8.5

Properties of Stock Option Prices

Chapter 8

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Notation

- c: European call option price
- p : European put option price
- S_0 : Stock price today
- *K* : Strike price
- T: Life of option
- σ: Volatility of stock price
- C: American Call option price
- *P* : American Put option price
- S_T:Stock price at option maturity
- D: Present value of dividends during option's life
- r: Risk-free rate for maturity T with cont comp

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Effect of Variables on Option Pricing (Table 8.1, page 168)

Variable	c	p	C	P
S_0 K T σ r D	+ - ? + +	- + ? + - +	+ - + + + -	

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

American vs European Options

An American option is worth at least as much as the corresponding European option

$$C \ge c$$
$$P \ge p$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Calls: An Arbitrage Opportunity?

• Suppose that

$$c = 3$$

$$S_0 = 20$$

$$T = 1$$

$$r = 10\%$$

$$K = 18$$

$$D = 0$$

• Is there an arbitrage opportunity?

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Lower Bound for European Call Option Prices; No Dividends

(Equation 8.1, page 173)

$$c \ge S_0 - Ke^{-rT}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

8.6

8.4

Puts: An Arbitrage Opportunity?

• Suppose that

$$p = 1$$

= 0.5

$$S_0 = 37 T$$

$$r = 5\%$$

$$K = 40$$

$$D = 0$$

• Is there an arbitrage opportunity?

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Lower Bound for European Put Prices; No Dividends

(Equation 8.2, page 174)

$$p \ge Ke^{-rT} - S_0$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

8.9

Put-Call Parity; No Dividends

(Equation 8.3, page 174)

- Consider the following 2 portfolios:
 - Portfolio A: European call on a stock + PV of the strike price in cash
 - Portfolio C: European put on the stock + the stock
- Both are worth MAX(S_T, K) at the maturity of the options
- · They must therefore be worth the same today
 - This means that

$$c + Ke^{-rT} = p + S_0$$

Options, Futures, and Other Derivatives. 5th edition © 2002 by John C. Hu

Arbitrage Opportunities

8.10

8.12

• Suppose that

$$c = 3$$

$$S_0 = 31$$

$$T = 0.25$$

$$r = 10\%$$

$$K = 30$$

$$D = 0$$

What are the arbitrage possibilities when

$$p = 2.25$$
 ?

$$p = 1$$
 ?

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

8.11

Early Exercise

- Usually there is some chance that an American option will be exercised early
- An exception is an American call on a non-dividend paying stock
- This should never be exercised early

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

An Extreme Situation

• For an American call option:

$$S_0 = 100$$
; $T = 0.25$; $K = 60$; $D = 0$

Should you exercise immediately?

- · What should you do if
 - 1 You want to hold the stock for the next 3 months?
 - 2 You do not feel that the stock is worth holding for the next 3 months?

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

8.13

Reasons For Not Exercising a Call Early (No Dividends)

- · No income is sacrificed
- We delay paying the strike price
- Holding the call provides insurance against stock price falling below strike price

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

8.14

Should Puts Be Exercised Early?

Are there any advantages to exercising an American put when

$$S_0 = 60; T = 0.25; r=10\%$$

 $K = 100; D = 0$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

8.15

The Impact of Dividends on Lower Bounds to Option Prices

(Equations 8.5 and 8.6, page 179)

$$c \ge S_0 - D - Ke^{-rT}$$
$$p \ge D + Ke^{-rT} - S_0$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

8.16

Extensions of Put-Call Parity

- American options; D = 0 $S_0 - K \le C - P \le S_0 - Ke^{-rT}$ Equation 8.4 p. 175
- European options; D > 0 $c + D + Ke^{-rT} = p + S_0$ Equation 8.7 p. 179
- American options; D > 0 $S_0 - D - K \le C - P \le S_0 - Ke^{-rT}$ Equation 8.8 p. 179

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull