Lecture 8

Finite Element Method (FEM) for 1D Poisson's Equation
 Jinn-Liang Liu 2017/4/18

1D Poisson's Problem (Strong or Classical Problem): Given a function $f(x) \in C^{0}(\Omega)$ and two constants g_{D} and g_{N}, find the solution $u(x) \in$? satisfying

$$
\begin{align*}
-u^{\prime \prime} & =f(x) & & \forall x \in(0,1)=\Omega: \text { Open set } \tag{8.1a}\\
u(0) & =g_{D} & & \text { on } \partial \Omega_{D}=\{x=0\} \tag{8.1b}\\
u^{\prime}(1) & =g_{N} & & \text { on } \partial \Omega_{N}=\{x=1\} \tag{8.1c}
\end{align*}
$$

$\partial \Omega$ is the boundary of Ω, i.e., $\partial \Omega=\{0,1\}, \bar{\Omega}=\Omega \cup \partial \Omega$

Step1. Weak (or Variational) Formulation

(1D) Fundamental Theorem of Calculus (Integration by Parts):

$$
\begin{equation*}
\int_{a}^{b}(u v)^{\prime} d x=\left.u v\right|_{a} ^{b} \Rightarrow \int_{a}^{b} u^{\prime} v d x=\left.u v\right|_{a} ^{b}-\int_{a}^{b} u v^{\prime} d x \tag{8.2}
\end{equation*}
$$

(2D, 3D) Gauss's Divergence Theorem: Let B be an open bounded domain in $\mathbf{R}^{n}, n=2$ or 3 with a piecewise smooth boundary ∂B. Let \mathbf{u} be a differentiable vector function in B. Then

$$
\begin{equation*}
\iint_{B} \operatorname{div} \mathbf{u} d \mathbf{r}=\iint_{B} \nabla \cdot \mathbf{u} d \mathbf{r}=\int_{\partial B} \mathbf{u} \cdot \mathbf{n} d S \tag{2D}
\end{equation*}
$$

Area Integral (2D) $=$ Line Integral (1D)
Total Mass Change in $B=$ Mass Flows across ∂B,

$$
\begin{equation*}
\iiint_{B} \operatorname{div} \mathbf{u} d \mathbf{r}=\iiint_{B} \nabla \cdot \mathbf{u} d \mathbf{r}=\iint_{\partial B} \mathbf{u} \cdot \mathbf{n} d S \tag{3D}
\end{equation*}
$$

Volume Integral (3D) $=$ Surface Integral (2D)
Total Mass Change in $B=$ Mass Flows across ∂B,
ect
where \mathbf{n} is an outward unit normal vector on ∂B. The integral $\iint_{\partial B} \mathbf{u} \cdot \mathbf{n} d S$ is also called the flux u across the surface S.

HW 8.1. Consider the domain B as a cube centered at (x, y, z) of sides $d x, d y, d z$ with face S_{1} at $x-\frac{d x}{2}$ and face S_{2} at $x+\frac{d x}{2}$. Compute the outward fluxes through S_{1} and S_{2} and the total flux through S_{1} and S_{2}. Repeat this procedure for the remaining four faces and find the total outward flux from cube. And then prove (8.4) with the cube domain.

HW 8.2. Let B be the region defined by $x^{2}+y^{2}+z^{2}<1$. Use the divergence theorem to evaluate $\iiint_{B} z^{2} d \mathbf{r}$.

Multiply (8.1a) by an arbitrary test function

$$
\begin{equation*}
v(x) \in H^{1}(\Omega):=\left\{v(x): \int_{0}^{1}\left(v^{2}+\left(v^{\prime}\right)^{2}\right) d x<\infty\right\} \tag{8.5}
\end{equation*}
$$

where $H^{1}(\Omega)$ a Hilbert (Sobolev) space (i.e., $H^{1}(\Omega)$ is a function space such that any function of H^{1} and it's first derivative are square integrable) and integrate over Ω so that

$$
\begin{equation*}
\int_{0}^{1}\left(-u^{\prime \prime} v\right) d x=-\left.u^{\prime} v\right|_{0} ^{1}+\int_{0}^{1}\left(u^{\prime} v^{\prime}\right) d x=\int_{0}^{1} f v \quad \forall v \in H^{1} \tag{8.6}
\end{equation*}
$$

Now choose $v(x)$ such that $v(0)=0$ and define

$$
\begin{align*}
H_{0}^{1}(\Omega) & : \quad=\left\{v \in H^{1}(\Omega): v(0)=0\right\} \tag{8.7}\\
H_{D}^{1}(\Omega) & :=\left\{v \in H^{1}(\Omega): v(0)=g_{D}\right\} \tag{8.8}\\
H_{0}^{1}(\Omega) & \subset H^{1}(\Omega) \tag{8.9}
\end{align*}
$$

Define the bilinear form (functional)

$$
\begin{align*}
B(u, v) & =\int_{0}^{1} u^{\prime} v^{\prime} d x \tag{8.10}\\
B\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}, v\right) & =\alpha_{1} B\left(u_{1}, v\right)+\alpha_{2} B\left(u_{2}, v\right) \tag{8.11}\\
& \Rightarrow B \text { is linear in both } u \text { and } v \tag{8.12}
\end{align*}
$$

and the linear form (functional)

$$
\begin{equation*}
F(v)=\int_{0}^{1} f v d x+g_{N} v(1) \tag{8.13}
\end{equation*}
$$

Step 2. Weak (or Variational or Generalized) Problem

Weak Problem: Given $f \in H^{0}(\Omega), g_{D}$, and g_{N}, find $u \in H_{D}^{1}(\Omega)$ such that

$$
\begin{equation*}
B(u, v)=F(v) \quad \forall v \in H_{0}^{1}(\Omega) \tag{8.14}
\end{equation*}
$$

where

$$
\begin{align*}
H^{0}(\Omega) & =L^{2}(\Omega):=\left\{u(x): \int_{0}^{1} v^{2} d x<\infty\right\} \tag{8.15}\\
H^{1}(\Omega) & :=\left\{v(x): \int_{0}^{1}\left[v^{2}+\left(v^{\prime}\right)^{2}\right] d x<\infty\right\} \tag{8.16}\\
H_{0}^{1}(\Omega) & :=\left\{v(x) \in H^{1}(\Omega): v(0)=0\right\} \tag{8.17}\\
H_{D}^{0}(\Omega) & :=\left\{v(x) \in H^{1}(\Omega): v(0)=g_{D}\right\} \tag{8.18}\\
B(u, v) & :=\int_{0}^{1} u^{\prime} v^{\prime} d x \tag{8.19}\\
F(v) & :=\int_{0}^{1} f v d x+g_{N} v(1) \tag{8.20}
\end{align*}
$$

Remark 8.1.

(i)

$$
\begin{align*}
(8.1) & \Rightarrow f \in C^{0} \Rightarrow u \in C^{2} \text { (stronger space) } \tag{8.21}\\
(8.14) & \Rightarrow f \in H^{0}(\Omega) \\
& \Rightarrow u \in H^{1} \text { (weaker space) } C^{2} \subset H^{1} \text { (larger) } \tag{8.22}
\end{align*}
$$

Larger for $f \Rightarrow$ more applications \Rightarrow FEM more useful
(ii) $B(u, v)=B(v, u)$
$\Rightarrow(8.1)$ is a self-adjoint continuous problem $\left(-\frac{d^{2}}{d x^{2}}\right.$ and $-\Delta$ are selfadjoint operators).
$\Rightarrow A \vec{x}=\vec{b}$ is a symmetric discrete problem (A is a symmetric matrix).
(iii) Strong Solution $\underset{\nrightarrow}{\Rightarrow}$ Weak Solution
(iv) Most of physical problems belong to (8.14) not to (8.1).

Step 3. Mesh Generation (or Partition or Discretization)
Uniform Mesh (Partition): We partition (discretize) the domain $\bar{\Omega}=$ $[0,1]$ into $N-1$ subintervals (meshes or elements) with uniform mesh size $\Delta x=h=\frac{1}{N-1}$ and N mesh (grid) points (nodes) $x_{i}, i=1, \cdots N$. Hence,

Figure 1: 3D Heart Mesh
$x_{i}=0+(i-1) \Delta x, x_{i+1}=0+i \Delta x$ etc. 2D or 3D mesh generation is one of very important areas in computational sciences see Figs. 3 and 4. Each subinterval $\left(x_{i}, x_{i+1}\right)$ is called an element.

Step 4. Finite Element Subspaces

Let $S^{h} \subset H^{1}(\Omega)$ be a finite element subspace so that its basis functions (shape functions) are defined by

$$
\phi_{i}(x)=\left\{\begin{array}{crr}
1 & & \text { when } x=x_{i} \tag{8.24}\\
0 & \text { when } & x \notin\left(x_{i-1}, x_{i+1}\right)
\end{array}\right.
$$

which in general are chosen as polynomials (linear (Fig. 5), quadratic, cubic, etc.). The open interval $\left(x_{i-1}, x_{i+1}\right)$ is called the support of the basis function ϕ_{i}.

In implementation, these functions are constructed via the standard shape functions (ψ_{1} and ψ_{2}) defined on a standard (reference) element ($-1,1$), i.e.,

Figure 2: 3D Aircraft Mesh

Figure 3: 1D Linear FE Basis Functions
there exists a linear transformation

$$
\begin{equation*}
\frac{x-x_{i}}{h_{i}}=\frac{\xi+1}{2}, \quad \xi=\frac{2\left(x-x_{i}\right)}{h_{i}}-1, \quad h_{i}=x_{i+1}-x_{i} \tag{8.25}
\end{equation*}
$$

between the standard element $(-1,1)$ and any element $\left(x_{i}, x_{i+1}\right)$ such that

$$
\begin{align*}
\psi_{1}(\xi) & =\frac{1-\xi}{2}=\frac{1-\frac{2\left(x-x_{i}\right)}{h_{i}}+1}{2}, \quad \forall x \in\left(x_{i}, x_{i+1}\right) \\
& =1-\frac{x-x_{i}}{h_{i}}=\frac{x_{i+1}-x_{i}-x+x_{i}}{h_{i}} \\
& =\frac{x_{i+1}-x}{h_{i}}=\phi_{i}(x) \tag{8.26}\\
\psi_{2}(\xi) & =\frac{1+\xi}{2}=\frac{x-x_{i}}{h_{i}}=\phi_{i+1}(x), \quad \forall x \in\left(x_{i-1}, x_{i}\right) \tag{8.27}
\end{align*}
$$

Hence, the basis functions are constructed element-by-element via standard shape functions on $(-1,1)$ and the linear transformation (8.25), i.e., we construct $\phi_{i-1}(x), \phi_{i}(x)$ on $\left(x_{i-1}, x_{i}\right)$ and then $\phi_{i}(x), \phi_{i+1}(x)$ on $\left(x_{i}, x_{i+1}\right)$

Figure 4: 1D Standard Element
etc. Therefore, we have the linear finite element subspace

$$
\begin{equation*}
S^{h}:=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{N} \subset H^{1}(0,1) \tag{8.28}
\end{equation*}
$$

since it can be easily verified that

$$
\begin{equation*}
\int_{0}^{1}\left[\phi_{2}(x)\right]^{2}+\left[\phi_{2}^{\prime}(x)\right]^{2} d x<\infty \quad ? \tag{8.29}
\end{equation*}
$$

For any $v^{h}(x) \in S^{h}$, we can write

$$
\begin{equation*}
v^{h}(x)=\sum_{i=1}^{N} V_{i} \phi_{i}(x) \tag{8.30}
\end{equation*}
$$

where V_{i} are scalars

$$
\begin{align*}
S_{0}^{h} & :=\left\{v^{h}(x) \in S^{h}: v(0)=0\right\} \subset H_{0}^{1}(\Omega) \tag{8.31}\\
S_{D}^{h} & :=\left\{v^{h}(x) \in S^{h}: v(0)=g_{D}\right\} \subset H_{D}^{1}(\Omega) \tag{8.32}
\end{align*}
$$

Step 5. Finite Element Problem

Finite Element Problem: Given $f \in H^{0}(\Omega), g_{D}$, and g_{N}, find $u^{h}(x) \in$ S_{D}^{h} such that

$$
\begin{equation*}
B\left(u^{h}, v^{h}\right)=F\left(v^{h}\right) \quad \forall v^{h} \in S_{0}^{h} \tag{8.33}
\end{equation*}
$$

where

$$
\begin{align*}
& u^{h}(x)=\sum_{i=1}^{N} U_{j} \phi_{j}(x), \quad U_{j}: \text { unknown scalars } \tag{8.34}\\
& v^{h}(x)=\sum_{i=1}^{N} V_{i} \phi_{i}(x), \quad V_{i}: \text { arbitrary scalars } \tag{8.35}\\
& v^{h}(x) \in S_{0}^{h} \Rightarrow \\
& v^{h}\left(x_{1}\right)=v^{h}(0) \\
&=V_{1} \phi_{1}\left(x_{1}\right)+V_{2} \phi_{2}\left(x_{1}\right)+V_{3} \phi_{3}\left(x_{1}\right)+\ldots+V_{N} \phi_{N}\left(x_{1}\right) \\
&=V_{1}=0
\end{align*}
$$

$$
\begin{gathered}
(8.11) \Rightarrow B\left(u^{h}, \sum_{i=2}^{N} V_{i} \phi_{i}(x)\right)=F\left(\sum_{i=2}^{N} V_{i} \phi_{i}(x)\right) \\
\sum_{i=2}^{N} V_{i} B\left(u^{h}, \phi_{i}\right)=\sum_{i=2}^{N} V_{i} F\left(\phi_{i}\right) \\
\Longleftrightarrow B\left(u^{h}, \phi_{i}\right)=F\left(\phi_{i}\right) \quad \forall i=2, \ldots, N
\end{gathered}
$$

Theorem 8.1.

$$
\begin{gather*}
u^{h}(x) \in S_{D}^{h} \Rightarrow u^{h}(0)=u^{h}\left(x_{1}\right)=U_{1}=g_{D} \tag{8.36}\\
B\left(u^{h}, v^{h}\right)=F\left(v^{h}\right) \quad \forall v^{h} \in S_{0}^{h} \\
\Longleftrightarrow B\left(u^{h}, \phi_{i}\right)=F\left(\phi_{i}\right) \quad \forall i=2, \cdots, N \tag{8.37}
\end{gather*}
$$

Step 6. Matrix Formulation

From (8.36), we obtain the first equation $U_{1}=g_{D}$ for $i=1$. For $i=$ $2, \cdots N$, we have

$$
\begin{gather*}
B\left(u_{h}, \phi_{i}\right)=F\left(\phi_{i}\right) \Rightarrow \\
B\left(\sum_{j=1}^{N} U_{j} \phi_{j}, \phi_{i}\right)=F\left(\phi_{i}\right) \forall i \Rightarrow \tag{8.39}\\
\left\{\begin{array}{c}
\sum_{j} U_{j} B\left(\phi_{j}, \phi_{2}\right)=F\left(\phi_{2}\right) \\
\sum_{j} U_{j} B\left(\phi_{j}, \phi_{3}\right)=F\left(\phi_{3}\right) \\
\vdots \\
\sum_{j} U_{j} B\left(\phi_{j}, \phi_{N}\right)=F\left(\phi_{N}\right)
\end{array}\right. \tag{8.40}
\end{gather*}
$$

The matrix formulation

$$
\begin{gather*}
\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
B\left(\phi_{1}, \phi_{2}\right) & B\left(\phi_{2}, \phi_{2}\right) & B\left(\phi_{3}, \phi_{2}\right) & \cdots & B\left(\phi_{N}, \phi_{2}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
B\left(\phi_{1}, \phi_{i}\right) & \cdots & B\left(\phi_{i}, \phi_{i}\right) & \cdots & B\left(\phi_{N}, \phi_{i}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
B\left(\phi_{1}, \phi_{i}\right) & \vdots & \vdots & \vdots & B\left(\phi_{N}, \phi_{i}\right)
\end{array}\right)\left(\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{i} \\
\vdots \\
U_{N}
\end{array}\right) \\
=\left(\begin{array}{c}
g_{D} \\
F\left(\phi_{2}\right) \\
\vdots \\
F\left(\phi_{i}\right) \\
\vdots \\
F\left(\phi_{N}\right)
\end{array}\right) \Longrightarrow A \vec{U}=\vec{b} \tag{8.41}
\end{gather*}
$$

where

$$
\begin{align*}
a_{i j} & =B\left(\phi_{j}, \phi_{i}\right)=B\left(\phi_{i}, \phi_{j}\right)=a_{j i} \tag{8.42}\\
& \Rightarrow A \text { is symmetric for the part of } 2 \leq i, j \leq N-1 ? \tag{8.43}\\
\vec{U} & =\left(\begin{array}{c}
U_{1} \\
\vdots \\
U_{i} \\
\vdots \\
U_{N}
\end{array}\right) \quad \vec{b}=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{i} \\
\vdots \\
b_{N}
\end{array}\right) \tag{8.44}\\
U_{j} & \approx u\left(x_{j}\right)=u_{j} \text { unknown scalars } \tag{8.45}
\end{align*}
$$

Step 7. Solve $A \vec{U}=\vec{b}$

Example 8.1: Let $f(x)=2, g_{D}=g_{N}=0$. Write down the linear system (8.41) for $N=5$.

Solution: Step $3 \Rightarrow \Delta x=\frac{1}{4}=h \Rightarrow$ Mesh points: $x_{1}=0, x_{2}=\frac{1}{4}, x_{3}=$ $\frac{1}{2}, x_{4}=\frac{3}{4}, x_{5}=1$.

$$
\begin{equation*}
a_{32}=B\left(\phi_{2}, \phi_{3}\right)=\int_{0}^{1} \phi_{2}^{\prime} \phi_{3}^{\prime} d x=\int_{x_{2}}^{x_{3}} \phi_{2}^{\prime} \phi_{3}^{\prime} d x=\int_{x_{2}}^{x_{3}}\left(-\frac{1}{h}\right)\left(\frac{1}{h}\right) d x=-\frac{1}{h} \tag{8.46}
\end{equation*}
$$

$$
a_{33}=\int_{x_{2}}^{x_{4}}=\int_{x_{2}}^{x_{3}}+\int_{x_{3}}^{x_{4}}=\int_{x_{2}}^{x_{3}}\left(\phi_{3}^{\prime}\right)^{2} d x+\int_{x_{3}}^{x_{4}}\left(\phi_{3}^{\prime}\right) d x
$$

$$
\begin{equation*}
=\frac{1}{h^{2}} h+\frac{1}{h^{2}} h=\frac{2}{h} \tag{8.47}
\end{equation*}
$$

$$
b_{3}=\int_{x_{2}}^{x_{3}} f(x) \phi_{3}(x) d x+\int_{x_{3}}^{x_{4}} f(x) \phi_{3}(x) d x
$$

$$
=\int_{x_{2}}^{x_{4}} f(x) \phi_{3}(x) d x
$$

$$
\approx f\left(x_{3}\right) \int_{x_{2}}^{x_{4}} \phi_{3}(x) d x
$$

$$
\begin{equation*}
=h f\left(x_{3}\right)=2 h \tag{8.48}
\end{equation*}
$$

$$
\Rightarrow A U=\vec{b}, \quad A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \tag{8.49}\\
\frac{-1}{h} & \frac{2}{h} & \frac{-1}{h} & 0 & 0 & 0 \\
0 & \frac{-1}{h} & \frac{2}{h} & \frac{-1}{h} & 0 & 0 \\
0 & 0 & \frac{-1}{h} & \frac{2}{h} & \frac{-1}{h} & 0 \\
0 & 0 & 0 & 0 & -1 ? & 2 ?
\end{array}\right], \quad \vec{b}=\left(\begin{array}{c}
0 \\
2 h \\
2 h \\
2 h \\
0 ?
\end{array}\right)
$$

Question 8.1: (a) Answer ? in (8.43). (b) Is the linear system $A U=$ \vec{b} in (8.49) (from FEM) the same as that in Question 1.1 (from FDM)? (c) Answer ??? in (8.49).

Remarks:

1. For general function $f(x)$, we need to evaluate the integral $b_{3}=\int_{x_{2}}^{x_{3}}$ $f(x) \phi_{3}(x) d x$ by using some numerical integration method. The most frequently used method is Gaussian Quadrature Rule, named after Carl Friedrich Gauss. In 1D, an n-point Gaussian quadrature rule is a quadrature rule constructed to yield an exact result for polynomials
of degree $2 n-1$, by a suitable choice of the n points x_{i} and n weights w_{i}. The domain of integration for such a rule is conventionally taken as $[-1,1]$, so the rule is stated as

$$
\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

For the Gaussian quadrature rules in 2D and 3D, see O. C. Zienkiewicz and R. L. Taylor, The finite element methods, 4th Ed., Vol. 1. MrGrawHill, 1989.
2. In implementation, the entries of A and \vec{b} are usually calculated in an element-by-element way.

Project 8.1. Consider the 1D Poisson Problem (1.1) (with $f(x)=2, g_{D}=$ 0 , and $g_{N}=0$) and implement the methods FEM and GE. Given a total number of nodes N, the mesh size $\Delta x=h=\frac{1}{N-1}$.

Input: N, A, \vec{b}, TOL (write the input in the program).

Output:

N	k	$E^{\vec{x}}$	E^{u}	α
5				
9				
17				
33				
65				
129				

