Chapter 10

Ito's Lemma

Samantha Chiang

Types of Derivatives

1. partial derivatives of $F(S_t, t)$

$$F_s = \frac{\partial F(S_t, t)}{\partial S}, \qquad F_t = \frac{\partial F(S_t, t)}{\partial t}$$

→ Simple multipliers , there is no difference between stochastic and deterministic variables.

2. total derivatives

$$dF_t = F_s dS_t + F_t dt$$

 \rightarrow Assume that both time t and the underlying asset price S_t change, and then calculate the total response of $F(S_t, t)$.

2

3. chain rule

$$\frac{dF(S_t, t)}{dt} = F_s \frac{dS_t}{dt} + F_t$$

1. In classical calculus ---

The chain rule expresses the rate of change in a variable as a chain effect of some initial variation.

2. In stochastic calculus ---

The operations such as $\frac{dF_t}{dt}$, $\frac{dS_t}{dt}$ can't be defined for continuous-time square integrable martingales, or Brownian motion.

But, a stochastic equivalent of the chain rule can be formulated in terms of absolute changes such as dF_i , dS_i , dt, and the Ito integral can be used to justify these terms.

Thus, in stochastic calculus, the term "chain rule" will refer to the way stochastic differentials relate to each other.

→ a stochastic version of total differentiation is developed.

3

Ito's Lemma

The stochastic version of the chain rule is known as Ito's Lemma

 \rightarrow Expand the $F(S_k, k)$ around S_{k-1} , k-1 by Taylor's formula.

$$F(S_k, h) = F(S_{k-1}, h-1) + F_s \Delta S_k + F_t[h]$$

+ $\frac{1}{2} F_{ss} [\Delta S_k]^2 + \frac{1}{2} F_m[h]^2 + F_{st}[h \Delta S_k] + R$

while
$$F(S_k, k) - F(S_{k-1}, k-1) = \Delta F(k)$$

$$\rightarrow \Delta F(k) = F_s \Delta S_k + F_t[h] + \frac{1}{2} F_{ss} [\Delta S_k]^2 + \frac{1}{2} F_{tt}[h]^2 + F_{tt}[h\Delta S_k] + R$$

Assume S_k obeys $\Delta S_k = a_k h + \sigma_k \Delta W_k$

4

Ito's Lemma

$$\Delta F(K) = F_s[a_k h + \sigma_k \Delta W_k] + F_t[h] + \frac{1}{2} F_{ss}[a_k h + \sigma_k \Delta W_k]^2 + \frac{1}{2} F_{tt}[h]^2 + F_{st}[h][a_k h + \sigma_k \Delta W_k] + R$$

In order to obtain a chain rule in stochastic environments, the right-hand side terms will be classified as negligible and nonnegligible. The notion of "Size" in Stochastic Calculus

Convention:

Given a function $g(\Delta W_k, h)$ depending on the increments of the Wiener process W_k , and on the time increment,

consider the ratio
$$\frac{g(\Delta W_k, h)}{h}$$
.

- (1) If the ratio vanishes as $h \to 0$ $g(\Delta W_k, h)$ is negligible in small intervals.
- (2) Otherwise, $g(\Delta W_k, h)$ is nonnegligible.

6

5

The notion of "Size" in Stochastic Calculus

$$\Delta F(K) = F_s[a_k h + \sigma_k \Delta W_k] + F_t[h]$$

$$+ \frac{1}{2} F_{ss}[a_k h + \sigma_k \Delta W_k]^2 + \frac{1}{2} F_{tt}[h]^2$$

$$+ F_{st}[h][a_k h + \sigma_k \Delta W_k] + R$$

• first order terms...

$$*\lim_{h\to 0}\frac{F_s a_k h}{h} = F_s a_k$$

As a result, all first-order terms are nonnegligible.

$$*\lim_{h\to 0}\frac{F_th}{h}=F_t$$

$$*\frac{F_s\Delta W_k}{h}$$
 \(\tau \text{ as } h \leftrightarrow \((\text{:} \Delta W_k = f(h^{\frac{1}{2}})\)

7

The notion of "Size" in Stochastic Calculus

$$\Delta F(K) = F_s[a_k h + \sigma_k \Delta W_k] + F_t[h] + \frac{1}{2} F_{ss}[a_k h + \sigma_k \Delta W_k]^2 + \frac{1}{2} F_{tt}[h]^2 + F_{st}[h][a_k h + \sigma_k \Delta W_k] + R$$

• Second order terms...

*
$$\lim_{h \to 0} \frac{F_n[h]^2}{2h} = \lim_{h \to 0} \frac{F_n[h]}{2} = 0$$

negligible

* $\frac{1}{2}F_{ss}[a_k h + \sigma_k \Delta W_k]^2$ divided by h...

$$=\frac{\frac{1}{2}F_{ss}\left[\frac{a^{2}h^{2}}{h}+\frac{\left(\sigma_{k}\Delta W_{k}\right)^{2}}{h}+\frac{2a_{k}\sigma_{k}h\Delta W_{k}}{h}\right]\cong\frac{1}{2}F_{ss}a_{k}^{2}$$

.

The notion of "Size" in Stochastic Calculus

$$\Delta F(K) = F_s[a_k h + \sigma_k \Delta W_k] + F_t[h] + \frac{1}{2} F_{ss}[a_k h + \sigma_k \Delta W_k]^2$$
$$+ \frac{1}{2} F_n[h]^2 + F_n[h][a_k h + \sigma_k \Delta W_k] + R$$

• the Cross Products terms

$$\lim_{h \to 0} \frac{F_{st}[h][a_k h + \sigma_k \Delta W_k]}{h}$$

$$= \lim_{h \to 0} \frac{F_{st}[h][\sigma_k h]}{h} + \lim_{h \to 0} \frac{F_{st}[h][\sigma_k \Delta W_k]}{h}$$

$$= 0 + \lim_{h \to 0} F_{st}[\sigma_k \Delta W_k] \qquad Var(\Delta W_k) = h$$

$$= 0 \qquad E(\Delta W_k) = 0$$

9

The notion of "Size" in Stochastic Calculus

$$\Delta F(K) = F_s[a_k h + \sigma_k \Delta W_k] + F_t[h] + \frac{1}{2} F_{ss}[a_k h + \sigma_k \Delta W_k]^2$$

$$+ \frac{1}{2} F_t[h]^2 + F_{st}[h][a_k h + \sigma_k \Delta W_k] + R$$

• the remaining terms

According to the convention, if the unpredictable shocks are of "normal" type-- i.e., there are no "rare events", powers of ΔW_k greater than two will be negligible.

10

The notion of "Size" in Stochastic Calculus

$$\Delta F(K) = F_s[a_k h + \sigma_k \Delta W_k] + F_t[h] + \frac{1}{2} F_{ss}[a_k h + \sigma_k \Delta W_k]^2 + \frac{1}{2} F_{tt}[h]^2 + F_{st}[h][a_k h + \sigma_k \Delta W_k] + R$$

$$\Rightarrow \Delta F(K) = F_s[a_k h + \sigma_k \Delta W_k] + F_t[h] + \frac{1}{2} F_{ss} \sigma_k^2$$

Ito's Lemma

Let $F(S_t, t)$ be a twice-differentiable function..

1. The random process $dS_t = a_t dt + \sigma_t dW_t$,

2. Thus,
$$\underline{dF_t} = \frac{\partial F}{\partial S_t} dS_t + \frac{\partial F}{\partial t} dt + \frac{1}{2} \frac{\partial^2 F}{\partial S_t^2} \sigma_t^2 dt,$$

$$= \left[\frac{\partial F}{\partial S_t} a_t + \frac{\partial F}{\partial t} + \frac{1}{2} \frac{\partial^2 F}{\partial S_t^2} \sigma_t^2 \right] dt + \frac{\partial F}{\partial S_t} \sigma_t dW_t,$$

12

11

Use of Ito's Lemma

- 1. Ito's Lemma provides a tool for obtaining stochastic differentials for functions of random processes.
 - -- Given the exact formula for $F(S_t,t)$, one can then take the partial derivatives explicitly and replace them in the formula $dF(S_t, t) = F_s dS_t + F_t dt + \frac{1}{2} F_{ss} \sigma_t^2 dt$. and then gets the stochastic differential, $dF(S_t, t)$.
- 2. Ito's Lemma is useful in evaluating Ito intergrals.

Ito's Formula in More Complex settings

Ito's Lemma may not be applied in some cases...

- 1. The function $F(\cdot)$ may depend on more than a single stochastic variable St.
 - → A multivariate version of the Ito's Lemma should be used.

- 2. Since the financial market is affected by rare events, so it's not appropriate to consider error terms made of Wiener processes only.
 - → The jump processes to the SDEs should be added.

Conclusions

- 1. Given movements in the underlying assets, Ito's Lemma helps to determine stochastic differentials for financial derivatives.
- Ito's Lemma is completely dependent on the definition of Ito integral.
- 3. Ito's Lemma used in deterministic calculus gives significantly different results than standard formulas.

15

$$\frac{(\sigma_k \Delta W_k)^2}{h}$$

 $(\Delta W_{k})^{2}$ is the square of a random variable with mean zero.

And
$$Var(\sigma_k \Delta W_k) = \sigma_k^2 h$$

in the mean square sense... $dW_t^2 = dt$ (i.e., $\Delta W_t^2 = h$)

Thus, ΔW_k^2 is a nonnegligible term.

And the nonzero variance of ΔS_k implies.. $\sigma_k > 0$

16

Example ..

Given
$$F(W_{t}, t) = 3 + t + e^{W_{t}}$$
.

where W_t is a Wiener Process with $a_t = 0$, $\sigma_t = 1$

By Ito's Lemma..

$$dF_{t} = \left[\frac{\partial F}{\partial W_{t}} a_{t} + \frac{\partial F}{\partial t} + \frac{1}{2} \frac{\partial^{2} F}{\partial W_{t}^{2}} \sigma_{t}^{2}\right] dt + \frac{\partial F}{\partial W_{t}} \sigma_{t} dW_{t}$$
$$= \left[1 + \frac{1}{2} e^{W_{t}}\right] dt + e^{W_{t}} dW_{t}$$

Then we get the SDE for $F(W_t, t)$

with I_t-dependent drift rate $a(I_t, t) = [1 + \frac{1}{2}e^{W_t}]$

and diffusion rate $\sigma(I_t, t) = e^{W_t}$.

Ito's Lemma as an Integration tool

Example ..

(suppose one needs to evaluate the Ito integral $W_s dW_s$)

Define
$$F(W_t,t) = \frac{1}{2}W_t^2$$

By Ito's Lemma..
$$dF_t = F_W dW_t + F_t dt + \frac{1}{2} F_{WW} \sigma_t^2 dt$$

$$=W_t dW_t + 0 + \frac{1}{2} dt$$

The corresponding integral equation is..

$$F(W_t,t) = \int_0^t W_s dW_s + \frac{1}{2} \int_0^t ds$$

$$\Rightarrow \frac{1}{2}W_t^2 = \int W_s dW_s + \frac{1}{2}t$$

$$\Rightarrow \int_{0}^{t} W_{s} dW_{s} = \frac{1}{2} W_{t}^{2} - \frac{1}{2} t$$

Bivariate case

$$dS_1(t) = a_1(t)dt + \left[\sigma_{11}(t)dW_1(t) + \sigma_{12}(t)dW_2(t)\right]$$

$$dS_2(t) = a_2(t)dt + \left[\sigma_{21}(t)dW_1(t) + \sigma_{22}(t)dW_2(t)\right]$$

Where $W_1(t)$ and $W_2(t)$ are two independent Wiener processes

Suppose S_t is a 2×1 vector of stochastic process obeying the following SDE:

$$\begin{pmatrix} dS_1(t) \\ dS_2(t) \end{pmatrix} = \begin{pmatrix} a_1(t) \\ a_2(t) \end{pmatrix} dt + \begin{pmatrix} \sigma_{11}(t) & \sigma_{12}(t) \\ \sigma_{21}(t) & \sigma_{22}(t) \end{pmatrix} \begin{pmatrix} dW_1(t) \\ dW_2(t) \end{pmatrix}$$

19

Suppose now we have a continuous, twice differentiable function of $S_1(t)$ and $S_2(t)$ that we denote by $F(S_1(t), S_2(t), t)$.

How can we write the stochastic differential dF_t ?

⇒ use the multivariate form of Ito's lemma,

$$dF_{t} = F_{t}dt + F_{S_{1}}dS_{1} + F_{S_{2}}dS_{2} + \frac{1}{2} \left(F_{s_{t}s_{1}}dS_{1}^{2} + F_{s_{2}s_{2}}dS_{2}^{2} + 2F_{s_{2}s_{1}}dS_{1}dS_{2} \right) \longrightarrow (A)$$

20

We already know that dt^2 and cross product such as $dtdW_1(t)$ and $dtdW_2(t)$ are equal to zero in the mean square sense.

Since

$$E\left[\Delta W_1(t)\Delta W_2(t)\right] = E[\Delta W_1(t)]E[\Delta W_2(t)] = 0$$
 hence, in the mean square sense,
$$dW_1(t)dW_2(t) = 0$$

21

$$dS_{1}(t)^{2} = \left[\sigma_{11}(t)^{2} + \sigma_{12}(t)^{2}\right]dt \qquad \text{(in the mean square sense..}$$

$$dS_{2}(t)^{2} = \left[\sigma_{21}(t)^{2} + \sigma_{22}(t)^{2}\right]dt \qquad dW_{t}^{2} = dt.\text{)}$$

The cross-product term is given by

$$dS_1(t)dS_2(t) = [\sigma_{11}(t)\sigma_{21}(t) + \sigma_{12}(t)\sigma_{22}(t)]dt$$

These expressions can be substituted into the bivariate Ito formula in (A) to eliminate $dS_1(t)^2$, $dS_2(t)^2$ and $dS_1(t)dS_2(t)$

22