to

minimize φ(x, y) in the steepest way, i.e.,

D−→p φ(x, y) = ∇φ(−→x ) · −→p (7.19)
−→p = −∇φ(−→x ) (7.20)
−→p =

−→
b −A−→x (7.21)

−→r =
−→
b −A−→x (7.22)

Iteration:

−→x (k) = −→x (k−1) + αk−→p (k) (7.23)
−→p (k) = −� φ(−→x (k−1)) = −→r (k−1) (7.24)

Algorithm MSD: Method of Steepest Descent

−→x (0) = −→0 (initial guess or any other vector)
for k = 1, 2, · · · , kmax
−→r (k−1) = −→b − A−→x (k−1) (search direction −→p = −� φ)

if −→r (k−1) = −→0 then quit (solution found)
else −→p (k) = −→r (k−1)
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αk =

〈−→p (k),−→r (k−1)
〉

〈−→p (k), A−→p (k)〉 =
〈−→r (k−1),−→r (k−1)

〉

〈−→r (k−1), A−→r (k−1)〉 (by (7.12))

−→x (k) = −→x (k−1) + αk−→p (k)
Remark 7.3. The convergence results for MSD are (see J. R. Shewchuk

1994)

∥∥−→e (k)
∥∥
A

≤
(
κ− 1
κ+ 1

)k ∥∥−→e (0)
∥∥
A

(7.25)

−→e (0) = −→x ∗ −−→x (0)
−→e (k) = −→x ∗ −−→x (k)∥∥−→e (k)
∥∥
A

=
〈−→e (k), A−→e (k)

〉

κ =
λmax
λmin

, {λi} are eigenvalue of A (7.26)

A SPD ⇒ 0 < λ1 � λ2 � λ3 � · · · · · · � λN
κ =

λN
λ1

(iii) The convergence is slow if A is ill-conditioned, i.e., κ >> 1.
HW 7.2. Prove (7.25).
Example 7.5.

A =

[
3 2
2 6

]

Solution:

det(A− λI) = det

∣∣∣∣
3− λ 2
2 6− λ

∣∣∣∣ = 0

⇒ (3− λ) (6− λ)− 4 = 0
0 = λ2 − 9λ+ 14

λ =
9±

√
81− 56
2

λmax = 7

λmin = 2

κ =
7

2

Example 7.6.

A =

[
3 2
2 6

] −→
b =

[
2
−8

]
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Solution:

φ(−→x ) =
1

2
〈A−→x ,−→x 〉 −

〈−→
b ,−→x

〉

=
1

2

〈[
3x1 + 2x2
2x1 + 6x2

]
,

[
x1
x2

]〉
−
〈[

2
−8

]
,

[
x1
x2

]〉

=
1

2

(
3x21 + 4x1x2 + 6x

2
2

)
− (2x1 − 8x2)

= C (Different contours with different constants C)

x1 = x′1 cos θ + x
′

2 sin θ

x2 = −x′1 sin θ + x′2 cos θ

⇒ (x′1 − p1)2
a2

+
(x′2 − p2)2
b2

= 1

Example 7.7.

N = 2, A =

[
d1 0
0 d2

]
,
−→
b =

[
0
0

]
,−→x =

[
x
y

]
, d2 ≥ d1 > 0

Solution:

φ(−→x ) =
1

2
〈A−→x ,−→x 〉 = 1

2

[
x, y

] [ d1 0
0 d2

] [
x
y

]

=
1

2
(d1x

2 + d2y
2)

= C1(constant) > 0⇒ a level curve

⇒ x2

a2
+
y2

b2
= 1

⇒ a

b
≈
√
d2
d1
≈
√
κ

HW 7.3. Let d1 = 1 and d2 = 1/9. Draw level curves (contours) of the
function φ(−→x ) and the gradient ∇φ(−→x ) at some point −→x = (1, 1/9). Find
the tangent line at −→x = (1, 1/9) to the level curve passing through (1, 1/9).
What is the relation between ∇φ(1, 1/9) and this line? Find the minimum
value and minimizer of φ(−→x ) by MSD starting from the point (1, 1/9).
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Figure 1: Steepest Descent vs. Conjugate Gradient

Conclusion 7.2. Case (1) If the contour is a circle, i.e. κ = 1, the
solution is found in one step by MSD. Case (2) A is ill-conditioned ⇒ κ �
1 ⇒ level curves very elongated ⇒ requires a lot of iterations to find an
approximation solution ⇒ MSD converges very slowly.

