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Abstract

We present a model in which a bond issuer subject to possible default is
assigned a ”continuous” rating R; € [0, 1] that follows a jump-diffusion process.
Default occurs when the rating reaches 0, which is an absorbing state. An issuer
that never defaults has rating 1 (unreachable). The value of a bond is the sum
of ”default-zero-coupon” bonds (DZC), priced as follows:

D(ta z, R) = €xp (_e(t’ .’L‘) - 1/’(@ z, R))

The default-free yield y(¢,z,1) = £(t,z) / z follows a traditional interest rate
model (e.g. HIM, BGM, 7string”, etc.). The ”spread field” (¢, z, R) is a
positive random function of two variables R and z, decreasing with respect to
R and such that (¢, 0, R) = 0. The value (¢, z, 0) is given by the bond recovery
value upon default. The dynamics of v is represented as the solution of a finite
dimensional SDE. Given v such that 8¢/0R < 0 a.s., we compute what should
be the drift of the rating process R; under the risk-neutral probability, assuming
its volatility and possible jumps are also given.

For several bonds, ratings are driven by correlated Brownian motions and
jumps are produced by a combination of economic events.

Credit derivatives are priced by Monte-Carlo simulation. Hedge ratios are
computed with respect to underlying bonds and CDS’s.

Most other credit models (Merton, Jarrow-Turnbull, Duffie-Singleton, Hull-
White, etc.) can be seen either as particular cases or as limit cases of this model,
which has been specially designed to ease calibration.

Long-term statistics on yield spreads in each rating and seniority category
provide the diffusion factors of . The rating process is, in a first step, statisti-
cally estimated, thanks to agency rating migration statistics from rating agencies
(each agency rating is associated with a range for the continuous rating). Then
its drift is replaced by the risk-neutral value, while the historical volatility and
the jumps are left untouched.
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1. Introduction

Recently, Enron, one of the largest energy brokers in the world, and the leader in
energy derivatives, filed for Chapter 11 protection. It could not sustained by itself
derivative-linked liabilities on oil and electricity contracts. The cancellation of a buy-
out agreement by another energy company, Dynegy, caused the company’s failure.
This event would have been one among other bankruptcies, hadn’t it happened about
one year after a famous cascade of electricity company failures in California during
the Fall 2000. It would be difficult to find a direct link between these two events,
although it is quite obvious that the California defaults had a negative impact on
Enron’s general financial shape. What can be taken for granted is that both stories
happened in a rather turbulent environment for energy markets. This article is an
attempt to present a mathematical framework for credit events modelling that is both
tractable, in terms of statistics, calibration, credit derivative pricing and hedging, and
flexible enough to reproduce the real features of credit events in financial markets,
such as the non-causal, though truly existing, link described above.

The issuer of a bond subject to possible default — corporate or else — is assigned
a ”continuous” rating R; € [0, 1] that follows a diffusion process, possibly with jumps.
Default occurs when the rating reaches 0, which is an absorbing state. Non-defaultable
bonds have rating 1, which is unreachable when starting from other ratings. At any
time ¢, the bond is valued as the sum of its scheduled payments, which are proportional
to ”defaultable discount factors” with rating R;. The defaultable discount factor with
time to maturity = and rating R is denoted D(t,z, R) and decomposed as follows:

D(t,z,R) = exp (—{(t,x) — ¥(t,z, R))

The non-default yield y(¢,z,1) = ¢(t,z) / = follows a traditional interest rate model
(e.g- HIM, BGM, etc.). The spread field ¥ (t,z, R) is a positive random function of
the two variables x and R, which is decreasing with respect to R. The usual yield
spread over Treasuries is 9(t, z, R)/x, which implies % (¢,0, R) = 0 (unless an actual
discount is still observed immediately before payment). The recovery value upon
default is D(t,z,0) = e XD(t,z,1), where x = (¢,z,0). A formal zero recovery
rate would correspond to a function v that is singular in R = 0, so that xy = +o0.
Different bonds issued by the same issuer must have the same rating, but could lead
to different spread fields 1, as their recovery rat(i depends on the bond’s seniority

level. Let ¢ = —0v%/OR, so that ¥(t,z,R) = / ©(t, z,u) du. The derived spread

field ¢, or ”spread per unit of rating” is a positive random function, represented as
the solution of a finite dimensional SDE, as is the case for £(¢,z) in an HJM-like
model, but with one extra variable.



The ”continuous” rating of a bond issuer has a rather intuitive meaning: it can
be seen as an interpolation of ratings provided by agencies. More precisely, one can
specify the model in such a way that a given agency rating corresponds to some sub-
interval oy, a;+1] C [0, 1] . Rating migrations correspond to crossing one or several (in
case of a jump) threshold(s) a;. Thresholds can be customarily chosen. A market-
observed spread jump, due to some negative information on the issuer, is, in our
model, linked to some rating jump. This means that the continuous rating is in fact
market implied and may anticipate the actual rating provided by agencies. We shall
however ignore this possibility when calibrating the diffusion and jump parameters of
the rating process.

