Estimating Volatilities and Correlations

Chapter 17

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Standard Approach to Estimating Volatility

- Define σ_n as the volatility per day between day n-1 and day n, as estimated at end of day n-1
- Define S_i as the value of market variable at end of day i
- Define $u_i = \ln(S_i/S_{i-1})$

$$\sigma_n^2 = \frac{1}{m-1} \sum_{i=1}^m (u_{n-i} - \overline{u})^2$$

$$\overline{u} = \frac{1}{m} \sum_{i=1}^m u_{n-i}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

17.3

Simplifications Usually Made

- Define u_i as $(S_i S_{i-1})/S_{i-1}$
- Assume that the mean value of u_i is zero
- Replace *m*-1 by *m*

This gives

$$\sigma_n^2 = \frac{1}{m} \sum_{i=1}^m u_{n-i}^2$$

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\texttt{@}}\xspace$ 2002 by John C. Hull

Weighting Scheme

Instead of assigning equal weights to the observations we can set

$$\sigma_n^2 = \sum_{i=1}^m \alpha_i u_{n-i}^2$$

where

$$\sum_{i=1}^{m} \alpha_i = 1$$

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\mathbb{C}}$ 2002 by John C. Hull

17.5

ARCH(m) Model

In an ARCH(m) model we also assign some weight to the long-run variance rate, V_L :

$$\sigma_n^2 = \gamma V_L + \sum_{i=1}^m \alpha_i u_{n-i}^2$$

where

$$\gamma + \sum_{i=1}^{m} \alpha_i = 1$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

17.6

EWMA Model

- In an exponentially weighted moving average model, the weights assigned to the u^2 decline exponentially as we move back through time
- · This leads to

$$\sigma_n^2 = \lambda \sigma_{n-1}^2 + (1-\lambda)u_{n-1}^2$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

17.4

17.2

17.8

17.10

Attractions of EWMA

- Relatively little data needs to be stored
- We need only remember the current estimate of the variance rate and the most recent observation on the market variable
- Tracks volatility changes
- RiskMetrics uses λ = 0.94 for daily volatility forecasting

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

GARCH (1,1)

In GARCH (1,1) we assign some weight to the long-run average variance rate

$$\sigma_n^2 = \gamma V_L + \alpha u_{n-1}^2 + \beta \sigma_{n-1}^2$$

Since weights must sum to 1

$$\gamma + \alpha + \beta = 1$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

17.9

GARCH (1,1) continued

Setting $\omega = \gamma V$ the GARCH (1,1) model is

$$\sigma_n^2 = \omega + \alpha u_{n-1}^2 + \beta \sigma_{n-1}^2$$

and

$$V_L = \frac{\omega}{1 - \alpha - \beta}$$

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\texttt{@}}\xspace$ 2002 by John C. Hull

Example

Suppose

$$\sigma_n^2 = 0.000002 + 0.13u_{n-1}^2 + 0.86\sigma_{n-1}^2$$

• The long-run variance rate is 0.0002 so that the long-run volatility per day is 1.4%

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\mathbb{C}}$ 2002 by John C. Hull

17.11

Example continued

- Suppose that the current estimate of the volatility is 1.6% per day and the most recent percentage change in the market variable is 1%.
- The new variance rate is

 $0.000002 + 0.13 \times 0.0001 + 0.86 \times 0.000256 = 0.00023336$

The new volatility is 1.53% per day

Options, Futures, and Other Derivatives, 5th edition @ 2002 by John C. Hull

17.12

GARCH (p,q)

$$\sigma_n^2 = \omega + \sum_{i=1}^p \alpha_i u_{n-i}^2 + \sum_{j=1}^q \beta_j \sigma_{n-j}^2$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

17.14

17.16

Other Models

- We can design GARCH models so that the weight given to u_i^2 depends on whether u_i is positive or negative
- We do not have to assume that the conditional distribution is normal

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Variance Targeting

- One way of implementing GARCH(1,1) that increases stability is by using variance targeting
- We set the long-run average volatility equal to the sample variance
- Only two other parameters then have to be estimated

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

17.15

17.17

Maximum Likelihood Methods

 In maximum likelihood methods we choose parameters that maximize the likelihood of the observations occurring

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Example 1

- We observe that a certain event happens one time in ten trials. What is our estimate of the proportion of the time, *p*, that it happens?
- The probability of the outcome is

$$10p(1-p)^9$$

• We maximize this to obtain a maximum likelihood estimate: p=0.1

Ontions, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

17.18

Example 2

Estimate the variance of observations from a normal distribution with mean zero

Maximize:
$$\prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi \nu}} \exp\left(\frac{-u_i^2}{2\nu}\right) \right]$$

or:
$$\sum_{i=1}^{n} \left[-\ln(v) - \frac{u_i^2}{v} \right]$$

This gives:
$$v = \frac{1}{n} \sum_{i=1}^{n} u_i^2$$

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\texttt{@}}\xspace$ 2002 by John C. Hull

Application to GARCH

We choose parameters that maximize

$$\sum_{i=1}^{n} \left[-\ln(v_i) - \frac{u_i^2}{v_i} \right]$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

17.20

17.22

How Good is the Model?

- The Ljung-Box statistic tests for autocorrelation
- We compare the autocorrelation of the u_i^2 with the autocorrelation of the u_i^2/σ_i^2

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Forecasting Future Volatility

A few lines of algebra shows that

$$E[\sigma_{n+k}^2] = V_L + (\alpha + \beta)^k (\sigma_n^2 - V_L)$$

The variance rate for an option expiring on day m is

$$\frac{1}{m}\sum_{k=0}^{m-1}E\left[\sigma_{n+k}^{2}\right]$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hul

17.21

Volatility Term Structures

- The GARCH (1,1) model allows us to predict volatility term structures changes
- It suggests that, when calculating vega, we should shift the long maturity volatilities less than the short maturity volatilities

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Correlations

Define $u_i = (U_i - U_{i-1})/U_{i-1}$ and $v_i = (V_i - V_{i-1})/V_{i-1}$ Also

 $\sigma_{u,n}$: daily vol of U calculated on day n-1 $\sigma_{v,n}$: daily vol of V calculated on day n-1 cov $_n$: covariance calculated on day n-1 The correlation is $\operatorname{cov}_n/(\sigma_{u,n}\,\sigma_{v,n})$

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\mathbb{C}}$ 2002 by John C. Hull

17.23

Correlations continued

Under GARCH (1,1)

$$cov_n = \omega + \alpha u_{n-1}v_{n-1} + \beta cov_{n-1}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hul

Positive Finite Definite Condition

A variance-covariance matrix, Ω , is internally consistent if the positive semi-definite condition

$$\mathbf{w}^{\mathsf{T}} \Omega \mathbf{w} \geq 0$$

for all vectors w

Options, Futures, and Other Derivatives, 5th edition @ 2002 by John C. Hull

17.24

Example

The variance covariance matrix

$$\begin{pmatrix} 1 & 0 & 0.9 \\ 0 & 1 & 0.9 \\ 0.9 & 0.9 & 1 \end{pmatrix}$$

is not internally consistent

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull