Options on Stock Indices, Currencies, and Futures

Chapter 13

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

13.3

European Options on Stocks Providing Dividend Yield continued

We can value European options by reducing the stock price to S_0e^{-q} and then behaving as though there is no dividend

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

13.5

Extension of Chapter 12 Results

(Equations 13.4 and 14.5)

$$\begin{split} c &= S_0 e^{-qT} \, N(d_1) - K e^{-rT} \, N(d_2) \\ p &= K e^{-rT} \, \, N(-d_2) - S_0 e^{-qT} \, N(-d_1) \\ \text{where} \quad d_1 &= \frac{\ln(S_0 \, / \, K) + (r - q + \sigma^2 \, / \, 2) T}{\sigma \sqrt{T}} \\ d_2 &= \frac{\ln(S_0 \, / \, K) + (r - q - \sigma^2 \, / \, 2) T}{\sigma \sqrt{T}} \end{split}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

European Options on Stocks Providing a Dividend Yield

We get the same probability distribution for the stock price at time T in each of the following cases:

- 1. The stock starts at price S_0 and provides a dividend yield = q
- 2. The stock starts at price S_0e^{-q} and provides no income

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

3.4

13.2

Extension of Chapter 8 Results

(Equations 13.1 to 13.3)

Lower Bound for calls:

$$c \ge S_0 e^{-qT} - K e^{-rT}$$

Lower Bound for puts

$$p \ge Ke^{-rT} - S_0 e^{-qT}$$

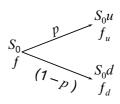
Put Call Parity

$$c + Ke^{-rT} = p + S_0 e^{-qT}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

13.6

The Binomial Model



$$f=e^{-rT}[pf_u+(1-p)f_d]$$

The Binomial Model

• In a risk-neutral world the stock price grows at r-q rather than at r when there is a dividend yield at rate q

• The probability, p, of an up movement must therefore satisfy

$$pS_0u+(1-p)S_0d=S_0e^{(r-q)T}$$

so that

$$p = \frac{e^{(r-q)T} - d}{u - d}$$

Index Options

Option contracts are on 100 times the index

The most popular underlying indices are

- the Dow Jones Industrial (European)

- the S&P 100 (American) OEX

- the S&P 500 (European) SPX

Contracts are settled in cash

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

13.9

Index Option Example

 Consider a call option on an index with a strike price of 560

• Suppose 1 contract is exercised when the index level is 580

• What is the payoff?

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

13.10

Using Index Options for Portfolio Insurance

• Suppose the value of the index is S_0 and the strike price is K

• If a portfolio has a β of 1.0, the portfolio insurance is obtained by buying 1 put option contract on the index for each $100S_0$ dollars held

• If the β is not 1.0, the portfolio manager buys β put options for each $100S_0$ dollars held

• In both cases, K is chosen to give the appropriate insurance level

13.11

Example 1

• Portfolio has a beta of 1.0

• It is currently worth \$500,000

• The index currently stands at 1000

• What trade is necessary to provide insurance against the portfolio value falling below \$450,000?

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Example 2

• Portfolio has a beta of 2.0

• It is currently worth \$500,000 and index stands at 1000

• The risk-free rate is 12% per annum

• The dividend yield on both the portfolio and the index is 4%

· How many put option contracts should be purchased for portfolio insurance?

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

13.8

13.12

Calculating Relation Between Index Level and Portfolio Value in 3 months

- If index rises to 1040, it provides a 40/1000 or 4% return in 3 months
- Total return (incl dividends)=5%
- Excess return over risk-free rate=2%
- Excess return for portfolio=4%
- Increase in Portfolio Value=4+3-1=6%
- Portfolio value=\$530,000

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Determining the Strike Price

(Table 13.2, page 274)

Expected Portfolio Value in 3 months (\$)
570,000
530,000
490,000
450,000
410,000

An option with a strike price of 960 will provide protection against a 10% decline in the portfolio value

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

13.15

Valuing European Index Options

We can use the formula for an option on a stock paying a dividend yield Set S_0 = current index level Set q = average dividend yield expected during the life of the option

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hul

Currency Options

- Currency options trade on the Philadelphia Exchange (PHLX)
- There also exists an active over-thecounter (OTC) market
- Currency options are used by corporations to buy insurance when they have an FX exposure

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

13.17

The Foreign Interest Rate

- We denote the foreign interest rate by r_f
- When a U.S. company buys one unit of the foreign currency it has an investment of S₀ dollars
- The return from investing at the foreign rate is $r_f S_0$ dollars
- This shows that the foreign currency provides a "dividend yield" at rate r_f

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

13.18

Valuing European Currency Options

- A foreign currency is an asset that provides a "dividend yield" equal to r_f
- We can use the formula for an option on a stock paying a dividend yield :

Set
$$S_0$$
 = current exchange rate

Set
$$q = r_f$$

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{@}$ 2002 by John C. Hull

13.14

13.16

13.24

Formulas for European **Currency Options**

(Equations 13.9 and 13.10, page 277)

$$\begin{split} c &= S_0 e^{-r_f T} N(d_1) - K e^{-r T} N(d_2) \\ p &= K e^{-r T} \ N(-d_2) - S_0 e^{-r_f T} N(-d_1) \\ \text{where} \quad d_1 &= \frac{\ln(S_0 \, / \, K) + (r - r_f + \sigma^2 \, / \, 2) T}{\sigma \sqrt{T}} \\ d_2 &= \frac{\ln(S_0 \, / \, K) + (r - r_f - \sigma^2 \, / \, 2) T}{\sigma \sqrt{T}} \end{split}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Alternative Formulas

(Equations 13.11 and 13.12, page 278)

$$\begin{aligned} & \text{Using} & F_0 = S_0 e^{(r-r_f)T} \\ & c = e^{-rT} [F_0 N(d_1) - KN(d_2)] \\ & p = e^{-rT} [KN(-d_2) - F_0 N(-d_1)] \\ & d_1 = \frac{\ln(F_0/K) + \sigma^2 T/2}{\sigma \sqrt{T}} \\ & d_2 = d_1 - \sigma \sqrt{T} \end{aligned}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

13.21

Mechanics of Call Futures Options

When a call futures option is exercised the holder acquires

- 1. A long position in the futures
- 2. A cash amount equal to the excess of the futures price over the strike price

Mechanics of Put Futures Option

When a put futures option is exercised the holder acquires

- 1. A short position in the futures
- 2. A cash amount equal to the excess of the strike price over the futures price

13.23

The Payoffs

If the futures position is closed out immediately:

Payoff from call = $F_0 - K$

Payoff from put = $K - F_0$

where F_0 is futures price at time of exercise

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Put-Call Parity for Futures Options (Equation 13.13, page 284)

Consider the following two portfolios:

- 1. European call plus Ke^{-rT} of cash
- 2. European put plus long futures plus cash equal to F_0e^{-rT}

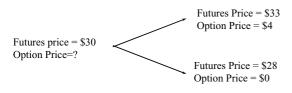
They must be worth the same at time T so that

$$c + Ke^{-rT} = p + F_0 e^{-rT}$$

13.28

Binomial Tree Example

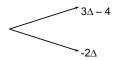
A 1-month call option on futures has a strike price of 29.



Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Setting Up a Riskless Portfolio

• Consider the Portfolio: long Δ futures short 1 call option



• Portfolio is riskless when $3\Delta - 4 = -2\Delta$ or $\Delta = 0.8$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

13.27

Valuing the Portfolio (Risk-Free Rate is 6%)

• The riskless portfolio is:

long 0.8 futures short 1 call option

- The value of the portfolio in 1 month is -1.6
- The value of the portfolio today is $-1.6e^{-0.06/12} = -1.592$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Valuing the Option

• The portfolio that is

long 0.8 futures short 1 option

is worth -1.592

- The value of the futures is zero
- The value of the option must therefore be 1.592

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\mathbb{C}}$ 2002 by John C. Hull

13.30

Generalization (continued)

• Consider the portfolio that is long Δ futures and short 1 derivative

• The portfolio is riskless when

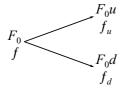
$$\Delta = \frac{f_u - f_d}{F_0 u - F_0 d}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

13.29

Generalization of Binomial Tree Example (Figure 13.3, page 285)

• A derivative lasts for time *T* and is dependent on a futures price



13.36

Generalization

(continued)

• Value of the portfolio at time T is $F_0 u \Delta - F_0 \Delta - f_u$

• Value of portfolio today

• Hence $f = -[F_0 u \Delta - F_0 \Delta - f_u]e^{-rT}$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Generalization

(continued)

• Substituting for Δ we obtain

$$f = [p f_u + (1-p)f_d]e^{-rT}$$

where

$$p = \frac{1 - d}{u - d}$$

13.35

Valuing European Futures Options

• We can use the formula for an option on a stock paying a dividend yield

Set S_0 = current futures price (F_0)

Set q = domestic risk-free rate(r)

• Setting q = r ensures that the expected growth of F in a risk-neutral world is zero

13.34

Growth Rates For Futures Prices

- · A futures contract requires no initial investment
- In a risk-neutral world the expected return should be zero
- The expected growth rate of the futures price is therefore zero
- The futures price can therefore be treated like a stock paying a dividend yield of r

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Black's Formula (Equations 13.17 and 13.18, page 287)

• The formulas for European options on futures are known as Black's formulas

$$\begin{split} c &= e^{-rT} \big[F_0 \ N(d_1) - K \ N(d_2) \big] \\ p &= e^{-rT} \big[K \ N(-d_2) - F_0 \ N(-d_1) \big] \\ \text{where} \quad d_1 &= \frac{\ln(F_0 / K) + \sigma^2 T / 2}{\sigma \sqrt{T}} \\ d_2 &= \frac{\ln(F_0 / K) - \sigma^2 T / 2}{\sigma \sqrt{T}} = d_1 - \sigma \sqrt{T} \end{split}$$

Futures Option Prices vs Spot Option Prices

- If futures prices are higher than spot prices (normal market), an American call on futures is worth more than a similar American call on spot. An American put on futures is worth less than a similar American put on spot
- When futures prices are lower than spot prices (inverted market) the reverse is true

Summary of Key Results

- We can treat stock indices, currencies, and futures like a stock paying a dividend yield of *q*
 - -For stock indices, q = average dividend yield on the index over the option life
 - -For currencies, $q = r_f$
 - -For futures, q = r