From the Arbitrage Pricing Theory (A.P.T.), we know that there exists a proba-
bility, equivalent to the original "historical” probability, that is risk-neutral for non-
defaultable bonds. Under this probability, credit-risk-free contingent claim prices are
equal to the expectation of the discounted claim pay-offs. In the defaultable context,
¢ being given and positive a.s., we show that there exists an equivalent probabil-
ity that is risk-neutral for both defaultable and non-defaultable bonds, under which
credit-risk-dependent contingent claim prices are again equal to the expectation of
the discounted credit-event-dependent pay-off, with the recovery value in case of the
counterparty default. For this purpose, we compute a ”risk-neutral drift” of the rating
process R;, assuming its volatility and possible jumps are given.

Note that the introduction of the rating as a market variable in the model goes
beyond the usual A.P.T. framework, in which market variables should be associated
with the price of a tradable security. More precisely, the insufficient number of issues
from a given issuer on a given seniority level and the impossibility of taking short
positions on corporate bonds render the market highly incomplete. In mathematical
words, for the model to be Markov, we need to introduce non-tradable market vari-
ables. As a consequence, various rating and spread process specifications can lead to
exactly the same price and default processes (including recovery rate)!. Then, the
same original probability distribution may lead to different risk-neutral probabilities
and, consequently, different credit derivative prices. In this context, the usual ” default
intensity” approach is an extreme case, with derivative prices that are, therefore, at
the extreme of what is consistent with underlying prices and default probabilities. It
is well known that, in A.P.T., the set of acceptable prices for a given derivative is
the set of expectations of its discounted future pay-off under the various risk-neutral
measures. The different rating and spread process specifications will tend to span the
interval of acceptable arbitrage prices, whereas the default intensity approach will in
most cases, depending on how one’s own default is taken into account, provide one of
the interval extremities.

1For instance, by changing the rating R with any 1-1 transformation of the interval [0,1]. The
multiplicity of prices is a consequence of the market non-completeness. In mathematical words, the
filtration spanned by default bond prices is not ”weakly Brownian” (see Revuz-Yor [19, p. 219] or
Emery [9]), that is, a measurable function of prices cannot always be represented as a stochastic
integral. Indeed, if reduced to price processes, the model doesn’t, in general, have the Markov

property.



Ratings of several issuers are driven by correlated Brownian motions. In the case
of pure diffusion processes, joint defaults have zero probability (although a default
occurrence increases the intensity of other defaults correlated to the defaulting party).
In a jump-diffusion model, jumps are produced by economic events, with a size that
depends on the event and on the issuer. Similarly to Duffie-Singleton approach [7,
1997], when an economic event occurs, it may induce the default of each single is-
suer with a certain probability that depends on its current rating and on the jump
size distribution. In this case, a jump-driven default implies a negative (or at least
non-positive) impact on other ratings and, consequently, an increase in the default
probability.

The pricing of credit derivatives, such as non-standard credit default swaps (CDS),
first n to default in a basket, etc., is performed by Monte-Carlo simulation under the
credit risk-neutral measure. Hedge ratios are computed with respect to the underlying
bonds and standard CDS’s, which can be used to obtain negative sensitivities. The
prices that we obtain are not necessarily ”arbitrage prices”, but the risk premia, or
rather ”reward for risk taking”. They are, for every given issuer, consistent with
the market price of its bond issues, in the sense that, if default is ignored, then the
“theta” (time derivative) of the claim is equal to the instantaneous default-free rate
of return of the hedging portfolio, theoretically composed of long or short positions
on underlying bonds.

Most famous credit models (Merton [10, 1974], Jarrow-Turnbull [14, 1995], Duffie-
Singleton [7, 1997]) can be seen either as particular cases or as limit cases of this
model, which is an attempt to encompass in a unique framework the various rating-
based models, such as Huge-Lando [12], Hull-White [13] and Crouhy-Im-Nudelman [5].
Possible extensions of this model include string models for the default-free interest rate

part, as well as an infinite dimensional random field for the function ¢ with possible
1

distribution components (i.e. the integral ©(t, z,u) du may be discontinuous with
R

respect to R). The rating volatility could also be made stochastic, or subject to regime
changes.

This model has been specially designed to ease calibration. Long-term statistics
on yield spreads in each rating category and seniority level provide the volatility and
factor structure of the random function ¢. The rating process is, in a first step,
statistically estimated, thanks to rating migration statistics from rating agencies (see
above: each agency rating is associated with a range of possible continuous ratings).
Then its drift is replaced by the risk-neutral value, while the historical volatility is
kept. Jumps are only introduced to model catastrophic events involving several bonds.
The rating process being an abstract version of Merton’s firm value, we suggest, along
with other authors (e.g. [5]), to use issuers’ stock correlation for that of their rating
processes, although this hypothesis should be tested.



2. Dynamics

2.1. Non-defaultable Bond Pricing

We assume that the dynamics of default-free interest rates are given via a HIM
or BGM model (see Heath-Jarrow-Morton [11, 1990] and Brace-Gatarek-Musiela |3,
1997]). More precisely, the default free zero-coupon bond D(t, z,1) with face value 1
and time to maturity x is given by:

D(t,z,1) = exp(—L(t, z))

The function ¢(t, x),which stands for the opposite logarithm of the discount factor, is
a convenient term structure representation for stochastic modeling. The parameter
1 makes precise that we are dealing with non-defaultable bonds (the meaning of this
parameter is explained below). One has:

t+x
(ta)= [ ft.s)ds=y(t.a)a
t
where f(t, s) is the forward rate at date s as of ¢ and y(¢, x) is the zero-coupon yield.
We assume that the interest rate dynamics, under a measure P, is given by:

dl(t,x) = pt, v, 0) dt+ > vt x,4,) dZiy

i=1

where Z = (Z3,...,Z,,) is an m-dimensional Brownian motion. The drift ; and the
volatility factors v; not only depend on the time and maturity, but also on the whole
yield curve £, = £(t,.) . Let r(¢t) = f(¢,t) be the short term rate. It is well known that,
if P is a risk-neutral probability, in order to avoid arbitrages, we need that actualised
discount factors be martingales, which leads to:

1 m
p(t,x, 8,) = ft,t+x) —r(t)+ 3 Z’jz’%t where v, =v;(t, x,4,)

i=1

2.2. Credit Modelling

Each bond issuer is assessed a rating which can take continuous values R € [0, 1] and
is modelled as a random process. The rating R = 1 corresponds to issuers that never
default, therefore it cannot be reached unless it is the initial value. Default occurs at
the first time ¢t where R; = 0, which is an absorbing state.

A bond issued by a company depends on the default-free yield curve and on its
yield spread over default-free bonds, which is a function of the company rating and
of the recovery rate in case of default. The log-ratio between the actual market price
and the ”"would be” default-free value, which may be different for each bond and,
in particular, depends on the bond seniority, is itself modelled as a random function
Y(t, z, R) ,which we call the spread field.



2.2.1. Rating Diffusion Process

The rating process R;, t > 0, is, in a first step, modelled as a diffusion process:
th = ht dt+0(t,Rt) dBt (21)

where B is a Brownian motion, as long as R; > 0. Then if 7 = min {¢t > 0, R; = 0},
we set R, = 0 for every ¢ > 7. The drift h; and the volatility o(¢, R;) must be chosen
so that Rg < 1 = Vt, R; < 1 a.s., in particular — but this is not sufficient — they
must vanish for R = 1. We shall assume, in this article, that the volatility o (¢, R) is a
deterministic, continuous function of ¢ and R, however, the drift can be any integrable
process.

We shall see in sect. 2.4 how to add a jump term to the rating process. A stochastic
volatility is a possible extension of the model (see comment in sect. 4.1).

2.2.2. Spread Field Process

Let D(t,x, R) be the price of a defaultable zero-coupon bond (DZC in short) with
rating R. One can set:

D(t,z, R) = exp(—((t, z) — ¥(t, z, R)) (2.2)

where the spread field v is defined by:
_ D(t,z,1)
Y(t,x, R) =log <D(t,a:,R))

This is a random function of # and R which, for fixed (¢, z), should decrease when R
increases and vanish for R=1.

Remark 1. The usual yield spread is s(t,z, R) = (¢, z, R) / ©, which suggests that
the function 1 must satisfy ¢(t, 0, R) = 0. However, in certain market conditions, this
assumption can be relaxed, for instance when, at the eve of a payment, a default risk
still remains and the market significantly underprices the bond with respect to its
face value. This justifies why we prefer to work with 1) rather than s.

Remark 2. When a given company has several bond issues, the default on one se-
curity usually implies a right, for holders of other issues, to ask for immediate reim-
bursement. Therefore, the default time is the same for all the bonds issued by the
same company. However, the yield spreads over Treasuries of the various issues are
different, due to different seniority levels and, hence, different recovery rates in case
of default. The rating based model is particularly well suited for this situation, where
a given company has only one rating process R; but, for every single bond issue —
or, at least, every seniority level — a different spread field, calibrated so as to match
the market price of each bond.



The spread field properties allow us to write it under the form:

Y(t,z,R) = /1 o(t, z,u)du
R

where ¢ is a non-negative random field, called the derived spread field. Following the
above remark, ¢ must satisfy ¢(¢,0,u) = 0, with the same comment about payment
eve possible discounts.
If the firm defaults at time ¢, the value of the bond is a percentage of the default-
free bond:
D(t,z,0) = D(t,x,1) e X5

Hence, the spread field value for R = 0 is linked to the recovery rate by the equation:

1
P(t,x,0) = /0 o(t,z,u)du = x(t,r) = log %

A formally zero recovery rate would correspond, in this model, to the fact that

1
©(t,x,u) has a singularity for u = 0, such that / o(t, z,u) du = +o0.
0

The dynamics of the derived spread field for fixed (x, u) is given by a multi-factor
diffusion:

dt(p(tv £, ’LL) = 7(t7 z, uvft) dt + Z&z(tv z, uvft) dWi,t

i=1

where W = (W74, ..., W,,) is an n-dimensional Brownian motion. In this formulation,
the drift v and the volatility factors & may depend on the whole derived spread
field Y, = o(t,.,.) . We may assume, without loss of generality?, that the correlations
between the different Brownian motions are:

d<Z,,B>t = Zidt d<Wi,B>t=’w,’dt

d<W,,Z,>t = pidt d<WZ,ZJ>t=0 if 7,7éj

Let us make the assumption that the first order partial derivatives 0,y and Or7, as
well as, for every i, 0,&; and Og§;, exist and are a.s. bounded and continuous with
an at most uniform linear growth with respect to ¢ . If we assume the same property
with the initial derived spread field yo(z,u) = (0, x,u), then dp/Jdx and dp/OR
remain a.s. bounded and continuous for all times.

20ne can apply a unitary linear transformation to multi-dimensional Brownian motions W and
Z.



Lemma 2.1. For fixed T, the dynamics of the composed spread process ¥ defined
by ¥, =(t, T —t, R;) is given by the following formula, in which x =T —t :

1
d‘I’t = / dt(p(t,l‘,u) du — (p(tvvat) th
Ry

_ </ %(t“q:, w) du) dt — d(R, @) — 3 ﬁ(t’ x, Ry) d(R):

Ry
In this formula, d;(t, x,u) stands for the time differential of the process ¢(t, z,u) for
fixed (z,u), (R, )+ denotes its bracket with R; evaluated at u = R;, whereas (R);
is the usual bracket of the process R; .
Proof The proof of this lemma is given in the Appendix.

Let us now denote:

He = ,U/(t,.’lf,ﬁt) Vit = Vi(tvxvﬁt)

1
T, = T(z R) = / y(t,,uy0,) du
Ry

1
Ei,t = Ei(t,.’lf,Rt) = / §i(t,x,u,£t) du
Ry
Ot = O.(tv Rt) gi,t = £Z(t7 Z, Rtvft) Pt = (p(tv Z, Rt)
Ay O ' oy
i = —=(tz,R —l= == d
QOt aR( , L, t) (9&: t R (91:( ,.T,’LL) u
From the above proposition, we deduce:
m
Al = qpudt+) viedZi,
i=1
(2.3)
o - 1 -
v, = (rt —pthe — 5| — oy ;w Cir =y a?soé) dt + ; Biy Wiy — 00 o1 dBy

2.3. Risk-neutral Probability

This calculation, together with Ito lemma applied to formula (2.2), lead to the fol-
lowing proposition.



Proposition 2.2. For fixed T, the defaultable discount factor dynamics is given by:

dD; 1
— = —dl+=d{l
D, e+ 0
a¢ n mAn
+ | =Tt + ot he + %h + o lzzlglt w; + lzzl Vit Zit Pi
1 n m n
T3 (U?‘PQ +Y B+ 0?@?) — P10y (Z Viezi+ > By Uh)] dt
i=1 i=1 i=1
+martingale

Let us recall that, for P to be a risk-neutral probability for non-defaultable bonds,
one must have, for fixed T :

1
—dl; + §d<€)t = r; + martingale

Equating the drift of dD;/D; to r:, we get the "risk-neutral drift” h of the rating
process, as stated here.

Proposition 2.3. Assume that P is a risk-neutral probability for the non-defaultable
discount_factors D(t,x,1). Assume that ¢(t,z,u) > 0 almost surely and that the
process h; defined by:

mAn

- o n _
prhy = Ty — a_¢|t —o1 > Giawi— Y viepiZiy
. i=1 i=1
1 1 n m n
—50? (¢ + 90?) D) Z E?,t +pio (Z Vit Zi + Z Bit wi)
i=1 i=1 i=1

1 [T (hy — hy)?
exp<§/0 u@

Then the probability P defined by:

dFN ?lt — ht 1 (;lt — ht)2
= B
_P exp <A . d t — —2 A 72 dt

is a risk-neutral probability for defaultable zero-coupon bonds.

is such that:

vT > 0, Ep < 400 (2.4)

Proof Girsanov theorem shows that, under condition (2.4), Pisa probability mea-
sure equivalent to P. The above calculation shows that discounted prices of
defaultable zero-coupon bonds are martingales with respect to P. [



2.4. Rating Jump-diffusion Process

In this section, we add a jump term to the rating process. More precisely, we model
the rating process R; as the following jump-diffusion process:

th = htdt+0(t,Rt_)dBt +0(t,Rt_)th (25)

where B is a Brownian motion and M is the compensated martingale associated to a
Poisson process N with deterministic intensity A(¢), that is:

dM, = dN, — \(t)dt

The drift term h and the functions o and ¢ must be chosen such that if 0 < Ry < 1
then, for any ¢ > 0, one has 0 < R; < 1. Taking care of jumps in the dynamics of ¥, ,
we obtain:

1
dv, = / dio(t,x,u) du — < 9 —(t,x u)du) dt
Rt Rt a

, 10 ,
— otz Re—) dRy — d(R", )¢ — 3 a_](g(tvvat) d(R)
+ [¢(t,.’1§‘, Rt— + Gt) - ¢(t,$, Rt—) + (p(tvxv Rt—) et] dNt

where 6, = 0(t, R;—) and RY is the continuous part of the process R:. Then, replacing
stochastic differential terms by their value:

d¥, = |Ty—pih - h—waz&,t otgotw(t)(mtwt 0:)

n
=+ Z Eit dWi s — op r dBy + AW, dM,

i=1
where

Re_
AU, =0, —U,_ = / o(t, z,u) du
t—+0¢

Finally, the risk neutral drift &, satisfies:
prhy = Ty+At)(1—exp(—AT,) + @6,

a¢ n mAn
- a_|t — o1 > Gawi— Y ViiEirpi
t i=1 i=1
1
- 2 ‘Pt+‘ﬂt 2Z~t+¢t0t<zlfztzz+z~zth>
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3. Link with Other Models

3.1. Structural Models

Structural models, such as that described in Merton’s famous 1974 article [10, 1974],
can be seen as particular cases of our model. The rating is the firm value, scaled in a
non-linear way in order to remain in the interval [0, 1). Bonds value, which depends
on the investor’s risk aversion, is a deterministic function of the yield curve, the
probability of default and the maturity. Therefore, so are the spread field ¢ and its
rating derivative ¢ .

3.2. Default-intensity-based Models

The relation between rating-based and default-intensity-based models is less straight-
forward. The seminal articles of this family of models are Jarrow-Turnbull [14, 1995]
and Lando [17, 1998]. Only the possible default of bond issues is observed, their
rating is ignored. The time 7 at which a bond issuer defaults is modelled as a Poisson
process. In Jarrow-Turnbull model, the yield spread of zero-coupon bonds over the
equivalent non-defaultable bonds is a deterministic function of time and maturity, and
so is the hazard rate, i.e. the intensity of the Poisson process. In Lando model, the
hazard rate is stochastic and, consequently, so are yield spreads. These models could
be seen as a limit case of a rating-based model. The apparently obvious formulation,
where the rating R takes only two possible values, R and 0, and jumps from R to 0
according to a Poisson process is incorrect, because the ”risk-neutralization” of the
original probability P is different3. A better, but still incorrect parallel is to assume
that ¢ is for instance a constant and that R; is set so as to match the bond value.

The correct approach is, conversely, to start from a risk-neutral Jarrow-Turnbull
(or Lando) model, then, thanks to a classical result*, represent, at a given origin of
time tg, the default time 7 as the first hitting time of a process R; to some time
dependent barrier H(t). The change of variable that moves this barrier to the axis
R = 0 is usually singular, in the sense that R; has an infinite negative drift at ¢ = ¢
in order to reach a default probability of the order of ¢ — ¢y for ¢ close to ¢y (one has
H(tg) =0 and H(t) = —ay/t — to for small ¢ — t¢ ). This is the reason why we speak
here of a "limit case”. Then the derived spread field ¢ is any smooth function of (x, R)
such that bond prices match in both models. Now, a change of intensity of 7 — which
is thus not anymore risk-neutral — can be translated into a change of barrier H ()
to some barrier H'(t). If we keep the same function ¢, the new, non risk-neutral,
rating process R, = R; + H(t) — H'(t) has the same volatility, but a different drift.
Our "risk-neutralization” procedure will lead us to the original Jarrow-Turnbull (or
Lando) model.

31f the rating is ignored as a market variable, credit models are incomplete and several risk-neutral
probability measures may exist.

4 Although this result is often referred to in the literature, it hasn’t been possible to identify the
original reference.
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In fact the two models are still different because, in the rating-based model, the
change of rating process necessarily implies a change in the spread process ¥, . This
feature is inherent to the global idea of a rating, because, when defaulting in a non-
jumping manner, a bond has a price that continuously tends to the recovery value.
Pure Poisson models, such as Jarrow-Turnbull and Lando, would correspond to a
derived spread field ¢ that is a distribution concentrated on the axis { R = 0} and 0
elsewhere. This difference has a small impact on the price of CDS’s with respect of
that of bonds and will be fully justified later on, when speaking of default correlation.
Another reason for preferring the rating-based approach is that, in general, credit
derivative prices and hedge ratios depend more gently on model parameters.

