Swaps

Chapter 6

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Nature of Swaps

A swap is an agreement to exchange cash flows at specified future times according to certain specified rules

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

6.3

An Example of a "Plain Vanilla" Interest Rate Swap

- An agreement by Microsoft to receive 6-month LIBOR & pay a fixed rate of 5% per annum every 6 months for 3 years on a notional principal of \$100 million
- Next slide illustrates cash flows

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

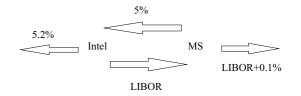
Cash Flows to Microsoft

(See Table 6.1, page 127)

	Millions of Dollars			
	LIBOR	FLOATING	FIXED	Net
Date	Rate	Cash Flow	Cash Flow	Cash Flow
Mar.5, 2001	4.2% _	_		
Sept. 5, 2001	4.8% _	+2.10	-2.50	-0.40
Mar.5, 2002	5.3% _	+2.40	-2.50	-0.10
Sept. 5, 2002	5.5% _	+2.65	-2.50	+0.15
Mar.5, 2003	5.6% _	+2.75	-2.50	+0.25
Sept. 5, 2003	5.9% _	+2.80	-2.50	+0.30
Mar.5, 2004	6.4%	+2.95	-2.50	+0.45

Ontions, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hul

6.5

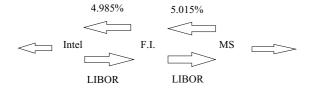

Typical Uses of an Interest Rate Swap

- Converting a liability from
 - -fixed rate to floating rate
 - floating rate to fixed rate
- Converting an investment from
 - -fixed rate to floating rate
 - -floating rate to fixed rate

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\texttt{@}}\xspace$ 2002 by John C. Hull

Intel and Microsoft (MS)
Transform a Liability

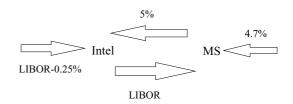
(Figure 6.2, page 128)


Options, Futures, and Other Derivatives, 5th edition @ 2002 by John C. Hull

6.4

6.6

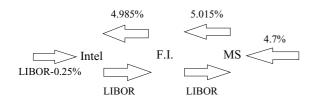
Financial Institution is Involved


(Figure 6.4, page 129)

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Intel and Microsoft (MS) Transform an Asset

(Figure 6.3, page 128)



Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

6.9

Financial Institution is Involved

(See Figure 6.5, page 129)

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

The Comparative Advantage Argument (Table 6.4, page 132)

- AAACorp wants to borrow floating
- · BBBCorp wants to borrow fixed

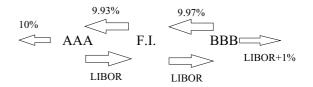
	Fixed	Floating
AAACorp	10.00%	6-month LIBOR + 0.30%
BBBCorp	11.20%	6-month LIBOR + 1.00%

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\mathbb{C}}$ 2002 by John C. Hull

6.11

The Swap (Figure 6.6, page 132)

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\texttt{@}}\xspace$ 2002 by John C. Hull


6.12

6.8

6.10

The Swap when a Financial Institution is Involved

(Figure 6.7, page 133)

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\texttt{@}}\xspace$ 2002 by John C. Hull

Criticism of the Comparative Advantage Argument

- The 10.0% and 11.2% rates available to AAACorp and BBBCorp in fixed rate markets are 5-year rates
- The LIBOR+0.3% and LIBOR+1% rates available in the floating rate market are sixmonth rates
- BBBCorp's fixed rate depends on the spread above LIBOR it borrows at in the future

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

6.14

Valuation of an Interest Rate Swap

- Interest rate swaps can be valued as the difference between the value of a fixedrate bond and the value of a floatingrate bond
- Alternatively, they can be valued as a portfolio of forward rate agreements (FRAs)

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

6.15

Valuation in Terms of Bonds

- The fixed rate bond is valued in the usual way
- The floating rate bond is valued by noting that it is worth par immediately after the next payment date

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

6.16

6.18

Valuation in Terms of FRAs

- Each exchange of payments in an interest rate swap is an FRA
- The FRAs can be valued on the assumption that today's forward rates are realized

Options, Futures, and Other Derivatives, 5th edition $@\,2002\,$ by John C. Hull

6.17

An Example of a Currency Swap

An agreement to pay 11% on a sterling principal of £10,000,000 & receive 8% on a US\$ principal of \$15,000,000 every year for 5 years

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{@}\xspace$ 2002 by John C. Hull

Ewahawaa af Duinainal

Exchange of Principal

- In an interest rate swap the principal is not exchanged
- In a currency swap the principal is exchanged at the beginning and the end of the swap

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

The Cash Flows (Table 6.6, page 140)

	Dollars \$	Pounds £
Year	milli	ons
2001	-15.00	+10.00
2002	+1.20	-1.10
2003	+1.20	-1.10
2004	+1.20	-1.10
2005	+1.20	-1.10
2006	+16.20	-11.10

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Typical Uses of a **Currency Swap**

a liability in one currency to a liability in another currency

 Conversion from
 Conversion from an investment in one currency to an investment in another currency

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Comparative Advantage Arguments for Currency Swaps (Table 6.7, page 141)

General Motors wants to borrow AUD Oantas wants to borrow USD

	USD	AUD
General Motors	5.0%	12.6%
Qantas	7.0%	13.0%

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

6.21

Valuation of Currency Swaps

Like interest rate swaps, currency swaps can be valued either as the difference between 2 bonds or as a portfolio of forward contracts

6.23

Swaps & Forwards

- A swap can be regarded as a convenient way of packaging forward contracts
- The "plain vanilla" interest rate swap in our example consisted of 6 FRAs
- The "fixed for fixed" currency swap in our example consisted of a cash transaction & 5 forward contracts

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Swaps & Forwards

(continued)

- The value of the swap is the sum of the values of the forward contracts underlying the swap
- Swaps are normally "at the money" initially
 - -This means that it costs nothing to enter into a swap
 - -It does not mean that each forward contract underlying a swap is "at the money" initially

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

6.24

Credit Risk

- A swap is worth zero to a company initially
- At a future time its value is liable to be either positive or negative
- The company has credit risk exposure only when its value is positive

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull