Pricing Derivative Product

Equivalent Martingale Measure

By Wen Lai May 24, 2004

Outline

- Introduction
- □ Probability Measure
- □ Transformation of Probability Distribution
- Changing Means
- □ The Girsanov Theorem
- Application to SDEs
- Conclusion

2

Introduction

- □ Two methods used in derivative pricing
 - 1. PDEs
 - 2. Equivalent Martingale Measure

Introduction

PDEs

This is done by constructing a arbitrage-free portfolio.

☐ Equivalent Martingale Measure

This is done by transforming the underlying probability distributions using the tool provided by <u>Girsanov</u> theorem

4

Probability Measure

- □ Denote probability measure as $dP(Z_i)$ or dP.
- □ Zt is a normally distributed random variable, then for a small interval Δ, the integration over the interval centered on Z can be approximated as

$$P(\overline{Z} - \frac{1}{2}\Delta < Z_{i} < \overline{Z} + \frac{1}{2}\Delta) = \int_{-\frac{1}{2}^{\Delta}}^{\frac{1}{2} - \frac{1}{2}} \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}z_{i}^{2}} dZ_{i} \cong \frac{1}{\sqrt{2\pi}} e^{\frac{1-z_{i}^{2}}{2}} \int_{-\frac{1}{2}^{\Delta}}^{\frac{1}{2} - \frac{1}{2}} dZ_{i} = \frac{1}{\sqrt{2\pi}} e^{\frac{1-z_{i}^{2}}{2}} \Delta$$

Probability Measure

□ For infinitesimal Δ , which we write as dZ_t , the probability measure is expressed as

$$\begin{split} dP(Z_{t}) &= P(\overline{Z} - \frac{1}{2}dZ_{t} < Z_{t} < \overline{Z} + \frac{1}{2}dZ_{t}) \\ &= \int_{\frac{1}{2}dZ_{t}}^{\overline{Z} + \frac{1}{2}dZ_{t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}Z_{t}^{2}} dZ_{t} \cong \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}Z_{t}^{2}} \int_{\frac{1}{2}dZ_{t}}^{\overline{Z} + \frac{1}{2}dZ_{t}} dZ_{t} = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}Z_{t}^{2}} dZ_{t} \end{split}$$

Transformation of Probability Distribution

- ☐ Moving the <u>location</u> of the distribution
 - : changing the mean of the distribution.
- ☐ Changing the shape of the distribution
 - : changing the variance of the distribution.
- Modern methods for pricing derivatives utilize the way of changing means

Changing Means

■ Method 1: Operating on possible values

Assume a random variable Zt with mean Zero. One simply adds a constant μ to Zt to obtain a new variable \dot{z} with mean μ . That is,

$$E[Z_{t}]=0$$

$$E[\bar{Z}_t] = E[Z_t + \mu] = \mu$$

Changing Means

■ Method 2: Operating on probabilities

This is done by transforming the <u>probability measure</u> so that the mean is changed, while leaving the variance unchanged.

Changing Means

■ Example 1

Suppose the random variable Z is defined as follows. A die is rolled and the value of Z is set according to the rule

$$Z = \begin{cases} 10 & roll & of \ 1 & or \ 2 \\ -3 & roll & of \ 3 & or \ 4 \\ -1 & roll & of \ 5 & or \ 6 \end{cases} \qquad E[Z] = \frac{1}{3}[10] + \frac{1}{3}[-3] + \frac{1}{3}[-1] = 2$$

If we would like to change the mean to equal 1, then

Method 1

A new variable can be set as: $\tilde{Z} = Z - 1$ and $E[\tilde{Z}]$ can be calculated as

$$E[\bar{Z}] = \frac{1}{3}[10-1] + \frac{1}{3}[-3-1] + \frac{1}{3}[-1-1] = 1$$

10

Changing Means

Method 2

Consider the following transformation of the original probability associated with rolling the die.

$$P(getting \ 1 \ or \ 2) = \frac{1}{3} \rightarrow \tilde{P}(getting \ 1 \ or \ 2) = \frac{122}{429}$$

P(getting 3 or 4) =
$$\frac{1}{3}$$
 \rightarrow P(getting 3 or 4) = $\frac{22}{39}$

$$P(getting \ 5 \ or \ 6) = \frac{1}{3} \rightarrow P(getting \ 5 \ or \ 6) = \frac{5}{33}.$$

$$E^{\bar{p}}[Z] = [\frac{122}{429}][10] + [\frac{22}{39}][-3] + [\frac{5}{33}][-1] = 1$$

Changing Means

□Example 2

Let St: the risky asset price.

Rt: the return of St.

 $\it rt$: the risk-free interest rate.

 μ : risk premium.

It's easy to know that the expected return of S_{t} can be expressed approximately as

$$E[R_t] \cong r_t + \mu$$

Changing Means

☐ Example 2

There are two ways to calculate St.

$$A. S_{t} = E_{t} \left[\frac{1}{1 + R_{t}} S_{t+1} \right]$$

Problem: this requires a knowledge of the distribution of Rt, which requires knowing the risk premium of μ .

$$B.S_{t} = E_{t}^{\tilde{p}} \left[\frac{1}{1 + r_{t}} S_{t+1} \right]$$

Where $\stackrel{\circ}{P}$ denotes another distribution with mean equal to r_t .

13

The Girsanov Theorem

- ☐ The Girsonov theorem provides the general framework for transforming the probability measure into another "equivalent" measure under continuous-time stochastic process.
- We introduce the theorem using the following special cases with growing complexity

14

The Girsanov Theorem

Case 1: A Normally Distributed Random Variable

☐ The original probability measure is

$$dP(Z_t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}Z_t^2} dZ_t$$

■ By finding the function ξ (Zt), we can change the original probability measure to a new measure ($d^{\hat{p}}$) with mean μ .

$$\xi(Z_i) = e^{z_i \mu - \frac{1}{2}\mu^2}$$
 $0 \text{ } \hat{P}(Z_i) = dP(Z_i) \xi(Z_i) = \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}(Z_i - \mu)^2} dZ_i$

15

The Girsanov Theorem

☐ The Radon-Nikodim Derivative

The $\xi(Zt)$ can be rewritten as

$$\xi(Z_{t}) = \frac{d \tilde{P}(Z_{t})}{dP(Z_{t})}_{t}$$

■ Implication:

If the Radon-Nikodim Derivative of \bar{P} with respect to P exists, then we can use the result ξ (Zt) to transform the mean of Zt by leaving its variance unchanged.

16

The Girsanov Theorem

☐ Case 2 : A Continuous Stochastic Process the formal version of the Girsanov theorem.

Given a information set I_t over a period [0, T], we define a random process:

$$\xi_{t} = e^{\frac{(\int_{0}^{t} X_{u} dW_{u} - \frac{1}{2} \int_{0}^{t} X_{u}^{2} du)}{}}$$

Where X_t is an I_t -measurable process. The W_t is a Wiener process with probability distribution P.

The Girsanov Theorem

■ We can prove that ξ_1 is a martingale with $E[\xi_1]=1$ (see p291 for more details), then a new Wienner process W_i and probability measure P_i can be given by the following theorem

□ Theorem: (p291)

$$\widetilde{W}_{i} = W_{i} - \int_{0}^{i} X_{i} du$$

$$\tilde{P}_{t}(A) = E^{P}[1_{A}\xi_{T}]$$

A: an event in It.

1_A: indicator function of the event A

Application to SDEs

☐ Consider the following SDE

$$ds_{t} = \mu dt + \sigma dW_{t}$$

$$\Rightarrow S_{t} = \mu t + \sigma W_{t}$$

Clearly, S_t cannot be a martingale under probability measure P. We could easily switch to an equivalent measure \tilde{P} using Girsanov theorem.

Application to SDEs

 \square Define $\xi(t)$

$$\xi(S_t) = e^{-\frac{1}{\sigma^2}[\mu S_t - \frac{1}{2}\mu^2 t]}$$

☐ Transform the probability measure form P to P

$$\begin{split} d\tilde{P}(S_t) &= \xi(S_t) dP(S_t) \\ &= e^{\frac{1}{\sigma^2} |S_t| \frac{1}{2} \delta^2 t|} \frac{1}{\sqrt{2\pi\sigma^2 t}} e^{\frac{1}{2\sigma^2 t} (S_t - \mu t)^2} dS_t \\ &= \frac{1}{\sqrt{2\pi\sigma^2 t}} e^{\frac{1}{2\sigma^2 t} (S_t)^2} dS_t \end{split} \qquad f_s = \frac{1}{\sqrt{2\pi\sigma^2 t}} e^{\frac{1}{2\sigma^2 t} (S_t - \mu t)^2} \end{split}$$

20

Application to SDEs

 \square After the previous transformation, S_t is a martingale under probability measure \tilde{P} .

☐ We can write the increments of S_t in terms of a new error term \tilde{w}_t :

$$dS_{t} = \sigma d \tilde{W}_{t}$$

Conclusion

□ The transformation was done by switching the distribution of St from P to P̄. This was accomplished by using a new error term w̄.

 \square The new error term \hat{w}_{i} still had the same variance.

☐ The transformation was used to convert St into a martingale.