HW 7.4. Prove Case (1).
Example 7.8. A comparison (Fig. 1) of the convergence of gradient

(steepest) descent with optimal step size (in green) and conjugate gradient
(in red) for minimizing the quadratic form associated with a given linear
system. Conjugate gradient converges in at most N steps where N is the
size of the matrix of the system (here N = 2).

4 Conjugate Gradient Method

To avoid Case (2), another approach was proposed by choosing

{−→p (1),−→p (2),−→p (3), · · ·
}
�=
{−→r (0),−→r (1),−→r (2), · · ·

}
(7.27)
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that satisfy 〈−→p (i), A−→p (j)
〉
= 0 ∀ i �= j (7.28)

This is called an A-orthogonal (A-conjugate) condition and the set{−→p (1),−→p (2),−→p (3), · · ·
}

is said to be A-orthogonal. The vectors −→p (i) are

called conjugate directions. SinceA is SPD, the set
{−→p (1),−→p (2),−→p (3), · · · ,−→p (N)

}

is linearly independent, i.e.,

RN = span
{−→p (1),−→p (2),−→p (3), · · · ,−→p (N)

}
? (7.29)

(7.12) h′(α) = 0⇒

αk =

〈−→
b −A−→x (k−1),−→p (k)

〉

〈A−→p (k),−→p (k)〉 =

〈−→r (k−1),−→p (k)
〉

〈A−→p (k),−→p (k)〉 (7.30)

−→x (k) = −→x (k−1) + αk−→p (k) (Next Iterate) (7.31)

Theorem 7.2. Let
{−→p (1),−→p (2),−→p (3), · · · ,−→p (N)

}
be an A-orthogonal

set of nonzero vectors associated with the SPD matrix A and let −→x (0) be
arbitrary. Define the iterates (7.31) for k = 1, 2, 3, · · · , with (7.30). Then,
assuming exact arithmetic, we have

A−→x (N) = −→b (N steps to get solution) (7.32)
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Proof:

A−→x ∗ = b, A : N ×N, −→x ∗ ∈ RN

φ(−→x ) =
1

2
〈A−→x ,−→x 〉 −

〈−→
b ,−→x

〉
, ∀−→x ∈ RN

h(α) = φ(−→x + α−→p ) = φ(−→x ) + α
〈
A−→x −−→b ,−→p

〉
+
α2

2
〈A−→p ,−→p 〉

− � φ(−→x ) = −→r = −→b − A−→x
−→x (k) = −→x (k−1) + αk−→p (k)

A−→x (N) = A−→x (N−1) + αNA−→p (N)
= A−→x (N−2) + αN−1A−→p (N−1) + αNA−→p (N)
= A−→x (0) + α1A−→p (1) + α2A−→p (2) + · · ·+ αN−1A−→p (N−1) + αNA−→p (N)

A−→x (N) −−→b = A−→x (0) −−→b +
N∑

i=1

αiA
−→p (i)

〈
A−→x (N)−−→b ,−→p (k)

〉
=

〈
A−→x (0)−−→b ,−→p (k)

〉
+

N∑

i=1

αi
〈
A−→p (i),−→p (k)

〉

=
〈
A−→x (0)−−→b ,−→p (k)

〉
+ αk

〈
A−→p (k),−→p (k)

〉

(
∵
{−→p (1),−→p (2),−→p (3), · · · ,−→p (N)

}
is A-orthogonal

)

=
〈
A−→x (0) −−→b ,−→p (k)

〉
+

〈−→
b −A−→x (k−1),−→p (k)

〉

〈A−→p (k),−→p (k)〉
〈
A−→p (k),−→p (k)

〉

=
〈
A−→x (0) − A−→x (k−1),−→p (k)

