Project 3. (Due 1/5) Do
Project 8.1 in Lecture 8.
Project 2. (Due 12/1) Do
Project 7.1 in Lecture 7.
Project 1. (Due 11/3) Do Project 3.2 in Lecture 3. (Example: JM1.cpp)
Report 2. (Due 1/12)
Report 1. (Due 11/10)
Homework 2. (Due 11/17) Do HW 2.1 and HW2.2 in Lecture 2. Do Example 7.1 in Lecture 7.
Homework 1. (Due 11/3) Do HW 1.2 in Lecture 1.
Submit
all Reports and Projects via email.
½Òµ{¤jºõ
Course Topics:
Lecture Order: 1, 2, ¡K,
15.
I.
Overview
1. Semiconductor Transistors
A. Transistor / MOSFET
tutorial
B. Silicon Wafer
Processing Animation
C. Making a computer processor (AMD)
D.
Quantum Computer
E. Quantum Mechanics
2. Life¡¦s Transistors
II.
Numerical Methods
3. 1D Poisson¡¦s Problem and Finite Difference Method
4.
Jacobi Method (Read Lecture 2.)
5.
Conjugate Gradient Method
6. 1D Finite Element Method
10.
Newton and Monotone Iterative Methods
11. Scharfetter-Gummel (Exponential Fitting) Method
I.
Mathematical Models with Fundamental Physics
7. Poisson¡¦s Equation in Electrostatics
8. Convection-Diffusion-Reaction Model
9. A Drift Diffusion Model for Ion Channel
12. Schrödinger¡¦s Equation
13. Bohm¡¦s Quantum Potential
14. A Quantum-Corrected Drift Diffusion
Model for Ion Channel
15. A
Quantum-Corrected
Energy Transport Model for
Semiconductor Device
Links: 2009F¼ÆȽu¥N
±Ð¾Ç¥Ø¼Ð
¡P
Learn basic numerical methods for Partial Differential Equations
(PDEs)
¡P
Learn basic numerical methods for Linear Algebra
¡P
Learn basic Physics behind PDEs
¡P
Learn programming in Scientific Computing
±Â½Ò¤è¦¡
¡P
Regular Lecturing
µû¤À¼Ð·Ç
¡P
Projects 50%
¡P
Reports and Homeworks 50%
±Ð¬ì®Ñ
¡P
Jinn-Liang Liu, Lecture Notes on Numerical Methods for Partial
Differential Equations, 2009.
¡P
Juan Soulie, C++ Language Tutorial,
2007. 2007X C++
Programming
¾\Ū¤åÄm
¡P
R. J. LeVeque, Finite
Difference Methods for Differential Equations, 2005. LeVeque-FDM-2005.pdf
(Chapters 1-5)
¡P E. Suli,
Finite
Element Methods for Partial Differential Equations, 2007. Suli-FEM-2007.pdf
¡P R. Barrett, M. Berry, T.
F. Chan, J. Demmel, J. Donato,
J. Dongarra , V. Eijkhout,
R. Pozo, C. Romine, and H. Van der
Vorst, Templates
for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM, 1994,
Philadelphia, PA.
Templates for the
Solution of Linear Systems (pdf)
¡P J. R. Shewchuk, An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain, 1994.