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ABSTRACT. In this note the pricing of options on credit default swaps using
the survival-measure-pricing technique is discussed. In particular, we derive a
modification of the famous Black (1976) futures pricing formula which applies
to options on CDS, and show how other pricing formulae can be easily derived
if the dynamics of the forward CDS rates are specified differently. The main
tool in the derivation of the pricing formulae is to express prices and payoffs in
terms of a defaultable numeraire asset, the fee stream of the underlying forward-
starting CDS. As this numeraire becomes worthless in default, certain technical
difficulties arise which can be solved using the mathematical tool of the T'-
forward survival measure (first introduced in Schénbucher (1999)), a pricing
measure which is conditioned on survival until 7. The properties of such pricing
measures are a second focus of this note.

With increasing liquidity of the plain-vanilla CDS markets, the first derivatives
on these basic credit derivatives have been introduced. In particular the market
options on credit default swaps, or credit default swaptions is growing, be it as
embedded options to extend or cancel an existing CDS, or as explicit options on
the CDS. In the cover article of the May 2003 issue of Risk magazine, Patel (2003)
discussed the growing market for options on credit default swaps, or credit default
swaptions, and their practical applications.

In this note we explain in more detail some of the methods which were first used in
Schonbucher (1999) to price such options. In particular, we derive a modification
of the famous Black (1976) futures pricing formula which applies to options on
CDS and show how the methods can be extended to other models if you do not
like the lognormality assumption. The main tool in the derivation of this formula
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is to express the payoff of the option in terms of a defaultable numeraire asset,
the fee stream of the underlying forward-starting CDS. As this numeraire becomes
worthless in default, certain technical difficulties arise which can be solved using
the mathematical tool of the T'-forward survival measure (this term was first intro-
duced in Schénbucher (1999)), a pricing measure which is conditioned on survival
until T'. The range of applications of the survival measures is not restricted to the
pricing of credit default swaptions, they are also useful in other complex pricing
problems, e.g. the analysis of counterparty credit risk in OTC-transactions, or
multi-currency CDS spreads.

The pricing of credit spread options has been addressed in a number of previ-
ous publications but usually these options were not explicitly options on CDS
but rather contingent claims whose payoff depended on some sort of continuously-
compounded yield spread. In particular in many intensity-based credit risk models
spread-options can be priced by transfer of techniques from the pricing of default-
free bond options, see e.g. Duffie and Singleton (1999) or Schénbucher (2002).
More closely related to the results of this paper are the paper by Jamshidian (2002)
who uses a similar setup but with numeraire assets with strictly positive value
processes, and Hull and White (2003) who also explain the derivation of the
Black (1976) pricing formula for CDS options and who give numerical examples
using historical data on quoted CDS spreads. For this note, the fundamental ref-
erence is Schonbucher (1999) where the CDS option pricing formula (and other
results) are derived in a full defaultable Libor market model. As for default-free
interest-rates, using a LMM setup based upon forward rates has the advantage
that it allows a consistent specification of volatilities and hedging strategies for
multiple options on CDS on the same reference entity, in particular if the terms of
the underlying CDS overlap.

1. FORWARD CDS RATES

The underlying asset of a CDS option is a forward starting Credit Default Swap.
This is a CDS which starts its life not immediately at the trade date but at some
later date in the future!, the forward-start date. If the reference entity should
default before the forward-start date, the contract is null and void and no payments
are made. Like every CDS, the payoffs of a forward CDS can be separated in a
fee leg which is paid by the protection buyer, and a protection leg which is paid by
the protection seller.

In order to describe the payoffs let us call ¢ > 0 the trade date, Ty > t the effective
date (the date at which the protection begins), and Ty > T, the maturity date of
the forward CDS. The protection buyer is denoted with A, the protection seller

1Of course, if the forward start date equals the trade date we recover the plain vanilla CDS.
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is B, and the reference entity is C. The model is set up in a filtered probabil-
ity space® (2, (F;)>0), P). Absence of arbitrage implies the existence of a spot-
martingale measure () ~ P, and we also assume the existence of b(t) = elo r(s)ds
the continuously-compounded bank account. The time of the C-credit event is
modelled with a stopping time 7.

1.1. The Fee Leg. At the payment dates T,,,1 < n < N, the protection buyer A
pays the regular fee payments of

(1) §5n1{Tn§T} at Tn

to the protection seller B. Here s is the forward CDS rate for the forward CDS,
0y, is the daycount fraction for the interval [T,,_1,T,] and 17, <;) is the indicator
function that the default has not occurred before the payment date T,.

Furthermore, at the time of default the protection buyer makes a final pay-
ment covering the time between the last payment date and the default: Let
n* = max{n|T, < 7} be the last payment date before default. Then A pays
to B

(2) S0 LTy <r<Ty} at 7,

where 0* is the daycount fraction for the time interval [T*,7]. If we denote with
Viee(t) the value at time ¢ < T} of receiving 1bp of fee payments
A

then the value of the fee leg is 3V™¢(¢). Note that after default no fees are paid,
i.e. Vie(t) =0 for 7 < t.

N
1 1
fee() = B¢ —.1 — 01
(3) Viee(t) ;:1 T (Ta<ry + b)) LTosr<tn)

1.2. The Protection Leg. If the default occurs before Ty, i.e. if 7 < Ty, then
B pays to A the amount of (1 — R), where R is the recovery rate on bonds of C.
(More precisely, R is the value at time 7 of the cheapest bond that is deliverable
under the terms of the contract.) Thus, the payment of B to A is

(4) (1— R)I{TOSTSTN} at 7.
We denote the value of the protection leg at time t < Ty with

prot _ 1
(5) Vo) =2 [ L= Rtmerer ] 7.

Note that the delivery option is explicitly recognized (R may be stochastic), and
we also model the value of accrued fee payments in (2).

2The usual regularity conditions on (2, (Ft)(t>0), P) apply. We do not assume that @ is
unique, markets may be incomplete.
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1.3. Fair CDS Rates, Marking-to-Market and Option Payoff Functions.
Given (3) and (5), the fair forward CDS rate at time ¢ of a forward CDS over
the interval [Tp, T| is the rate at which the fee leg has the same value as the
protection leg, i.e.

B met(t)

(6) 5(t) = ety fort <.

As Ve(t) = 0 for 7 < t, the fair forward CDS rate is not defined after default.

If the forward CDS over [Ty, Ty] was entered (as protection buyer) before ¢ at a
rate 5o # 3(t), then the markt-to-market value of this position at time ¢ is

(7) (3(t) = 5) V™ (1),
because one can lock into a fee stream of (59 — 5(t)) by selling the forward CDS
protection at the current market rate 5(¢).

If instead one just has the right and not the obligation to enter the forward CDS
at time ¢ at the forward CDS rate 5*, then the value of this right is

(8) (3(t) = ") V().
This is the payoff of an option on a forward-starting CDS with maturity ¢.

2. THE CHANGE OF NUMERAIRE TECHNIQUE

It is well-known® that one can use every asset with a positive cash price process
A(t) to express the prices of all other assets in terms of units of A(t). E.g. if
another asset has cash-price X (¢), then

(9) X (1) = X (1)/A(t)

is the price of that same asset expressed in A-units. If this is done for all traded
assets, A(t) is called the numeraire of this new price system. The numeraire of
the cash price system is the continuously compounded bank account? b(t), other
commonly used numeraires are T-maturity zero coupon bonds (yielding a system
of T-forward prices), foreign currencies or — in the case of interest-rate swaps —
the value of a fee stream of 1bp at a set of payment dates. Furthermore it is also
well-known that for any given spot-martingale-masure () and numeraire A(t), one
can define an equivalent pricing measure Q4 using the Radon-Nikodym density
process

@ — LA(t) = M@

aQ |, b(t) A(0)
3See Schroder (1999) for an introduction to and references on the classical (default-free)

change-of-numeraire technique.
4The bank account is used instead of cash because it is dividend-free.

(10)
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The measure Q* has the very useful property that prices in the A-numeraire are
Q*-martingales.

A look at equations (8) and (6) suggests the use of the value of the fee stream Ve
as a numeraire in order to price the CDS option: The CDS-rate is the V*-relative
price of protection, and the option’s payoff function in (8) is also easily expressed
in this numeraire. Unfortunately a direct application of the previously cited results
is not possible because V7 can be zero. Thus a price system in terms of V' is
not always defined: It is undefined after defaults, i.e. for all times ¢ and states of
nature w € Q with 7(w) <*t.

Fortunately, while equation (9) defining the new price system can break down
if A(t) = Ve(t) = 0, equation (10) will still remain valid as long as A(0) >
0 and it will define a mathematically admissible Radon-Nikodym density and a
mathematically sound new probability measure P. Furthermore, if X (t)Ve(t)
is the cash-price of a traded asset, then it also follows from (10) that X (¢) is a
P-martingale.

Assume A(t) is the price process of a defaultable asset with zero recovery. For a

given T' > ¢ we can then define a “promised” payoft A'(T") via A'(T)1{r<y = A(T),
and we can define a corresponding default-free asset which will have the price

process A(t) := E¢ [ %T/gn } This default-free asset pays A'(T) at T for sure.

We can use both, defaultable and default-free assets in (10) to define two new
measures: Q4 for A(t) and Q4 for A(t) respectively.

Often we can choose the promised payoff such that it is positive: A'(T) > 0.
In this case it can be shown that Q4 is the measure that is reached when Q%
is conditioned on survival until T (i.e. T > T). For this reason, probability
measures that are reached by using defaultable numeraires in equation (10) are
termed survival measures in Schonbucher (1999). For example, the T-forward-
measure uses a T-maturity default-free zero coupon bond B(t,7T') as numeraire.
If this measure is conditioned on survival of an obligor until 7', we reach the T'-
suriwal measure which could also be reached by using a T-maturity defaultable
zero coupon bond with zero recovery B(t,T).

It should be noted that survival measures are not equivalent to the spot martingale
measure () any more, they are only absolutely continuous with respect to (). The
new probability measure Q* attaches zero probability to all events which involve
a default before T, ie. if E € Fp and E C {7 < T}, then L* = 0 on E and
QZ[ E] = 0. This may seem an inconvenient property, but it follows naturally
from the interpretation as conditioned measure, and with a little creativity the
practical restrictions imposed by this can be circumvened:
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Value of X A'(T) at T in survival:

(1) B¢ | {1 XA(T) | 7] = AOET (X | 7).

Value of YA'(T) at T if 7 < T (using 1i;<ry = 1 — Liroy)

b(t — vy
12) 89| [ 1uen XA (1) | 7] = A0B9 (¥ | 7]~ 0BT [V | ]
Similarly, the value of receiving Z(T;) at T; if 7 €|T;_1,T;] is evaluated. If the time
points Ty < 17 < ... < T} are spaced densely enough this can be used to price
recovery payoffs.

3. PRICING AND HEDGING OPTIONS ON CREDIT DEFAULT SWAPS

Armed with the survival-based pricing measures we can further analyse the CDS
option by using the defaultable fee stream V¢ for a change of measure to a survival
measure. The payoff of the CDS option is given in equation (8), using (11) yields
the price of the CDS option

/¢SO (t) = 1{T>t}EQ blz(;j) (E(TO) — 3*)+ere<T0)1{T>TO} ft}
(13) = Loy VOB [ 5(T) - 5)F | A

This is the furthest we can get without making any modelling assumptions apart
from the absence of arbitrage. Equation (13) tells us that all we need to know (or
to model) is the distribution of the forward CDS-rate 5(7p) at time 7 under the

PV -measure. But we already know one more thing about 5(t): according to (6)
it is a relative price under the numeraire V¢, so it must be a martingale under
PV™* . Here are some possible choices for martingale dynamics for s(¢):

Lognormal Brownian Motion:

(14) ds(t) = 3(t)odW™(t)

where o is a constant and W*e(t) is a PY"*-Brownian Motion. In this case we can
evaluate (13) in closed-form and reach the famous Black (1976) formula

(15) VEDSO (1) — 1 V(1) [3() N (dh) — 5" N(d2)],

In(s(t)/s*) + 50*(T — t)

16 here dio =
(16) where  diz T

Rating Transitions:

Let A;j, 4,7 < K be the PV*_transition intensity from rating class ¢ to rating
class j. Let p;(T) be the Pvfee—probability of reaching rating class ¢ at time T', and
let 5; be the obligor’s CDS-rate if he is in rating class ¢ at time 7. In principle

the transition probabilities can be calculated from the transition intensities A;j,
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but it is sufficient to directly specify the transition probabilities until the time-
of-maturity 7', as long as a few basic requirements are observed: 5 must be a
PV -martingale, therefore 5(0) = S p;(T)5; is necessary, and we must also
require that the PV™ _transition probability to the default rating class is zero.
Then the price of the CDS option is given by

() VPO(1) = 1 V(1) 3 (1) (5 — 7))

i=1

Of course, many other specifications of the Pvfee—dynamics of the forward cd-
srate 5(t) are feasible, in the light of empirical CDS-rate dynamics, jump-diffusion-
dynamics seem to be a reasonable choice.

The pricing formulae (15) or (17) have some properties that may surprise at first.
For example, the recovery rate does not appear explicitly (although it does appear
implicitly if one prices the fee stream V*°). The reason for this is twofold: First,
the recovery rate is already implicitly priced into the current forward-CDS rate
itself. Second, it does not enter the volatility either because it only enters as a
factor in front of the CDS rate (see e.g. (5)). Another puzzling property is that
even for a put on a CDS, its value increases for higher volatility of the forward
CDS spread. Intuitively one would assume that a very high volatility would make
an early default (and thus a knockout) more likely. Again the resolution lies in
the fact that the forward CDS rate s is already given, and the market has already
priced that risk into it. All this is similar to the usual Black-Scholes pricing of
equity options where again the fundamental share valuation problem is shown to be
irrelevant for the pricing of the option, here the underlying credit risk assessment
is not necessary, because it has already been done implicitly by the market when
the price 5(t) was formed.

3.1. Hedging and Implementation. Despite the large freedom in the choice
of the dynamics of the forward CDS rate, lognormal dynamics do have their ad-
vantages. First, these dynamics can be linked to a more fundamental Defaultable
Libor-Market-Model setup as it is described in Schénbucher (1999). Here, the
implied volatility of the forward CDS rate can be approximately equated to the
average volatility of the discrete default hazard rates.

Secondly, lognormal dynamics lead to complete markets for derivatives on the
forward CDS. Thus, using a continuous trading strategy in the underlying forward
CDS, a dynamic hedge can be established which (at least in theory) perfectly
replicates the CDS-option’s payoff. The hedge strategy is: At time t < T, (¢t < 7),
and for a given value of 3(¢), hold

(18) ai(t) == N(dy)
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units of forward CDS protection, and
eSO (4)

1/ fee(t)
in the fee stream asset V™°(¢). This hedge is the classical delta-hedge using the
forward CDS to offset the risk of changes in the forward CDS-rate. The forward
CDS protection is the ideal hedge instrument, because even at an early default

of the reference credit the hedge works out perfectly: Both hedge and option are
knocked out.

(19) as(t) ==

Of course, implementation of such a hedge strategy runs into many obstacles in real
markets. First, pure forward CDS are usually not traded, the practical solution is
to trade a long position in a Ty-maturity CDS and a short position in a T} < T5-
maturity CDS in order to approximatively replicate the [T7, Ty] forward CDS. This
approximation is perfect if both CDS have the same fees, otherwise there will be
a continuous cash-flow of the difference of the two CDS fee streams —3; + 55 until
Ty (or 7 if 7 < T7). Usually, this difference is an order of magnitude smaller than
the originally spreads and it can be ignored.

More problems are posed by the lack of liquidity and the large bid-ask-spreads in
CDS markets. In practice, an adjustment of the hedge cannot be done too often.
Nevertheless it is well-known from classical Black-Scholes theory that even discrete
hedges can reduce the risk of the position significantly, if the hedge-volatility is
chosen large enough it may even be possible to construct a super-hedge in discrete
hedging (see e.g. El Karoui et al. (1998)). All these results carry over — mutatis
mutandis — to this situation.

The levels of CDS-rate volatilities that are reported by Hull and White (2003)
(between 60% and 120% p.a.) may seem very high, in particular in comparison
to equity or interest-rate volatilities, but they are indeed typical values for the
volatilities of spot CDS rates. Here, we are talking about the volatility of forward
CDS rates. As in the interest-rate world, the volatilities of these forward CDS
rates can be significantly lower than the volatility of spot CDS rates if there is a
term structure of spread volatilities with strong mean-reversion. Modelling this

would require a full model of the term structure of interest-rates and credit spreads
as it is described in Schénbucher (1999).

4. CONCLUSION

In this note we have shown that the pricing of derivatives on CDS can be reduced
to “classical” pricing problems if a suitable numeraire asset and pricing measure
is chosen. These pricing measures have some peculiarities as they are based upon
defaultable numeraire assets which are worthless at default. We showed that these
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survival measures can be viewed as versions of default-free pricing measures, condi-
tioned upon survival of the obligor. The pricing of options on CDS is not the only
case in which this technique can be applied quite successfully, other applications
are the setup of a Libor-market model with default risk as in Schonbucher (1999),
or the analysis and pricing of counterparty risk in OTC derivatives transactions.
Either way, the survival measure should not be missing in any credit derivatives
modeller’s toolkit.
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