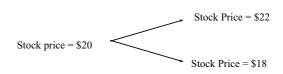
Introduction to Binomial Trees

Chapter 10

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

A Simple Binomial Model

- A stock price is currently \$20
- In three months it will be either \$22 or \$18

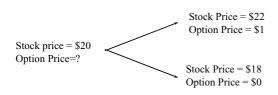


Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

10.3

A Call Option (Figure 10.1, page 200)

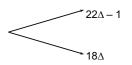
A 3-month call option on the stock has a strike price of 21.



Options, Futures, and Other Derivatives, 5th edition $\ensuremath{@}\xspace$ 2002 by John C. Hull

Setting Up a Riskless Portfolio

• Consider the Portfolio: $\log \Delta$ shares short 1 call option



• Portfolio is riskless when $22\Delta - 1 = 18\Delta$ or $\Delta = 0.25$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

10.5

Valuing the Portfolio (Risk-Free Rate is 12%)

• The riskless portfolio is:

long 0.25 shares short 1 call option

- The value of the portfolio in 3 months is 22'0.25 1 = 4.50
- The value of the portfolio today is $4.5e^{-0.12'0.25} = 4.3670$

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\texttt{@}}\xspace$ 2002 by John C. Hull

Valuing the Option

• The portfolio that is

long 0.25 shares short 1 option

is worth 4.367

- The value of the shares is $5.000 (= 0.25^{\circ}20)$
- The value of the option is therefore 0.633 = 5.000 4.367

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

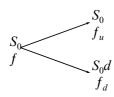
10.4

10.2

10.6

Generalization (Figure 10.2, page 202)

• A derivative lasts for time *T* and is dependent on a stock



Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hul

Generalization (continued)

 Consider the portfolio that is long Δ shares and short 1 derivative

• The portfolio is riskless when $S_0 u \Delta - f_u = S_0 d \Delta - f_d$ or

$$\Delta = \frac{f_u - f_d}{S_0 u - S_0 d}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

10.9

10.11

Generalization (continued)

- Value of the portfolio at time T is $S_0 u \Delta f_u$
- Value of the portfolio today is $(S_0 u \Delta f_u)e^{-rT}$
- Another expression for the portfolio value today is $S_0 \Delta f$
- Hence

$$f = S_0 \Delta - (S_0 u \Delta - f_u) e^{-rT}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Generalization (continued)

• Substituting for Δ we obtain

$$f = [p f_u + (1-p)f_d]e^{-rT}$$

where

$$p = \frac{e^{rT} - d}{u - d}$$

Options, Futures, and Other Derivatives, 5th edition $@\,2002\,$ by John C. Hull

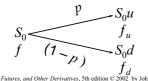
10.12

10.10

10.8

Risk-Neutral Valuation

- $f = [p f_u + (1-p)f_d]e^{-rT}$
- The variables p and (1-p) can be interpreted as the risk-neutral probabilities of up and down movements
- The value of a derivative is its expected payoff in a risk-neutral world discounted at the risk-free rate



Irrelevance of Stock's Expected Return

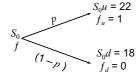
When we are valuing an option in terms of the underlying stock the expected return on the stock is irrelevant

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

10.13

10.15

Original Example Revisited

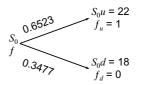


- Since p is a risk-neutral probability $20e^{0.12}$ '0.25 = 22p + 18(1-p); p = 0.6523
- · Alternatively, we can use the formula

$$p = \frac{e^{rT} - d}{u - d} = \frac{e^{0.12 \times 0.25} - 0.9}{1.1 - 0.9} = 0.6523$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Valuing the Option

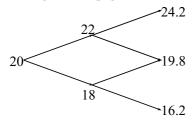


The value of the option is $e^{-0.12'0.25}$ [0.6523'1 + 0.3477'0] = 0.633

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

A Two-Step Example

Figure 10.3, page 205



• Each time step is 3 months

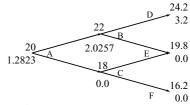
Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Valuing a Call Option

10.16

10.14

Figure 10.4, page 206



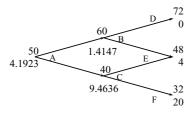
- Value at node B = $e^{-0.12'0.25}(0.6523'3.2 + 0.3477'0) = 2.0257$
- Value at node A = $e^{-0.12'0.25}(0.6523'2.0257 + 0.3477'0)$ = 1.2823

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

10.17

A Put Option Example; K=52

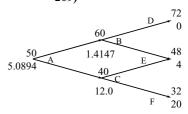
Figure 10.7, page 208



Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hul

What Happens When an

Option is American (Figure 10.8, page



Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hul

10.20

Delta

- Delta (Δ) is the ratio of the change in the price of a stock option to the change in the price of the underlying stock
- The value of Δ varies from node to node

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Choosing u and d

One way of matching the volatility is to set

$$u = e^{\sigma \sqrt{\delta t}}$$
$$d = e^{-\sigma \sqrt{\delta t}}$$

where σ is the volatility and δt is the length of the time step. This is the approach used by Cox, Ross, and Rubinstein

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull