23.2

23.4

23.6

Interest Rate Derivatives: Models of the Short Rate

Chapter 23

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Term Structure Models

- Black's model is concerned with describing the probability distribution of a single variable at a single point in time
- A term structure model describes the evolution of the whole yield curve

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

23.3

Use of Risk-Neutral Arguments

- The process for the instantaneous short rate, *r*, in the traditional risk-neutral world defines the process for the whole zero curve in this world
- If P(t, T) is the price at time t of a zero-coupon bond maturing at time T

$$P(t,T) = \hat{E}\left[e^{-\bar{r}(T-t)}\right]$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Equilibrium Models

Rendleman & Bartter:

$$dr = \mu r dt + \sigma r dz$$

Vasicek:

$$dr = a(b-r) dt + \sigma dz$$

Cox, Ingersoll, & Ross (CIR):

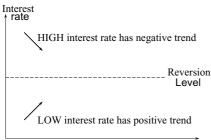
$$dr = a(b-r) dt + \sigma \sqrt{r} dz$$

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\mathbb{C}}$ 2002 by John C. Hull

23.5

Mean Reversion

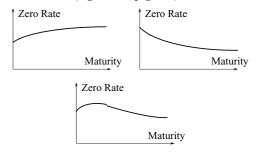
(Figure 23.1, page 539)



Options, Futures, and Other Derivatives, 5th edition @ 2002 by John C. Hull

Alternative Term Structures in Vasicek & CIR

(Figure 23.2, page 540)



Options, Futures, and Other Derivatives, 5th edition @ 2002 by John C. Hull

23.8

23.10

Equilibrium vs No-Arbitrage Models

- In an equilibrium model today's term structure is an output
- In a no-arbitrage model today's term structure is an input

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Developing No-Arbitrage Model for r

A model for r can be made to fit the initial term structure by including a function of time in the drift

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

23.9

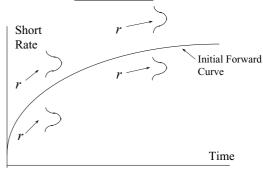
Ho and Lee

$$dr = \theta(t)dt + \sigma dz$$

- Many analytic results for bond prices and option prices
- · Interest rates normally distributed
- One volatility parameter, σ
- All forward rates have the same standard deviation

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Diagrammatic Representation of Ho and Lee



Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

23.11

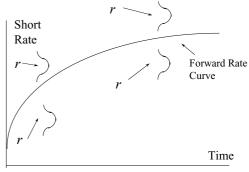
Hull and White Model

$$dr = [\theta(t) - ar]dt + \sigma dz$$

- Many analytic results for bond prices and option prices
- Two volatility parameters, a and σ
- · Interest rates normally distributed
- Standard deviation of a forward rate is a declining function of its maturity

Options, Futures, and Other Derivatives, 5th edition @ 2002 by John C. Hull

Diagrammatic Representation of Hull and White



Options, Futures, and Other Derivatives, 5th edition @ 2002 by John C. Hull

23.15

23.14

Options on Coupon Bearing Bonds

- A European option on a coupon-bearing bond can be expressed as a portfolio of options on zero-coupon bonds.
- We first calculate the critical interest rate at the option maturity for which the coupon-bearing bond price equals the strike price at maturity
- The strike price for each zero-coupon bond is set equal to its value when the interest rate equals this critical value

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Interest Rate Trees vs Stock Price Trees

- The variable at each node in an interest rate tree is the δt -period rate
- Interest rate trees work similarly to stock price trees except that the discount rate used varies from node to node

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Two-Step Tree Example

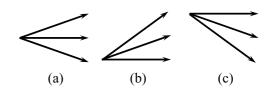
(Figure 23.6, page 551))

Payoff after 2 years is MAX[100(r – 0.11), 0] \underline{r} \underline{p} \underline{p} =0.25; p_m =0.5; p_d =0.25; Time step=1yr 0.14 3 0.12 1 0.35** 0.10 0 0.08 0 0.06 0 *: $(0.25\times3 + 0.50\times1 + 0.25\times0)e^{-0.12\times1}$ **: $(0.25\times1.11 + 0.50\times0.23 + 0.25\times0)e^{-0.10\times1}$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Alternative Branching Processes in a Trinomial Tree

(Figure 23.7, page 552)



Options, Futures, and Other Derivatives, 5th edition $@\,2002\,$ by John C. Hull

23.17

An Overview of the Tree Building <u>Procedure</u>

$$dr = [q(t) - ar]dt + sdz$$

- 1. Assume q(t) = 0 and r(0) = 0
- 2. Draw a trinomial tree for *r* to match the mean and standard deviation of the process for *r*
- 3. Determine q(t) one step at a time so that the tree matches the initial term structure

Options, Futures, and Other Derivatives, 5th edition @ 2002 by John C. Hull

23.18

Example

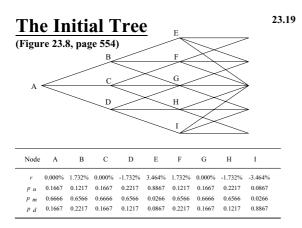
 $\sigma = 0.01$

a = 0.1

 $\delta t = 1 \text{ year}$

The zero curve is as shown in Table 23.1 on page 556

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull



Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

23.20 The Final Tree (Figure 23.9, Page 556) 3.824% 6.937% 5.205% 3 473% 9.716% 7.984% 6.252% 4.520% 2.788% 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867 0.6566 0.6566 0.0266 0.6666 0.6566 0.6566 0.0266 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

23.21

Extensions

The tree building procedure can be extended to cover more general models of the form:

$$df(r) = [\theta(t) - a f(r)]dt + \sigma dz$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

Other Models

Black, Derman, and Toy:

$$d \ln r = \left[\theta(t) + \frac{\sigma'(t)}{\sigma(t)} \ln(r)\right] dt + \sigma(t) dz$$

Black and Karasinski:

$$d \ln r = \left[\theta(t) - a(t) \ln(r)\right] dt + \sigma(t) dz$$

- These models allow the initial volatility environment to be matched exactly
- But the future volatility structure may be quite different from the current volatility structure

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

23.23

Calibration: a and σ constant

- The volatility parameters a and σ are chosen so that the model fits the prices of actively traded instruments such as caps and European swap options as closely as possible
- We can choose a global best fit value of a and imply σ from the prices of actively traded instruments. This creates a volatility surface for interest rate derivatives similar to that for equity option or currency options (see Chapter 15)

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{\texttt{@}}\xspace$ 2002 by John C. Hull

Calibration:

a and σ functions of time

• We minimize a function of the form

$$\sum_{i=1}^{n} (U_i - V_i)^2 + P$$

where U_i is the market price of the ith calibrating instrument, V_i is the model price of the ith calibrating instrument and P is a function that penalizes big changes or curvature in a and σ

Options, Futures, and Other Derivatives, 5th edition $\ensuremath{@}$ 2002 by John C. Hull

23.22

23.24