Lecture 8

Finite Element Method (FEM) for 1D
Poisson’s Equation
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1D Poisson’s Problem (Strong or Classical Problem): Given a
function f(z) € C°(Q) and two constants gp and gy, find the solution u(z) €
? satisfying

—u" = f(z) Vaxe(0,1)=Q:Open set (8.1a)
w(0) = gp ondp={xr=0} (8.1b)
W(l) = gv ondQy={zx=1} (8.1c)

0N is the boundary of , i.e., 9Q = {0,1}, Q = QU N

Stepl. Weak (or Variational) Formulation

(1D) Fundamental Theorem of Calculus (Integration by Parts):

b b b
/ (w) dz = w|’ = | vvdr = w|’ —/ wv'dx (8.2)

(2D, 3D) Gauss’s Divergence Theorem: Let B be an open bounded
domain in R", n = 2 or 3 with a piecewise smooth boundary dB. Let u be
a differentiable vector function in B. Then

(2D) //Bdiv udr = //BV-udr:/aBu-ndS (8.3)

Area Integral (2D) = Line Integral (1D)
Total Mass Change in B = Mass Flows across 0B,

o fffavn [l [ o

Volume Integral (3D) = Surface Integral (2D)
Total Mass Change in B = Mass Flows across 0B,
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where n is an outward unit normal vector on dB. The integral [, ,u-ndS
is also called the flux u across the surface S.

HW 8.1. Consider the domain B as a cube centered at (z,y, z) of sides
dz, dy, dz with face S at © — d—; and face S5 at x + %”. Compute the outward
fluxes through S; and Sy and the total flux through S; and S5. Repeat this
procedure for the remaining four faces and find the total outward flux from
cube. And then prove (8.4) with the cube domain.

HW 8.2. Let B be the region defined by 2% + y? + 22 < 1. Use the
divergence theorem to evaluate [[[, z%dr.

Multiply (8.1a) by an arbitrary test function

1
v(r) € HY(Q) := {v(x) : / (v? + (v')?)dz < oo} (8.5)

0
where H'(2) a Hilbert (Sobolev) space (i.e., H'(2) is a function space

such that any function of H' and it’s first derivative are square integrable)
and integrate over €2 so that

1 1 1
/ (—u"v) dz = —u'vl} +/ (u'v)dx = / fv  VYweH! (8.6)
0 0 0

Now choose v(x) such that v(0) = 0 and define

Hy(Q) : ={ve HY(Q):v(0) =0} .
HL(Q) : ={ve H(Q):v(0)=gp} (8.8)
H}(Q) c HY(Q) (8.9)
Define the bilinear form (functional)
1
B(u,v) = / u'v'dx (8.10)
0
B(aquy + aguz,v) = a1B(uyv) + aaB(ug,v) (8.11)
= B is linear in both u and v (8.12)
and the linear form (functional)
1
F(v) = / fodx 4+ gnv(1) (8.13)
0

Step 2. Weak (or Variational or Generalized ) Problem
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Weak Problem: Given f € H(Q), gp, and gy, find u € H}(Q) such

that
B(u,v) = F(v) Vv € Hy () (8.14)
where
HY(Q) = L*Q):= {u(z): /0 v?dr < oo} (8.15)
HY(Q) = {v(x): /0 [v? + (V')?]dz < oo} (8.16)
H;(Q) = {v(z) € H'(Q) : v(0) = 0} (8.17)
Hp(Q) = ={v(z) € H'(Q) : v(0) = gp} (8.18)
B(u,v) = / u'v'dx (8.19)
F(v) :/0 fodx 4+ gyv(1) (8.20)
Remark 8.1.
(i)
(8.1) = f€C®= ue C? (stronger space) (8.21)
(8.14) = fe HQ)
= u € H'(weaker space) C* C H' (larger) (8.22)
Larger for f = more applications = FEM more useful  (8.23)

(i) B(u,v) = B(v,u)
= (8.1) is a self-adjoint continuous problem (—(;‘l—; and —A are self-
adjoint operators).
= A7 = ? is a symmetric discrete problem (A is a symmetric
matrix).
(iii) Strong Solution 7 Weak Solution
(iv) Most of physical problems belong to (8.14) not to (8.1).

Step 3. Mesh Generation (or Partition or Discretization )

Uniform Mesh (Partition): We partition (discretize) the domain Q =
[0,1] into N — 1 subintervals (meshes or elements) with uniform mesh size
Az = h = = and N mesh (grid) points (nodes) x;, i = 1,--- N. Hence,
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Figure 1: 3D Heart Mesh

x; =0+ (i — 1)Az, x;11 = 04 iAzx etc. 2D or 3D mesh generation is one
of very important areas in computational sciences see Figs. 3 and 4. Each
subinterval (z;,z;11) is called an element.

Step 4. Finite Element Subspaces
Let S" ¢ H'(2) be a finite element subspace so that its basis functions
(shape functions) are defined by

1 when z = x;
| _ @ 8.24
¢Z(Z) { 0 when =2 g (ati_1, $i+1) ( )

which in general are chosen as polynomials (linear (Fig. 5), quadratic, cubic,
etc.). The open interval (x;_1,z;11) is called the support of the basis function
;-

In implementation, these functions are constructed via the standard shape
functions (1, and 1,) defined on a standard (reference) element (—1,1), i.e.,
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Figure 2: 3D Aircraft Mesh
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Figure 3: 1D Linear FE Basis Functions

there exists a linear transformation

2(x — x;)
h;

r—x; £+1

W 9 N 5 = — 1, hz =Tjr1 — T4 (825)

between the standard element (—1,1) and any element (z;, z;41) such that

¢1(€) = 9 = 21 ) Ve ($i,$i+1)

_ 1_x—$i_$i+1—xi—x—|—xi

= T = 6) (8.26)
@) = SE=T B o @), Vee@m) (827

Hence, the basis functions are constructed element-by-element via stan-
dard shape functions on (—1,1) and the linear transformation (8.25), i.e.,
we construct ¢, (), ¢;(x) on (z;_1,x;) and then ¢;(x), ¢, (z) on (z;, z541)
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Figure 4: 1D Standard Element
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etc. Therefore, we have the linear finite element subspace
Sh .= span {gbi}f\il c H'(0,1)

since it can be easily verified that

/0 62(@) + [By(x)Pdz <00 7

For any v"(z) € S" | we can write

N

(@) =) Vigs(a)

i=1
where V; are scalars

Sy o = {v"(x) € S":v(0) =0} C Hy(Q)

St ={o"(x) € " :v(0) = gp} C Hp(Q)

Step 5. Finite Element Problem

(8.28)

(8.29)

(8.30)

Finite Element Problem: Given f € H°(Q), gp, and gy, find v"(z) €

Sh such that
B(u",v") = F(v") Vo' € S

where

N
u(z) = Z Uj¢;(z), U;: unknown scalars
i=1

N
o"(z) = Zvi@(l’), V; : arbitrary scalars
i=1

o"(z) € Sh=
V(@) = 0"(0)

= Vi¢1(21) + Vado(z1) + Vags(w1) + ... + Vo (21)

o1

(8.33)

(8.34)

(8.35)



N
2

Z %B(uhu ¢z)

1+
=
=
©

1=

< Bu" ¢;)=F(¢;) Vi=2,...,N

Theorem 8.1.

Step 6. Matrix Formulation

From (8.36), we obtain the first equation U; = gp for i = 1. For i =
2,--- N, we have

B(un, ¢;) = F(¢;) =

B(Y Uity &) = F(o) Vi = (8.39)

(Y UB(6;.0) = F(6))

> UB(¢;, ¢5) = F(o3)
j (8.40)

D> _UiB(6;,6x) = F(dy)

\
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The matrix formulation

1 0 0 0 U,
B(¢1,93) B(ga, ¢2) Blgs, 02) - Bldy, ¢2) U,

Bn) - Blowo) - Blwa) ||,
B(¢y, ¢;) : : 1 B(én,9:) Un
9D
F ()
= F(¢z> — AU = (8.41)
F(on)
where
Qij = B(¢ja ¢;) = B(¢;, ¢g) = Gy (8.42)
= A is symmetric for the part of 2 <i,j < N —17 (8.43)
U; bl
T - |u D= b (8.44)
Uy by
U; =~ wu(z;)=u; unknown scalars (8.45)

- =
Step 7. Solve AU = b

Example 8.1: Let f(z) = 2, gp = gy = 0. Write down the linear system
(8.41) for N = 5.
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Solution: Step 3 = Az = i = h = Mesh points: 1 = 0,29 = i,l’g =

1 3
Ty = 4,1'5—1

2

! ’ ot s ’ ot s 1,1 1
a32:B(¢2,¢3):/0 Py @3d :/ Gy¢zdx :/ (— h><h>dx__%

(8.46)
azz3 = / / / / (¢3) 2d33—|—/ (¢5)dx
= ﬁh ﬁh = ﬁ (8.47)
by = f( )os(x dl’+/ f(z)ps(x)dx
= f( )ps(z)dx
~ 333 / ¢3

= hf(xs) =2h (8.48)

1 0 0 0 0 0 0

(U =T = I £

= AU = b, =10 %1 ,% %1 0 01, b =1|2h

0 O %1 % %1 0 2h

O 0 o0 0 -—=17 27 07
(8.49)

Question 8.1: (a) Answer 7 in (8.43). (b) Is the linear system AU =

D in (8.49) (from FEM) the same as that in Question 1.1 (from FDM)? (c)
Answer 777 in (8.49).

Remarks:

1. For general function f(z), we need to evaluate the integral by = f;;g
f(z) ¢5(z) dz by using some numerical integration method. The most
frequently used method is Gaussian Quadrature Rule, named after
Carl Friedrich Gauss. In 1D, an n-point Gaussian quadrature rule is
a quadrature rule constructed to yield an exact result for polynomials
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of degree 2n — 1, by a suitable choice of the n points z; and n weights
w;. The domain of integration for such a rule is conventionally taken
as [—1, 1], so the rule is stated as

[ s gwiﬂxi).

For the Gaussian quadrature rules in 2D and 3D, see O. C. Zienkiewicz
and R. L. Taylor, The finite element methods, 4th Ed., Vol. 1. MrGraw-
Hill, 1989.

—
2. In implementation, the entries of A and b are usually calculated in
an element-by-element way.

Project 8.1. Consider the 1D Poisson Problem (1.1) (with f(x) =2, gp =
0, and gy = 0) and implement the methods FEM and GE. Given a
1

total number of nodes IV, the mesh size Az = h = .

Input: N, A, b, TOL (write the input in the program).

N |k|E* | E'|«
5
9
Output: | 17
33
65
129
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