
Lecture 9
Newton’s Method

Jinn-Liang Liu
2017/6/1

Newton’s method is a method for finding successively approximations to
a root (unknown solution) x∗ of a nonlinear equation

g(x) = 0. (9.1)

We first choose an initial guess x(0) that is sufficiently close to x∗ and then
determine the tangent line to the curve of g(x) at the point

(
x(0), g(x(0))

)

with the slope of g′(x(0)). This line intercepts the x-axis at x(1) which is
expected to be closer to x∗ than x(0). Then we have another tangent line
through

(
x(1), g(x(1))

)
and obtain x(2) and so on. In other words, we are

iteratively solving the following linearized equation

g′(x(0))w = g(x(0)), w = x(0) − x(1), (9.2a)

g′(x(0))w = lim
t→0

g(x(0) + tw)− g(x(0))

t
, or

−g′(x(0))x(1) = −g′(x(0))x(0) + g(x(0)) (9.2b)

where x(1) is next iterate (unknown) to be solved then x(2) (with x(0) replaced
by x(1)) and so on. Newton’s method thus generates a sequence of approx-
imate solutions

{
x(n)

}∞
n=0

to the exact solution x∗. Three main questions
concerning with this method are:

(1) How do we guarantee the convergence, i.e., limn→∞ x
(n) = x∗ with

what initial guess x(0)?
(2) How fast is the convergence? (Answer: The convergence order is two

(quadratic convergence) if the sequence converges.)
(3) How do we generalize this idea to a nonlinear PDE? This lecture is

concerned with this question.
Question 9.1. What is linearity? For f1(x) = x, f2(x) = x

2, f3(x) = e
x,

f4(X) = AX with A =

[
a11 a12
a21 a22

]
, X =

[
x1
x2

]
, f5(u) =

du(x)
dx

, f6(u) =

udu
dx

, f7(u) = −
d2u
dx2

, f8(u) =
∫
u(x)dx, which one is linear?

56

HW 9.1. Read Newton’s method from, for example, Wikipedia and
prove (1) and (2).

Example 9.1. Consider first the nonlinear equation

ax = ex =: f(x) (9.3)

where a �= 0 is a scalar. Here, we can think a as a linear operator acting on
x. Then

g(x) = ax− f(x) = 0, g′(x) = a− f ′(x) = a− ex (9.4)

g′(x(0)) =
g(x(0))− 0

x(0) − x(1)
(9.5)

g′(x(0))w = g(x(0)), w = x(0) − x(1), or (9.6a)[
a− f ′(x(0))

]
x(1) = −f ′(x(0))x(0) + f(x(0)), (9.6b)

where the last equation is a linearized equation.
Example 9.2. We next consider the following coupled nonlinear sys-

tem with two unknown solutions (independent variables) (x1, x2), the linear
operator A (a matrix), and two nonlinear functions f1(x1, x2) and f2(x1, x2),

{
a11x1 + a12x2 = f1(x1, x2)
a21x1 + a22x2 = f2(x1, x2)

(9.7)

[
a11 a12
a21 a22

] [
x1
x2

]
=

[
f1(x1, x2)
f2(x1, x2)

]
(9.8)

AX = F (X), G(X) = AX − F (X) = 0 (9.9)

A =

[
a11 a12
a21 a22

]
, X =

[
x1
x2

]
, F (X) =

[
f1(x1, x2)
f2(x1, x2)

]

F ′(X) := J(X) = J(x1, x2) =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
(Jacobian operator) (9.10)

G′(X) = A− F ′(X) (9.11)

G′(X(0))W = G(X(0)), W = X(0) −X(1), or (9.12a)[
A− F ′(X(0))

]
X(1) = −F ′(X(0))X(0) + F (X(0)), (9.12b)

57

HW 9.2. Prove (9.12a) using (9.2a). Write (9.12b) explicitly in a system
of two linear equations.

Example 9.3. This last example is an elliptic semilinear (nonlinear)
PDE with now an unknown solution u(x), the positive linear operator − d2

dx2

(acting on ?), and the nonlinear functional (a function of a function) f(u),

−u′′(x) = f(u) = eu (9.13)

G(u) = −u′′(x)− f(u) = 0 (9.14)

G′(u)w : = lim
t−→0

G(u+ tw)−G(u)

t
(G′(u) is an operator) (9.15a)

= lim
t−→0

[−u′′(x)− tw′′ − f(u+ tw)]− [−u′′(x)− f(u)]

t

= −w′′ − lim
t−→0

f(u+ tw)− f(u)

t

= −w′′ − lim
t−→0

f(u+ tw)− f(u)

tw
w

= −w′′ − f ′(u)w (9.15b)

Note that the differentiations in w′′ and f ′(u) are different, i.e., w
′

= dw(x)
dx

and f
′

(u) = df(u)
du

etc. The linearized problem of (9.13) is thus

G′(u(0))w = −w′′ − f ′(u(0))w = G(u(0)), w = u(0) − u(1) (9.16)

If (9.16) is discretized by, for example, the finite difference method (FDM),
we obtain a linear system like (9.12) as

G′(U (0))W = G(U (0)), W = U (0) − U (1) (9.17a)[
A− F ′(U (0))

]
U (1) = −F ′(U (0))U (0) + F (U (0)) (9.17b)

where G′(U (0)) = A − F ′(U (0)), A is a coefficient matrix corresponding to
the discretization of −w′′, W = [W1, · · · ,WN]

T , F ′(U (0)) is a diagonal ma-

trix with entries di = f ′(U (0)(xi)) with U (0)(xi) =: U
(0)
i ≈ u(xi), U

(0) =[
U
(0)
1 , · · · , U

(0)
N

]T
, G(U (0)) = AU (0)−F (U (0)), and F (U (0)) =

[
f(U

(0)
1), · · · , f(U

(0)
N)
]T

.

The monotone iterative method with FDM for (9.13) is to replace (9.18)
by a more general form

[A−D]U (1) = −DU (0) + F (U (0)) (9.18)

58

where the matrix D can be a constant diagonal matrix or a variable diagonal
matrix. Of course if D = F ′(U (0)), we have Newton’s method.

Project 9.1. Consider the following 1D nonlinear Poisson problem

−u′′(x) = λeu , ∀ x ∈ (0, 1) (9.19a)

u(0) = u(1) = 0 (9.19b)

where the exact solution u(x) = ln
[
cosh2

(
µ

2

)
· cosh−2

(
µ
(
x− 1

2

))]
,

µ = 2, λ = 2µ2 cosh−2
(
µ

2

)
, and cosh (θ) = eθ+e−θ

2
. Implement the

central finite difference method, the conjugate gradient method, and
Newton’s method (NM) to find approximate solutions U(x) to u(x).
Given a total number of nodes N , the mesh size ∆x = h = 1

N−1
. The

maximum error of an approximate solution U(x) is defined as

Eu = ||e(x)||∞ = ||u(x)− U(x)||∞

= max
1≤i≤N

|ei| = max
1≤i≤N

|ui − Ui| . (9.20)

Example: For N = 5, we have h = 1
4

and

A =




1 0 0 0 0
−1
h2

2
h2

−1
h2

0 0
0 −1

h2
2
h2

−1
h2

0
0 0 −1

h2
2
h2

−1
h2

0 0 0 0 1




(See (1.17)), (9.21)

U (0) =




U
(0)
1

U
(0)
2

U
(0)
3

U
(0)
4

U
(0)
5



=




0
1
4
1
2
1
4

0




or =




0
0
0
0
0




, −→x =




x1
x2
x3
x4
x5



=




0
1
4
1
2
3
4

1




,

−→u =




u1 = u(x1)
u2 = u(x2)
u3 = u(x3)
u4 = u(x4)
u5 = u(x5)




(9.22)

59

D =




0 0 0 0 0
0 d2 0 0 0
0 0 d3 0 0
0 0 0 d4 0
0 0 0 0 0




,

d2 = f ′(U (0)(x2)) = λe
U(0)(x2) = λeU

(0)
2 = λe

1
4 (9.23)

F (U (0)) =




0
F2
F3
F4
0




,

F2 = f(U (0)(x2)) = λe
U(0)(x2) = λeU

(0)
2 = λe

1
4 = d2 (9.24)

[A−D]U (1) = −DU (0) + F (U (0)) =⇒ Â U (1) =
−→
b (9.25)

Â = A−D,
−→
b =




0
b2
b3
b4
0




, b2 = −d2U
(0)
2 + d2 (9.26)

Algorithm NM: Newton’s Method Find approximate solution U(x) of
(9.19).

Input: N , lmax, EUTol.

Step 1. Set A, U (0), −→x in (9.21) and (9.22).

Step 2. Set the exact solution −→u in (9.22).

Step 3. For l = 1, · · · , lmax, do Step 4-8. (Newton’s iteration.)

Step 4. Set the diagonal matrix (vector) D in (9.23).

Step 5. Set Â and
−→
b in (9.25).

60

Step 6. Call CG or SOR or JM to solve Â U (1) =
−→
b .

Step 7. Compute EU = max1≤i≤N

∣∣∣U (1)i − U
(0)
i

∣∣∣.

Step 8. If EU < EUTol then compute Eu = max1≤i≤N

∣∣∣ui − U (1)i
∣∣∣ and stop,

else set U (0) = U (1) and go to Step 3.

Output:

N l Eu

5
9
17
33
65
129

.

Question 9.2. (1) Verify the exact solution satisfy (9.19). (2) Write
(9.17b) explicitly in a system of five linear equations for the problem in
Project 9.1, i.e., N = 5. (3) How do you choose an initial guess for Newton’s
method in your program?

HW 9.3. Can you show numerically the quadratic convergence by your
program? Answer this question by writing the mathematical formulas before
programming.

HW 9.4. Use (9.15a) as the definition of the operator G′(u)w to prove
that (a) g′(x(0))w =

[
a− f ′(x(0))

]
w in (9.2) with u = x(0) and G′(u) =

g′(x(0)), (b) G′(X(0))W =
[
A− F ′(X(0))

]
W in (9.12) with u = X(0) and

G′(u) = G′(X(0)).

61

