Estimating Expected Losses and Liquidity Discounts Implicit in Debt
Prices

Tibor Janosi* Robert Jarrow™** Yildiray Yildirim***

November 10, 2001
Revised June 20, 2002

*Computer Science Department, Cornell University, Ithaca, NY 14853. (janosi@cs.cornell.edu)
**Johnson Graduate School of Management, Cornell University, Ithaca, NY 14853 and Kamakura
Corporation. (607-255-4729, rajl5S@cornell.edu). Corresponding author.

**% School of Management, Syracuse University, Syracuse, NY 13244 (yildiray@syr.edu)



mailto:raj15@cornell.edu

Estimating Expected Losses and Liquidity Discounts Implicit in Debt Prices

Abstract

This paper provides an empirical implementation of a reduced form credit risk model that
incorporates both liquidity risk and correlated defaults. Liquidity risk is modeled as a
convenience yield and default correlation is modeled via an intensity process that depends on
market factors. Various different liquidity risk and intensity process models are investigated.
Firstly, the evidence supports a non-zero liquidity premium that is firm specific, reflecting
idiosyncratic and not systematic risk. Secondly, the credit risk model with correlated defaults fits

the data quite well with an average R* of .87 and a pricing error of only 1.1 percent.
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Estimating Expected Losses and Liquidity Discounts Implicit in Debt Prices

1. Introduction

Given the recent exponential growth in the credit derivatives market [see Risk (2000)] and
the regulatory induced need to account for credit risk in the determination of equity capital [see
Jarrow and Turnbull (2000b)], credit risk modeling has become a topic of current and paramount
interest. Although credit risk pricing theory has exploded [see Jarrow (1998) for a review], the
empirical estimation of these models has lagged behind [see Duffie and Singleton (1997), Madan
and Unal (1998), Duffee (1999) and Duffie, Pedersen, Singleton (2000)]. To help rectify this
imbalance, this paper provides a comprehensive empirical implementation of a reduced-form
credit risk model that includes both liquidity risk and correlated defaults. The reduced-form
credit risk model implemented is that contained in Jarrow (2001) where a liquidity discount is
modeled as a convenience yield and correlated defaults arise due to the fact that a firm’s default
intensities depend on common macro-factors.

The data used for this investigation is the University of Houston’s Fixed Income
Database consisting of monthly bid prices taken from Lehman Brothers over May 1991 — March
1997. Twenty different firms’ debt issues are investigated where the firms are chosen to stratify
various industry groupings.

Five different liquidity premium models were investigated differing in their dependence
on various market-wide variables including the spot interest rate, the return on an equity market
index, and the equity market index’s volatility. These variables were chosen to capture systematic
market risks related to interest rates, equities, and the market’s volatility. Similarly, the intensity
process was allowed to be dependent on the spot rate of interest and the cumulative return on an
equity market index.

Overall, the evidence supports the model quite well. First, the best performing liquidity
premium model appears to be firm specific and not dependent on market-wide variables. This
result is consistent with liquidity risk reflecting only firm specific/ idiosyncratic and not
systematic risk. Second, the best fitting reduced form credit risk model fits the data quite well
with stationary estimated parameters, an average R of .87, and an average percentage pricing
error of only .011.

The previous literature estimating reduced form credit risk models include Duffie and
Singleton (1997), Madan and Unal (1998), Duffee (1999), and Duffie, Pedersen, Singleton
(2000). Duffie and Singleton (1997) estimate swap spreads, Madan and Unal (1998) estimate
yields on thrift institution certificates of deposit, and Duffie, Pedersen, Singleton (2000) estimate



credit and liquidity spreads for Russian debt. Duffee’s (1999) paper is closest to our approach.
Using the same bond data, he estimates a reduced form credit risk model where both the default
intensity and the default free term structure follow a square root process. The default intensity
also depends on the spot rate of interest, so his model captures correlated defaults. Our paper
differs from Duffee (1999) in three ways: (i) we use Guassian processes for the default intensity
and the default free term structure, (ii) our default intensity has an additional factor — it also
depends on the cumulative excess return per unit of risk on an equity market index, and (iii) we
explicitly model liquidity risk. Our observation period and firm sample also significantly differ
from that in Duffee (1999).

An outline of this paper is as follows. Section 2 introduces both the notation and the
reduced form credit risk model. Section 3 provides a description of the data. The parameter
estimation is performed in section 4. Section 5 tests the time series stationarity of the parameter
estimates, section 6 provides an analysis of the expected loss parameters, while section 7 studies
the relative performance of the five different liquidity discount models. Section 8 discusses the
absolute performance of the credit risk model studied, while section 9 concludes the paper.

2. The Model Structure

This section introduces the notation and briefly summarizes the reduced form credit risk
model contained in Jarrow (2001). Trading can take place anytime during the interval /0,7 ] .
Let {(Q2,F7,P),(F,:te][0, T ]} be a filtered probability space satisfying the usual conditions.”
This filtered probability space represents the underlying randomness and information generated in
the economy. Traded are default-free zero-coupon bonds and risky (defaultable) zero-coupon
bonds of all maturities. Markets are assumed to be frictionless with no arbitrage opportunities,
but they can be incomplete with illiquidities present.

Let p(t,T) represent the time ¢ price of a default-free dollar paid at time 7 where 0<¢t<T <T .
The instantaneous forward rate at time ¢ for date 7T is defined by f(¢,7) = —dlog p(t,T )/ 0T . The
spot rate of interest is given by r(t) = f(t,1).

Consider a firm issuing risky debt. Let v(z,7) represent the time t price of a promised dollar
to be paid by this firm at time 7 where 0<t<T <T . The debt is risky because if the firm
defaults prior to time 7, then the promised dollar may not be paid. Let the random variable 7
represent the first time that this firm defaults (7 > T is possible if the firm does not default).
Then,

if <t

1
N(1)= Iy ={ (1)

0 otherwise

! See Protter (1990, page 3) for a discussion of the usual conditions.
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denotes the point process indicating whether or not default has occurred prior to time ¢. We

assume that this point process has an intensity A(f) with respect to the given filtration.> The
time ¢ intensity process, A(t)A4, gives the approximate probability of default for this firm over the
time interval [¢,t+A4] .}

If default occurs, we let the zero-coupon bond receive a fractional recovery of

o(t )v(7—,T )dollars where 0 <J(7) and 7 — represents an instant before default.
Under the assumption of no arbitrage, standard arbitrage pricing theory implies that there
exists a probability O equivalent to P such that *

—? r(u)du
p(t.T)=E(e ! ) )

and

T

[ r(u)du —j r(u )du
Wt,T)=1,. E,((t)(t—T)e Ly, +1e Lre,) ()
where E,(.) is conditional expectation with respect to Q at time ¢.
The risky debt value is composed of two parts. The first part is the present value of the
promised payment in default. The second part is the present value of the promised payment if
default does not occur. Duffie and Singleton (1999) show that expression (3) can be alternatively

written as (3a):

—j. [r(u)+(1-6(u))A(u)]du
v(t,T) =1, E(e" : (3a)

This expression shows that the risky zero-coupon’s value can alternatively be computed by taking

the discounted expectation of the promised dollar, discounting at a rate augmented by the

expected loss (1 —o(u))A(u)per unit time. As pointed out by Duffie and Singleton (1999), it is

important to emphasize that expression (3a) enables only the estimation of the expected loss and
not its separate components.

In this empirical investigation, almost all of the U.S. government debt and all the
corporate debt studied are coupon bearing. Consequently, we need to price coupon-bearing

bonds. First, for the U.S. government debt, a coupon bond is defined to pay coupons of C;

2 See Jeanblanc and Rutkowski (2000) for conditions under which such an intensity process exists.

3 The intensity process is defined under the risk neutral probability. This statement will become clear
below.

* See Jarrow and Turnbull (1995). No arbitrage guarantees the existence, but not the uniqueness of the
probability 0. Without any additional hypotheses on the economy, the uniqueness of Q is equivalent to
markets being complete, see Battig and Jarrow (1999). In incomplete markets, equilibrium (additional
hypotheses) guarantees the uniqueness of Q. The uniqueness of Q is essential for estimation.
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dollars at times ¢; for j = I, ..,n where 7, =T is the maturity date. The last coupon at the

maturity date is assumed to include the principal repayment. Let the time ¢ price of this default
free coupon bond be denoted by B(#,7). Standard no arbitrage arguments give the price of the
default free coupon bond as a portfolio of default free zero-coupon bonds, i.e.
n
B(t,T)= ZICtjp(t,tj) . 4)
j:
Next, consider a risky coupon-bearing bond. Using similar notation, except for the
bond’s price which will be denoted by a script “®”, the risky coupon bond is defined to pay

coupons of C; dollars at times ¢; forj =1, ...n where ¢, =T is the maturity date. The coupon

bond is risky because if the firm defaults prior to the maturity date, the remaining coupons (and
principal) may not be paid in full. In default, we assume that the coupon bond is worth the
fractional recovery amount of o(7)B(7—,T ). Other recovery rate assumptions are possible [see
Jarrow and Turnbull (2000a)].

Under this recovery rate structure, the value of a risky coupon-bearing bond at time ¢,

denoted by ®(¢,T ), is equivalent to the cost of the following portfolio of risky zero-coupon
bonds:

B(1,T )= ilctjv(z,z ). )
=

The coupon bond prices in both expressions (4) and (5) are for bonds trading in perfectly liquid
markets. Although this is a reasonable approximation for U.S. government debt, it is not so for
U.S. corporate debt. Thus, we need to introduce an adjustment for liquidity risk in the pricing of
corporate debt.

Let B,(t,T) denote the price of an otherwise identical risky coupon bond trading in an
illiquid market. The subscript “/”” indicates the bond’s price in an illiquid market. In an illiquid

and incomplete market, Jarrow (2001) shows that there exists a stochastic process > 7(¢,T) such

that

B,(t,T)=e7"@(1,T). (6)

The argument is that when there are shortages, the risky bond cannot be shorted,’ and hence

B (t,T)>B(t,T) is possible. The reverse case occurs when there is an oversupply. The process

> The process y(m,t,T ) for e 2 is adapted to the filtration ( F,).
% The bond cannot be shorted because to short, one has to first borrow the bond. The bond shortage makes
this precondition impossible to satisfy. Repurchase agreements are often used to short both government
and corporate debt.
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y(t,T) has the interpretation of being a convenience yield for holding the risky debt. When
there is a shortage and one cannot readily buy the risky bond, then — y(¢,7 )> 0. When there is a
glut and one cannot readily sell the risky bond, then — y(¢,T7 )< 0. In this context, liquidity risk is

analogous to a convenience yield from holding an illiquid bond in one’s portfolio. The
convenience yield is sometimes positive or negative, depending upon market conditions.

To obtain an empirical formulation of the above model, more structure needs to be
imposed on the stochastic nature of the economy. Following Jarrow (2001) we consider an
economy that is Markov in two state variables: the spot rate of interest and the cumulative excess
return per unit of risk on an equity market index. We next introduce the stochastic evolution of
these two state variables.

For the spot rate of interest, we use a single factor model with deterministic volatilities,
sometimes called the extended Vasicek model, 1.e.

(Spot Rate Evolution)
dr(t)=a,[F(t)—r(t)]dt +o,.dW(t) (7

where a,# 0, o,> 0 are constants, 7(¢) is a deterministic function of ¢ chosen to match the initial

zero-coupon bond price curve,” and W(?) is a standard Brownian motion under Q initialized at
W(0) = 0. The evolution of the spot rate is given under the risk neutral probability Q.

The second state variable is related to an equity market index, denoted by M(z?). The
evolution for the equity market index is assumed to satisfy a geometric Brownian motion with
drift »(¢) and volatility o;,. The correlation coefficient between the return on the market index and

changes in the spot rate is denoted by ¢ .
(Market Index Evolution)
dM (t) = M (¢)(r(t)dt + o,,dZ (1)) (8)

where o;, is constant, and Z(?) is a standard Brownian motion under Q initialized at Z(0) = 0

correlated with W(t) as dZ(t)dW(t) = ¢ dt with ¢ a constant.

Our second state variable is Z(z). We see here that Z(?) is a measure of the cumulative
excess return per unit of risk (above the spot rate of interest) on the equity market index.

Given the evolutions of the state variables, we next need to specify their relationship to
the bankruptcy parameters, the recovery rate and the liquidity discount. This is the task to which
we now turn. First, for the default parameters, we assume that:

(Expected Loss: A Function of the Spot Rate and the Market Index)

" In particular, r(t)zf(0,t)+(8f(0,t)/61+0'5 (1 _e’zar’)/zar )/ar for a #0.
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(1=0(t)A(t) = max{ay+a;r(t)+a,Z(t), 0} where ©)
ag20 and a;,a, are constants.

In this formulation, the expected loss per unit time (i.e., the (pseudo) probability of
default per unit of time multiplied by one minus the recovery rate) is assumed to be a linear
function of the state variables 7(z) and Z(#) as long as this linear combination is non-negative, zero
otherwise. Note that in this formulation of the expected loss process, the recovery rate is allowed
to be a stochastic.

For analytic tractability in the empirical implementation, we drop the maximum operator
in expression (9). In this case, as the recovery rate is non-negative, this implies that negative
default rates (A(z) < 0) are possible. If the likelihood of (A(2) < 0) is small, this simplification
should provide a reasonable approximation to expression (9). Unfortunately, when the intensity
process is negative, the default distribution is no longer a proper probability distribution [see
Bremaud (1981)]. Nonetheless, given the tractability of the subsequent expressions, and the
difficulty of the numerical inversion without a closed form solution, we empirically investigate
the validity of this linear approximation.

Given these expressions, it is shown Jarrow (2001) that the default free zero-coupon bond

and the risky zero-coupon bond’s price can be rewritten as:

p(t T):e—ﬂz(t,T)mf(z,T)/g 10)
and
— *ao(T* )7a, ]( T) 2a, a[] 12(,T)/2-
WU,T )= 1yyon) p(1,T Jo~oo(T--a(tTearsa i (1)
e—azZ(t)(T—t)+(1+al)a2¢ﬁ(t’r)+[r_t]3 a/6
where
1 T 2 P T ,
o (0T)= [ f(tw)du+ | b(uT ) duf2, of(1,7)=] b(u,T ) du, (12)
t ¢ .

b(u,t)=o0, (I - eia’(H‘)) a,, and

ntT)=—(o,/al )[1-e T ]v(c,/al )T NT~t)+(c,/2a, )[T~1]".

A direct substitution of these zero-coupon bond price formulae into the coupon bond
price expressions (4) and (5) gives the analytical expressions used in this empirical investigation,
with one exception. To complete the empirical specification of the risky debt model, we need to
specify an explicit functional form for the liquidity premium.

To empirically separate the estimates of the liquidity premium y(¢,7 ) from the expected
loss (1—-0(t))A(t), the time to maturity behavior of the liquidity premium and the expected loss

needs to be utilized. First note that if the firm is not in default at time ¢, then as T — ¢, all the

default related terms in the exponent of the risky zero-coupon bond’s price in expression (11)
6



approach zero. This follows because the probability of default by the risky firm goes to zero as

T —t,sothat v(¢,T)— 1. Hence, the expected loss component in the risky-zero coupon bond’s

price is proportional to time to maturity.

In contrast, the liquidity premium’s time to maturity behavior is, in general, not
proportional to time to maturity. Indeed, liquidity risk is usually thought of as being determined
by factors that are independent of the maturity of the bond, including the size of the bond issue,
market sentiment concerning its re-trade value, and the size of institutional holdings. If these
beliefs are valid, then the liquidity premium contains a fixed component that is not proportional to
time to maturity. To the extent that the liquidity premium contains only this fixed component, the
subsequent methodology enables us to empirically separate the liquidity premium from the
expected loss. To the extent that this is not true, any time to maturity component of the liquidity
premium will be confounded into our estimate of the expected loss.

Based on this discussion, as a joint hypothesis to the empirical methodology, we assume
that the liquidity premium is independent of the debt’s time to maturity:

(Liquidity Discount)

Lo C(M(j)-M(j-1)
s = / 2 . 3
V(LT )=yo+ 7 D2 r(j)/S+y, o0(t)+y Z[ 1)

j=t—4 Jj=t—4

j/5 (13)

where y,,7,,7,,Y; are constants. *

First, the right side of expression (13) is independent of the time to maturity (7-7).
Secondly, the liquidity discount is assumed to be an affine function of three market-wide
variables: the 5-day average spot rate, the volatility of an equity market index, and the 5-day
average return on the equity market index. These variables were chosen to capture systematic
market risks related to interest rates, equities, and the market’s volatility. Although other firm
specific variables correlated with debt market liquidity could have been included like the bid/ask
spread, volume traded, or volume outstanding, unfortunately, none of this information was
available in our bond database. Given this omission, however, the reader should be aware that the
liquidity premium estimates obtained might incorporate residual model error. This limited
formulation, however, does enable us to investigate whether liquidity risk is either firm

specific/idiosyncratic or systematic by testing whether (7, =y, =y; =0).

Substitution of expression (13) into the risky coupon-bond price formula (6) completes

the empirical specification of the reduced form credit risk model. As seen, analytic formulas are

¥ This implies that y(¢,T ) =y(t) so that

n n
B(1,T)=e"3(1,T) = 3 C[],e_y(t)v(t,tj) = X €, v(t.t;) where vy(1,T) = e MvT).
=1 j=1
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available for both the default free and risky debt issues. These analytic formulae are the basis for
the empirical estimation procedure described in the next sections.
3. Description of the Data

The data used for this investigation is the University of Houston’s Fixed Income
Database. This data consists of monthly bid prices for various fixed income securities, including
U.S. Treasuries and U.S. corporate debt. The bid prices are taken from Lehman Brothers trading
sheets on the last calendar day in each month. For each security included, various identifying
information is also provided including embedded options, seniority status, and whether the bid
price is transaction based or matrix priced, see Warga (1999) for additional details.

The time period covered in this study is May 1991 — March 1997. The University of
Houston Fixed Income Data terminates after March 1997 and no further updates are available.
For the U.S. Treasury securities, all outstanding bills, notes and bonds are included in this data
and, therefore, included in this study. Being such a large database (containing over 2 million
entries), the potential for data errors is quite large. Indeed, a careful examination of the data
confirmed this suspicion. Hence, we filtered the data to remove obvious data errors. We excluded
Treasury bonds with matrix prices and inconsistent or suspicious issue/dated/maturity dates and
coupons. Lastly, using a median yield filter of 2.5%, we also removed U.S. Treasury debt listings
whose yields exceeded the median yield by this percent. After filtering, there are approximately
29,100 U.S. Treasury prices left in the sample set.

For the corporate bond price data, we first excluded all debt issues that contained
embedded options (call provisions, extendible bonds, convertible bonds, etc.) and that were
matrix priced. Matrix prices are linear interpolations of bid prices for other traded issues. These
prices are not good approximations to traded prices and therefore omitted from the analysis.
These two filters left only bid prices on straight coupon bearing bonds.

From these debt issues, we selected twenty different firms chosen to stratify various
industry groupings: financial, food and beverages, petroleum, airlines, utilities, department stores,
and technology. Within each industry, the firms were chosen to ensure that at least three debt
issues were available sometime during the sample period. Only debt classified as senior, senior
debentures, and senior notes are included in the subsequent investigation.

The twenty firms included in this study are provided in Table 1. Their industry
association, and the starting and ending date for each of the bond price observations are noted.
For each firm, on any particular day in the observation period, a bid price may be missing from
the data. For this reason, different firms can have different starting dates and different numbers
of bond issues at specific dates in the observation period. The number of distinct bonds available

on the first date in the estimation period is also provided. For example, AMR Corporation has



only two senior debt issues outstanding on this date, while Merrill Lynch & Co. has fourteen.
The Moodies and S&P’s ratings for each company’s debt issues at the start of our sample period
(May 24, 1991) are also included. These ratings did not change over our sample period. As seen,
our sample consists of only investment grade debt. Using S&P’s ratings, the debt ranges from
AAA for Shell Oil Company’s to BBB for Union Oil of California.

For the equity market index, we used the S&P 500 index with daily observations obtained
from CRSP. For parameter estimation of the state variable processes a daily spot rate is needed.
Since the fixed income data provides only monthly observations, we use daily observations of the
3 month T-bill yield available from CRSP as well.

4. Estimation of the State Variable Process Parameters

To implement the estimation of the default and liquidity discount parameters, we first
need to estimate the parameters for the state variable processes (r(2),Z(t)).

a. Spot Rate Process Parameter Estimation

The inputs to the spot rate process evolution are the forward rate curves over an extended
observation period (f{z,7) for all months ¢ & January 1975 — March 1997) and the spot rate

parameters (a,,0,). We discuss the estimation of these inputs in this section.

For the estimation of the forward rate curves, a two-step procedure is utilized. First, for a
given time ¢, the discount bond prices (p(t,7) for various T) are estimated by solving the following
minimization problem:

choose (p(t,T) for all relevant T <max{T; :i€l, })
to minimize ¥|B;(1.T, )~ B;(1,T, ) ] (14)
iel,
where [, is an index set containing the various U.S. Treasury bonds, notes and bills available at

time ¢, B;(¢,T;) is the model price (expression (4)) for the i™ bond with maturity 7; as a

function of (p(t,7)), and B;(¢t,T; )bid is the market bid price for the i " bond with maturity 7.

The discount bond prices’ maturity dates 7' coincide with the maturities of the Treasury
bills, and the coupon payment and principal repayment dates for the Treasury notes and bonds.
Step 2 is to fit a continuous forward rate curve to the estimated zero-coupon bond prices

(pt,T) for all T <max{T;:iel}). We use the maximum smoothness forward rate curve as

developed by Adams and van Deventer (1994) and refined by Janosi and Jarrow (2002). Briefly,

we choose the unique piecewise, 4™ degree polynomial with the left and right end points left

max{T;:i€l, }
“dangling” that minimizes |
t

0% f(t,s)/os’ds.




For the spot rate parameters (a,,o,) estimation, the procedure follows that used in
Janosi, Jarrow, Zullo (1999). However, the procedure is extended to include rolling estimation of
the parameters using only information available at the time of the estimation. This rolling

procedure makes the parameter estimates (a,,,0,, ) dependent on time # as well.

rt’
The procedure is based on an explicit formula for the variance of the default-free zero-

coupon bond prices derived using expression (7). For 4 = 1/12 (a month), the expression is:
var, [log( P(t+ A,T )/ P(1,T)) - r(t)A] = (aft (e_””( =) _ 1)2 /a,’ jA . (15)

First we fix a time to maturity T—t € {3 months, 6 months, 1 year, 5 years, 10 years, the
longest time to maturity of an outstanding Treasury bond closest to 30 years}. Then, we fix a
current date t € {May 1991 — March 1997}. Going backwards in time 60 months (5 years), we
compute the sample variance, denoted s,r, using the smoothed forward rate curves previously

generated. Note that the sample variance depends on both the date of estimation and the bond’s
maturity.

Then, for each date ¢t € {May 1991 — March 1997}, to estimate the parameters (o,,,a,,)

we run a nonlinear regression
2 —a,(T-t) Y 2
S =|onle ™ —=1) /a, |A+eq (16)

across the bond time to maturities 7—¢ € { %, 1/2, 1, 5, 10, longest time to maturity closest to 30}

where e, is the error term.

The parameter estimates are:

Min Mean Max StdDev
a, 0.0109 0.0282 0.0428 0.0101
o, 0.0100 0.0109 0.0117 0.0004

The R* for each of these monthly non-linear regressions (not reported) exceeded .99 in all cases.

The spot rate volatility (o ,,) is nearly constant over this period. In contrast, the mean reverting

parameter ( a,, ) appears to be more volatile.
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To test for the time series stability of these parameter estimates, a unit root test was

performed.” For the volatility o,,, the test rejects a unit root, implying the time series is

v
stationary. In contrast, one cannot reject a unit root for the mean reverting parameter a,, .

b. Market Index Parameter Estimation

Using the daily S&P 500 index price data and the 3-month T-bill spot rate data, we need
to estimate the parameters of the market index process (o,,,® ) as given in expression (8) and the
cumulative excess return on the market index as given by Z(#) in expression (8). This section
discusses this estimation.

This estimation of the parameters (o ,,,¢ ) is based on daily data (4 = 1/365). As before,
the procedure involves a rolling estimation using only information available at the time of the
estimation. This procedure implies that the parameter estimates depend on time ¢ as well, denoted
bY (Gt P1)-

For a given date t € {May 24,1990 — March 31,1997}, we go back in time 365 business
days and estimate the time dependent sample variance and correlation coefficients (o, ,¢, )
using the sample moments, i.e.

05” = var,(M(tA)/l_(tA{Z)_ A)jé and ¢, = corrt(M(tA)/l_(tA{Z)_ 4) r(t)—r(t— A)J .(17)

The parameter estimates are:

Min Mean Max StdDev
Ot 0.0982 0.1261 0.1897 0.0270
, -0.2706 -0.0990 0.1262 0.1142

? A unit root test is performed to check for the stationarity of the time-series parameter estimates.
Stationarity means that the time series fluctuates around a fixed mean. Hence, this is basically a random
walk test. We run the following augmented Dickey-Fuller test with a time trend,
p—1
Ay, =p+py, +BL+ Y c; Ay, ; +e,

Jj=1

Since there was no time trend and no augmented terms, we reduced the equation to the Dickey-Fuller test
with no trend and augmented terms:

Ayt =u+pygte.
Therefore, we only report the DF test statistics for the stationarity of the parameters. The test statistic for
the DF test is given as the t-statistic of the p coefficient in the regression:

Ay, =p+py,; +¢,.
The null hypothesis is H ,:p =0 . If we accept the null hypothesis, we have unit root. Otherwise, we accept
the stationarity of the parameters [see Greene (1993) for more discussion]. The unit root test statistics are:
0, (—2.6348) and a, (—1.1632).

11



The market volatility is relatively constant between .1 and .2 over this observation period.
The correlation coefficient appears to be more variable. As before, to test for the stability of the
parameters a unit root test was performed. The results show that a unit root can be rejected at the
90 percent confidence level for the market volatility but not for the correlation coefficient."

Given the parameter estimates for the market volatility(o,, ) and the daily 3-month

Treasury bill yields, the Z(#) process is computed using a discretized approximation to expression
(8), starting the series on May 24, 1991.

Z(t)=Z(t-A)+ [log M(t)[M(t=A)=r(t = A)A+ (502 0 A] T pyrosy N4

fort>Aand Z(0)=0.

Finally, we computed the market-wide risk variables for the liquidity discount process
(expression (13)). These include the 5-business day average spot rate, the 5-business day average
return on the S&P 500 index, and for consistency, a 5-business day rolling estimate of the
volatility for the S&P 500 index. The 5-day rolling estimate of the volatility for the S&P 500

index differs from the market volatility (o, ) estimate generated previously only in the number

of the past observations used. The previous estimate used 365 past observations, while the
current estimate only uses 5.

c¢.  Default and Liquidity Discount Parameter Estimation

Given the state variables (7(2),Z(?)) parameters as estimated in the previous sections, this
section presents the default and liquidity discount parameter estimation. The default parameters

are the expected losses per unit time from the intensity process (expression (10)): a,,a;,a,; and
the liquidity discount parameters from expression (13): y,7;7,7;. These parameters are

constants. However, since we utilize a rolling estimation procedure at each date ¢ (the details of

which are discussed below), the parameter estimates will depend on ¢ as well, denoted by

(i 1203V 00V 1057 2007 3¢)-

For the estimation of the default and liquidity discount parameters, a non-linear
regression procedure is implemented using both cross-sectional and past time series observations
of bond prices. Table 1 contains the number of bonds available on the first date in the estimation
period. At each time 7, only a few bonds of any single firm with a particular seniority status trade
(and have bid prices). For example, Fleet Financial Group only has three outstanding senior
bonds with no embedded options on the first date in the observation period. This is the cross-
sectional price data at time ¢. These are too few observations to estimate the seven different

default and liquidity parameters. In order to augment these observations we use the past seven

' The unit root test statistics are: 0, (—3.9407)and ¢ (—1.3479). See footnote 9 for a more detailed

explanation of the unit root test.
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months of bond prices as well. This is the time series data. As before, only information available
at time ¢ is used in the estimation procedure. Augmenting the data in this way increases the
sample size significantly, for example for Fleet Financial Group, using the past seven months of
data increases the sample size from 3 to 16 observations.

For a particular firm at time ¢, let /, be the index set containing the bid prices of the
firm’s debt issues over the current month and the past seven months''. The twenty company debt
issues involved in the estimation are given in Table 1.

The time ¢ default intensity and liquidity discount parameters are estimated by solving the
following minimization problem'*:

L nE
choose (ag,, @y, @z 701717 20-73) to minimize .Z[@li(trTi)_@li(trTi)bld (18)

iel,

subject to the constraint that a,, >0,

where @B,(¢,7T;) is the model price (expression (6)) for the i bond with maturity 7; as a

function of (ay,,a;.ar Vo1 71,7273 ) and @li(tj})b"d is the market bid price for the i”
bond with maturity 7; .

The non-negativity constraint for a,, is included in order to keep the intensity process positive in
the case when both a,,,a,, are zeros.

As noted, our default and liquidity parameter estimation involves a two-step procedure.
The first step computes the state variable parameter estimates using their sample moments. The
second step uses these parameter estimates in the non-linear regression (18). This second step
introduces additional sampling error into the estimation procedure. An alternative approach
would have been to use a standard GMM procedure, estimating all of the parameters (including
the state variable parameters) in a single step. We choose not to use the GMM procedure for two
reasons. One, GMM is only asymptotically consistent, and in our situation, we do not know its
small sample properties. Two, our two-step procedure is also asymptotically consistent (under
certain error structures for the parameters), but simpler to implement.

Five different models for the liquidity discount are estimated. The models differ with
respect to the number of independent variables included in the liquidity discount. Model 1 has all

the liquidity parameters set equal to zero: y, =y; =y, =y3 =0. This is the base case with no

liquidity discount. Model 2 is the test for liquidity risk being idiosyncratic or systematic:

" The first estimation is for December 1991. The data starts 8 months earlier in May 1991.
'2 Matlab’s non-linear regression procedure is used to do this minimization. All parameter estimates are
initialized at zero for the numerical procedure.
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v1=y>=y3=0. Model 3 has y, =y; =0, model 4 has y; =0, and model 5 includes all of the

liquidity discount parameters. These five models are nested and a relative comparison of model
performance is subsequently provided.

For example, Xerox’s (symbol xrx) parameters are estimated each month from May 1991
— March 1997 for a total of 64 regressions, giving 64 time series observations of

(ap; .5 570657 1657 20,7 3¢ )- For each month in the observation period, on average, 39 bonds

were used in the time ¢ non-linear regression. Graphs of the time series parameters for Xerox are
contained in Figures la and 1b. Figure 1b contains Xerox’s expected loss per unit time parameter

estimates (ay,,a;,,a,, ). As depicted, Xerox’s expected loss appears to be declining over the

observation period for all five liquidity discount models estimated. As suggested, Xerox’s default
risk is declining. In contrast, its credit rating is unchanged (see Table 1).

Figure 1a contains Xerox’s liquidity discount factor (exp(—y(t,T ))) for the five different
models using expression (13) and the parameter estimates (¥, ;.7 2,73 ). For the first half of

the observation period, for models 2 — 5, Xerox’s debt appears to have traded at a premium
(greater than one), while over the last half of the observation period it traded at a discount. A
premium implies that Xerox’s bonds were in excess supply, while a discount implies that Xerox’s
bonds were in shortage (relative to a liquid market).

To summarize the time series estimates across all models and across all times, Table 2
provides the average values for the point estimates of the liquidity discount and the expected loss
parameters. The average number of bonds used in each monthly regression, the average R?, and
the number of monthly regressions are also included. For each firm, on any particular day in the
observation period, a bid price may be missing from the data. For this reason, different firms can
have different starting dates and different numbers of bond issues at different dates in the
observation period. Table 1 provides the estimation periods for the different companies’ debt
issues.

The values in Table 2 are averages over the number of days in the observation period
(May 1991 — March 1997) for which the non-linear regression estimates of the parameters are
computed.”  Table 3 provides the t-scores'* for the averages of the parameter estimates as
contained in Table 2 as well as the average P-scores for the coefficients (across the number of
regressions). The P-score is the probability of rejecting the null hypothesis (that the coefficient is

zero), when it is true. Summary statistics for various F-tests are also provided. The first F-test has

" This is not to be confused with the number of observations used in the time # regression for a particular
firm. At the time ¢ regression, we use all bond prices for issues of a particular seniority over the past eight
months.

' The t-score is adjusted to reflect the fact that the regressions contain overlapping time intervals. The
justification for the t-score adjustment is contained in the appendix.
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as its null hypothesis (a, =a; =a, =0). Given are the average P-scores of the F-tests (across

the number of regressions). The remaining F-tests have as their null hypothesis the liquidity

premium models 1 — 5 (ie., y; =0 for all j where j <i for model 7). Model 2 is a test for

liquidity risk being idiosyncratic versus systematic. The average P-scores of these F-tests (across
the regressions) are provided. The next sections discuss these statistics and various tests for the
relative performance of the various models.
5. Analysis of the Time Series Properties of the Parameters

Under the assumed model structure, the default and liquidity premium parameters

(@ps @y, as 700,717 26,73 ) should be constant across time. Given measurement error in the

input data (bond prices and the state variable parameters) and its effect on the debt parameter
estimates, we test the hypothesis that the time series variation in these parameters is solely due to
random (white) noise. Alternatively stated, we test to see if the parameter estimates follow a
random walk around a given mean. A unit root test is used in this regard."

Table 4 contains a summary of the unit root test statistics across model types. For model
1, no liquidity premium, around 50 percent of the different firm’s default parameters accept the
null hypothesis of a unit root, rejecting the time series stationarity of the parameters. Firms with
at least two thirds of the default parameters accepting a unit root include ten out of eighteen
companies (financials: spc, bt; food and beverages: cce; airlines: amr; utilities: txu; petroleum:
mob; department stores: dh; technology: ek, txn, ibm). Model 1’s estimated parameters appear to
have a stationarity problem.

The liquidity premium corrects this non-stationarity. Indeed, inclusion of the liquidity
premium significantly improves the stationarity of the default parameter estimates. For models 2
— 5, a majority of the default parameter coefficients reject a unit root. The more complex the
model, the more unit root rejections occur. The best performing model in this regard is model 5.
For model 5, for almost all companies, the liquidity premium and default parameters reject the
hypothesis of a unit root. Although the unit root test is a weak test for stationarity, these rejections
are consistent with the validity of the pricing model and the necessity of including a liquidity
premium.

6. Analysis of the Expected Loss

As previously mentioned, the average expected loss parameters are contained in Table 2
with t-scores and average values for the P-scores provided in Table 3. The firms’ estimates are
presented in industry groupings for easy comparison.

First to be noticed in Table 2 is that the fit of the non-linear regressions are quite high for

all firms and all models with an R? of .72 or higher, with one exception. The exception is Fleet
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Financial Group (flt) with an R? between .41 - .66, depending upon the model selected. These
high R*’s are obtained in spite of the fact that the number of bonds used in each regression is
quite small — between 16 and 132 for all firms. The low R* for Fleet Financial Group can be
explained by the fact that it had only an average of 16 bond observations for each regression.

Second, it is interesting to examine the signs of the coefficients for the expected loss
parameters. The signs of @, and a, indicate the sensitivity of the firm’s default likelihood to
changes in the spot rate and the equity market index, respectively. For example, for Security
Pacific Corp (spc), for all five models considered, we see that a,> 0 and a, < 0. This implies

that as spot rates increase, the firm’s default risk increases; and as the equity market index
increases, the firm’s default risk declines. These signs are consistent with simple economic
intuition.

This economic intuition is based on the effect of higher interest rates on the firm’s ability
to service its short-term floating rate debt. As spot rates rise, given fixed operating income flows,
debt servicing costs increase, thereby making it more likely for the firm to default. This intuition,
“at first blush”, appears to be inconsistent with the structural approach to risky debt valuation.
For example, in Merton (1974; p. 457, equ.(26)), we see that as spot rates increase, the credit
spread declines (implying default risk declines). The reason for this difference is easily
explained. In Merton’s structural model, the firm has only the equivalent of long-term debt on its
balance sheet (a single fixed maturity discount bond). The previous economic intuition is
formulated for firms with more complex liability structures that contain a significant amount of
short-term floating rate debt. Consequently, it is possible for different firms to exhibit different
interest rate sensitivity to default based on the relative importance of floating rate versus fixed
rate borrowings in their capital structure.

The signs of these coefficients appear to be stable across time for any particular
company’s debt, but they differ across industries and they sometimes differ across companies
within an industry. An example of different signs within an industry is for the department stores
grouping, where Sears Roebuck and Company (s) and Wal-Mart Stores, Inc. (wmt) have
contrasting signs for both the interest rate and market index variables. These differences reflect
different capital structures (e.g. relative dependence on floating rate versus fixed rate debt) and
different customer pools (customer income correlation with the market index variables).