The real behaviour of bonds about to default seems to be in between: a price
that consistently decreases before default, but still incurs some true jump when de-
fault is actually observed, which would correspond to a non-zero ¢ with some Dirac
component along the axis {R = 0}.

3.3. Rating-based Models

Crouhy & Al. [5] model the rating as a Markov chain with finitely many states, in
order to mimic agency ratings. They directly input migration statistics. With several
issuers, ratings are correlated with the same correlation as issuers stocks. They build
a risk-neutral probability that is inconsistent with an interpolation of discontinuous
ratings by continuous ones. Nevertheless, it is close enough to ours to lead to similar
derivative prices.

Hull-White model [13] can be viewed as a particular case our model. They define
a rating process R; which is a pure Brownian motion, but the ”default barrier” is
adapted so as to match the default probability. In particular, it is not necessarily a
straight line. In order to get a risk-neutral probability, they hence modify the location
of the barrier. This model can be identified with ours by changing the rating with
some non-linear transformation that fits it into [0,1). The change to a ”risk-neutral”
barrier becomes a change in the in drift of the process, exactly like in our model.
Notwithstanding the elegance of Hull-White’s approach, we prefer our framework, in
which the rating has a real practical meaning and is thereby easier to calibrate.

Avellaneda-Zhu [2] introduce the idea of a ”risk-neutral distance-to-default process”
of a firm. They characterize risk-neutrality by the fact the default index satisfies a
Fokker-Planck-like parabolic PDE. Although their study only concerns one issuer,
they show the easiness of calibration and the ”square root” shape of barriers men-
tioned above.

4. Correlation of defaults

This aspect of credit models is probably the most sensitive and has lead to a thick
literature on the topic. One advantage of the rating based approach is to make the
joint default ”mechanism” for several issuers very transparent. Moreover, although
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we increased the dimensions of the model, the number of parameters to calibrate
remains tractable and the methodology for performing statistics is rather straight-
forward. Generally speaking, this approach is much more practical than, say, copula
distributions (see sect. 4.3).

4.1. Correlated Diffusion Parts

We consider here a set of ¢ companies with ratings R, at time ¢, i = 1...¢, such
that:
dR; ¢ = hidt +0i(t, Ri ) dB;

Brownian motions B; and B; are correlated with correlation p;;. Such Brownian
motions can be deduced from a series of ¢ independent ones thanks to a Cholesky
decomposition of the correlation matrix [p;;],<; j<, -

Assume that the rating correlation of two companies is positive. If the first com-
pany defaults, then its rating went to 0. The positive correlation indicates that the
second company rating is more likely to be low, thus it has a high probability to
default. Suppose now that we know nothing about ratings and only observe defaults.
Before the first company defaults, we don’t know about its bad shape (except the
possible high spread, but this could be hidden by a high recovery rate). Its rating
could be anywhere, as well as that of the second company. As soon as the default
of the first company is observed, then we have an implicit information on the rating
probability distribution of the second one, which significantly increases its default
probability. This is an essential feature of rating-based models that the default of a
company suddenly increases the default probability, over a given period of time, of
correlated companies.

This feature is actually observed in reality, though, under turbulent conditions in
a given industrial sector, surviving companies tend to strengthen because competition
vanishes. In other words, a default increases the rating volatility. Again we could re-
verse the causality by extending the model to ratings with stochastic volatility. When
a default is observed, then the rating volatility, which is not an observed variable, is
more likely to be high, inducing, on the one hand, more defaults but, on the other
hand, faster rating improvements.

Tt is not easy to perform joint statistics on defaults, and even on rating migrations,
because these are rather seldom events. This is the reason why we recommend here,
in the absence of any better assumption and along with other authors (see Crouhy-
Im-Nudelman [5]), to use for p;; the correlation between the stocks of company ¢ and
company j (provided these are listed stocks). However, due to the custom scaling,
the volatility should still be estimated statistically.

4.2. Correlated Jumps

In order to model the rating jumps of several companies, we consider k various in-
dependent Poisson processes dNi:,..., dNj ;. Then, the rating R;; of company j
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follows a jump-diffusion process of the type:

k
dR; ; = h;ydt +o;(t,R; ;) dB;  + Z 0i;(t, R ¢—)dM;,

i=1

where
dM; = dN;, — \;(t) dt ji=1...k

Along with Duffie-Singleton approach, one can see the Poisson processes dN,, as
”economic events” that impact each rating, but with a different coefficient 6;; on
each company. In particular, the probability, when an event j occurs that a given
company i defaults depends on the company rating at that time and on the size of
the coefficient 6;; .

4.3. Link with Copula Distributions

Copula distributions can, again, be seen as a particular case of a rating based model.
Indeed, consider, for instance, a pair of issuers with default times 7; and 75 . A copula
model (see for instance Schénbucher-Schubert [20] and ref. cit.) explicitly provides
the joint distribution of these two random times. In a rating-based model, we need
to find a pair of processes R;; and Ry, such that 7 and 7, are respectively the first
hitting time of R;; and Ry, at the 0 level. It is not obvious, and perhaps not even
true, that any pair of stopping times can be seen at first hitting times of the level 0
by correlated diffusion processes. However, the richness of the class of rating-based
models allows at least to reasonably approach any copula model.

The full superiority of the rating approach appears when modelling more than
two issuers. Indeed, the specification of copula distributions and, in particular, of the
pairwise, triplet-wise, etc., joint default probabilities becomes completely intractable
as soon as the number of issuers is above 5 or 6. The simulation of ratings only needs
to specify pairwise issuer correlations.

5. Credit Derivative Pricing

5.1. General Pricing Method

Up to now, we only focused on modelling the stochastic behaviour of defaultable
bonds that underlie credit derivatives. In fact, once this is done, derivative pricing
straightforwardly follows from the general arbitrage theory. Let C be a credit deriv-
ative that delivers a pay-off P(7; X5 -,..., X, ) depending on the price of bonds X;
issued by companies ¢ with rating R;; and spread fields v;(¢,z,u), at a time 7 that
depends on default times 7;, i« = 1...q. This pay-off shape is even not the most
general one: it could as well contain payments prior to 7, depend on defaults prior
to 7, or even on price or spread moves, official rating changes, etc. We must include
in the global simulation the rating R, ; of the derivative writer and its default time
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Tw- If the latter defaults prior to 7, then the derivative pay-off is simply cancelled (or
multiplied by a damping factor 3 if a non-zero recovery rate is assumed). The price
of C at time ¢ for the derivative buyer is given by the following formula, where r is
the short term refinancing rate of the buyer:

C(t)=E; {exp <— /t ") du) P X1ms s Xyr) (Liuor + 8 1%9)}

If the pay-off contains payments prior to 7, say a value P(T; X1 r,..., X, r) at time
T, provided 7 > T, then we should add the following term:

Ej

T
exp (—/ T(’LL) du) P(T, X17T7 I 7X‘17T) 1-,—>T‘|
t

Hedge ratios are obtained as the partial derivative of the price with respect to hedging
instruments..

Due to the large number of variables, we recommend implementing the model with
Monte-Carlo simulations, for which above formula is well suited. Following is a list
of examples of credit derivatives that can be priced with this model.

5.1.1. One Issuer

e Credit default swaps: The swap buyer holds a defaultable bond X delivering
coupons at dates T7,..., T, and wishes protection against default. He will pay,
on every coupon payment date, provided he is paid himself, a fixed amount to
the swap writer. Conversely, upon default, the writer will buy the bond at a
given price K, e.g. face value. In this case, P(7; X ) has two parts. The positive
part is (K — X, )+ and the negative part is the sum of payments at dates T}, < 7.

e Brady bond options: In these emerging market government issues, as long as
no default is observed, the first two coupons and the principal are guaranteed by
the United States, so that the default risk on these payments can be neglected.
If a coupon payment is missed — i.e. payed by the US. — then only one coupon
and the principal are guaranteed in the sequel, and only the principal if two
payments are missed (see Avellaneda-Wu [1, 2001]). In each Monte-Carlo path,
we simulate the issuer rating and the history of payments, which provides the
value of the bond and the option pay-off. The option value is obtained as the
expectation of the discounted pay-off.

e Convertible bonds: They require to introduce in the model the underlying
stock process S; as a log-normal process, possibly with jumps. This process
should be correlated with other market variables of the model: rating, interest
rates and spread field. Probably, the most important correlation is the rating,
as the stock is likely to drop drastically in case of default, whereas the rating
should strengthen if the company value increases (see Davis-Lischka [6]). Note
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that Merton’s structural model [10, 1974] assumes 100% correlation between
these two variables.

5.1.2. Several Issuers

e Basket protection: This is a default insurance on a basket of bonds from
several issuers, usually capped at a certain level, so that it cannot be decomposed
into the sum of protections on each single component of the basket. The ratings
and defaults of issuers are jointly simulated and, in each path, the pay-off is
computed, including capping, and discounted back to the current date.

e Tranche insurance: This option is similar to the previous one, but only guar-
antees the part of losses that exceeds a certain amount, or is between two levels.
The pricing method is the same.

e First n to default: The underlying of this option is again a basket of bonds. Tt
provides protection against the first n defaults observed in the basket, possibly
over a given period of time. The pricing method is still the same as above.
This type of option is very sensitive to the joint behaviour of defaults and, in
particular, to the impact of a default on the default probability of other assets.
We believe that the rating-based approach provides prices that are more in line
with market practice than other models.