〉

(A−→x (k−1) = A−→x (k−2) + αk−1A−→p (k−1) = A−→x (0) + α1A−→p (1) + · · ·+ αk−1A−→p (k−1))

= −
k−1∑

i=1

αi
〈
A−→p (i),−→p (k)

〉
= 0 ∀k = 1, · · · , N

=⇒ A−→x (N) = −→b

How to determine the A-orthogonal set
{−→p (1),−→p (2),−→p (3), · · · ,−→p (N)

}
(set

of search directions, conjugate directions)?
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Lemma 7.1. Show that

〈−→r (k),−→p (k)
〉
= 0 for k = 1, · · · ,N, (7.33)

〈−→p (k+1), A−→p (k)
〉
= 0 for k = 1, · · · ,N − 1, (7.34)

〈−→p (k), A−→p (k)
〉
=

〈−→r (k−1), A−→p (k)
〉

for k = 1, · · · ,N, (7.35)
〈−→r (k),−→r (k−1)

〉
= 0 for k = 1, · · · ,N, (7.36)

Proof:

−→r (k) =
−→
b −A−→x (x)

( −→x (k) = −→x (k−1) + αk−→p (k) )

=
−→
b −A−→x (k−1) −

〈−→
b − A−→x (k−1),−→p (k)

〉

〈A−→p (k),−→p (k)〉 A−→p (k)

〈−→r (k),−→p (k)
〉
=

〈−→
b −A−→x (k−1),−→p (k)

〉
−
〈−→
b − A−→x (k−1),−→p (k)

〉

= 0⇒ (7.33)

(S5) ⇒ A−→p (k+1) = A−→r (k) + βkA−→p (k)〈
A−→p (k+1),−→p (k)

〉
=

〈
A−→r (k),−→p (k)

〉
+ βk

〈
A−→p (k),−→p (k)

〉
= 0

⇒ (7.34) by (S4) and this is the answer to the first ? in (S4).

For k = 1,

〈−→p (1), A−→p (1)
〉
=
〈−→r (0), A−→p (1)

〉
by the definition of −→p (1).

For 2 ≤ k ≤ N ,

〈−→p (k), A−→p (k)
〉
=

〈−→r (k−1) + βk−1−→p (k−1), A−→p (k)
〉

by (S5)

=
〈−→r (k−1), A−→p (k)

〉
+ βk−1

〈−→p (k−1), A−→p (k)
〉

=
〈−→r (k−1), A−→p (k)

〉
by (7.34) ⇒ (7.35)

HW 7.5. Show the second equality in (S1) first and then (7.36).
Theorem 7.3.

〈−→p (j), A−→p (m)
〉
= 0,

〈−→r (j−1),−→r (m−1)
〉
= 0 ∀j �= m. (7.37)
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Proof: This result is proved by induction on m. From (7.34) and (7.36),
we first note that

〈−→p (2), A−→p (1)
〉
=
〈−→r (1),−→r (0)

〉
= 0. Assume now that

〈−→p (l), A−→p (k)
〉
=
〈−→r (l−1),−→r (k−1)

〉
= 0 for 1 ≤ k < l ≤ m. (7.38)

We want to show that the same relation holds true for 0 ≤ k < l ≤ m+1. It
has been shown in Lemma 7.1 for k = m and l = m+ 1. Taking 1 ≤ k < m
and l = m+ 1, it follows

〈−→r (m),−→r (k−1)
〉
=

〈−→r (m−1),−→r (k−1)
〉
− αm

〈
A−→p (m),−→r (k−1)

〉

= −αm
〈
A−→p (m),−→r (k−1)

〉
by (7.38)

= −αm
〈
A−→p (m),−→p (k) − βk−1−→p (k−1)

〉
by (S5)

= 0 by (7.38) (7.39)

〈−→p (m+1), A−→p (k)
〉
=

〈−→r (m) + βm−→p (m), A−→p (k)
〉

=
〈−→r (m), A−→p (k)

〉
+ βm

〈−→p (m), A−→p (k)
〉

=
〈−→r (m), A−→p (k)

〉
by (7.38)

=
〈−→r (m),−→r (k−1) −−→r (k)

〉
α−1k by (S3)

= 0 by (7.39)
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