6. Model Calibration

6.1. Rating Process Calibration

Rating agencies provide annual statistics of rating migrations and defaults. In a first
step, we see the rating process as a Markov chain with finitely many states, the
lowest one being default, which is absorbing. As defaults and migrations are rather
rare events that, moreover, highly depend on the economical context, in the absence of
specific information, it is preferable to assume that the Markov chain transition matrix
is stationary. In the case of newly issued bonds and/or low rating (e.g. CCC) which
have a smaller probability of keeping the same rating, one may relax the stationary
hypothesis. In order to avoid biases, these statistics should be performed on bonds
that kept their rating. Reasons for losing a rating could be the issuer buy-out by
some other company, the bond call-back (for callable bonds), the bond conversion
(for convertible bonds), or even when the issue is fully bought by one bond holder or
by the issuer itself.

Then, one must ”Interpolate” the Markov chain by a jump diffusion of the form
(2.1) with constant thresholds «;. Parameters h, 0,0 and A\ (preferably stationary)
are estimated by maximum likelihood. Tt is recommended to manually identify jumps
and estimate their frequency and size. Then, # and A being given, estimate h and
o, otherwise the maximum likelihood method may provide unstable results. In a last
step, the "risk-neutral” drift h; is computed in order to price credit derivative.
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6.2. Spread Field Calibration

For this purpose, bonds are sorted by country, industrial sector, agency rating and
seniority. For each class of Country / Industrial Sector / Rating / Seniority, the average
spread curve over government bonds is computed every day. In a second step, we
identify agency ratings with a range R € [oy, a;y1], €.8. «; = i/p where p is the
number of ratings and compute, every day, the spread field v (¢, z, R) and its rating
derivative (¢, z, R) . Finally, for each class of Country / Industrial Sector / Seniority,
we perform a PCA (or Karhunen-Loeve analysis) of the function ép(t, z, R) = ¢(t +
1,2, R) — ¢(t,x, R) in order to get the diffusion factors ;. See Duffie-Singleton 8,
1997] for a study of yield spreads behaviour with respect to the rating.

7. Appendix

Proof of lemma 2.1: Let 6t be a finite time interval, which will3eventually tend to
0. Calculations made here are valid up to a term of the order |6t|2 :

1

1
o0y = Vs — U = / ot +6t, T —t —bt,u)du —/ o(t, T —t,u)du
Ri+6i Ri

1

Ry
= / <p(t+6t,T—t—6t,u)du+/ (pt+6t, T —t —bt,u) —p(t, T — t,u))du
Ryt Ry

Let us define:

Ry
L = / o(t+6t, T —t —bt,u)du
Riyst
1
I, = /(<p(t+6t,T—t—6t,u)—@(t,T—t,u))du
Ry

Let us set 6R: = Ritst — R:. In the following calculations, O (|6t|%) represents a

random function of time X (t) such that, for every ¢, E (X (¢)?) < C 6t® where C' is a
constant independent of ¢ :

1
L = —5(<p(t+6t,T—t—6t,Rt)+<p(t+6t,T—t—6t,Rt+5t))6Rt+O(|6t|%)
1
- —<p(t+6t,T—t—6t,Rt)6Rt——a—(p(t+6t,T—t—6t,Rt)6<R)t+(’)(|6t|%)
20R
190y

=t + T —t,R) R, — =22 (t,T —t, R,) 6(R); + O (|5t|%)

20R
- ET -t RGOSR, — 8o RYs — 22247 — 4 R S(R o(ét%)
= —p(t,T—1t,R)O6R, — {p, >t_28R(’ —t,R)6(R): + |6t
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where 6(R); = (R)15: — (R); and 6{p, R); = (¢, R)11s¢t — {, R);. This can be easily
seen by writing (¢, z, R) as a stochastic integral. For I, we have:

1

L = /(<p(t+6t,T—t—6t,u)—@(t,T—t—ét,u))du
Ry

1
+/ (p(t, T —t—b6t,u) —(t, T —t,u))du
Ry

1
= /&p(t,T—t—(St,u)du
Ry

1
—/ a—‘p(t,T—t,u)duét+o(|5t|2)
Ry 33:

where 6p(t, x,u) = p(t+6t, z, u)—p(t, z, u) . Because, for fixed x and u, Op/dx(t, x, u)

is an Ito process, we have:

1 1 1T
/ 6o, T —t —b6t,u)du = / bo(t, T —t,u) du+/ / 66—(p(t,8,u) dsdu
Ry Ry Ry JT—t ax

1 3
- / So(t, T —t,u) du+ O (|6t|5)

Ry
where 60¢/0x(t, z,u) = Op/dx(t + 6t, x,u) — Op/Ox(t, x,u) . Therefore:
1 1
Iy :/ So(t, T — t,u) du —/ 9 1.7 — t,u) dust + O (|5t|%)
Ry Ry 3&:

We get the lemma by putting back together the two terms of 6¥,. O
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