Glancing now at Table 3, we discuss the statistical significance of these point estimates.

First, we investigate the joint significance of all three of the default parameters (a,,a;,a,). The

F-test for model 1 provides the appropriate test. As seen, for 19 out of 20 companies, the average

P-score is less than 5 percent, accepting the joint statistical significance of the three parameters

1 See footnote 9 for a more detailed explanation of ﬂf% unit root test.



(ay,a;,a,). The exception is Fleet Financial Group (flt) with an average P-score of .3362. Fleet

Financial Group has the smallest sample size — number of bonds (16 observations).
We next investigate the individual t-scores, given the joint statistical significance of the

credit risk model. With respect to the constant in the expected loss function, a,, its statistical

significance varies across model types. For model 1, no liquidity premium, it is significant for 10
out of the 20 companies. For model 2 it is significant for 18 out of 20 companies (the exceptions

are txu and txn). For models 3 — 5, a, is never significant. The absence of individual

significance in models 3 — 5 is due to both the increased number of parameters to estimate and the
increased multi-collinearity of the independent variables. Although the multi-collinearity
increases the standard error of the estimates, the estimates remain unbiased. The average P-
scores across the individual regressions confirm the above conclusions.

With respect to the spot rate coefficient in the expected loss, a;, the significance of its t-

scores also varies across model types. For model 1, no liquidity premium, it is significant in only
8 out of 20 cases. For model 2, it is significant in 18 out of 20 cases. The exceptions are
Carolina Power and Light (cpl) and Dayton Hudson (dh). But, in both of these cases, the average
P-scores are less than 5 percent, indicating significance in this alternative test. This is strong
evidence that the expected loss depends on the spot rate of interest. In contrast, for the more

complex liquidity discount models 3 — 5, a; is never significant. Again, this is due to the

increased number of parameters to estimate and the increased multi-collinearity of the

independent variables.
Finally, with respect to the market index coefficient in the expected loss, a,, only 5 out

of the 20 firms are significant for model 1, and none are significant for models 2 — 5. Given the
other two expected loss coefficients, it appears that the expected loss does not depend on the
market index. The only near exception to this statement is for Merrill Lynch (mer) in the case of
model 3. Here the t-score is nearly significant (-1.4089) and the average P-score is low (.1719).
This could be due to chance, but it also is consistent with the conjecture that an industry specific
index should be included, rather than a market index. For example, for the petroleum industry
grouping, oil prices may have been a better index choice; and for the utilities industry, electricity
prices may have been a better choice. This is consistent with the weak evidence available from
Merrill Lynch because the market index is probably highly correlated with an industry index for
investment banking. This conjecture, however, awaits subsequent research.

The impact of these different parameter estimates on the one-year default probabilities for
each firm across model types can be gleaned from column 2 in Table 5. Column 2 in Table 5

provides the average one-year default probabilities (computed under the risk neutral measure)
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across the different regressions assuming a constant recovery rate of 0.5. Except for Fleet
Financial Group, due to its small sample size, the one-year default probabilities do not appear to
differ significantly across the liquidity premium models 2 — 4. For each firm, the biggest
difference occurs between model 1 and models 2 — 4, i.e. no liquidity discount versus a liquidity
discount. As seen, the inclusion of a liquidity discount appears to have a significant impact on
the estimated probability of default. The necessity (or lack thereof) of a liquidity discount is
addressed in the next section.
7. Analysis of the Liquidity Discount Model

This section studies the relative performance of the five liquidity discount models. First,
for each firm and for each model type, Table 3 contains the average P-scores for the F-statistic

testing the joint nullity of the parameters (y,,7;,7,,73). Model 1 tests for the inclusion of a

liquidity discount. Model 2 tests whether liquidity risk is idiosyncratic or systematic. Models 3 -
5 test for the sensitivity of liquidity risk to interest rate, equity market, and equity market
volatility risk, respectively.

These F-tests confirm the necessity of including a liquidity discount. For model 2, the
average P-score is less than 30 percent for 12 out of 20 cases. For models 2 — 5 the average P-
score is less than 50 percent for all companies except five (flt, luv, cpl, txu, wmt). This is strong
evidence consistent with the importance of including a liquidity discount into the credit risky
model structure.

The t-scores and the average P-scores for the liquidity coefficients, across regressions, are
also contained in Table 3. This simple t-test checks for the significance of each coefficient, given
that the other coefficients are included in the regression. For models 2 — 5, almost all of the
coefficients are significantly different from zero. This is true using either the t-score or average
P-score statistics. This evidence confirms the F-test analysis previously discussed and the
importance of including a liquidity discount in the credit risk model.

Three additional statistical analyzes were performed to investigate relative model
performance. The first was the unit root test for parameter stability discussed in section 5 above.
As noted there, the liquidity coefficients’ time series properties are inconsistent with a unit root.
The best performing model on this metric is model 5. However, this is a weak test. Hence, two
additional tests were performed. For each firm and for each model’s regression, both a root mean
squared error statistic (RMSE) and a generalized cross validation statistic (GCV) are computed.
The RMSE statistic measures the “average” pricing error between the model and the market bid.
It is an in-sample goodness of fit measure. As with all in-sample goodness of fit measures, a
potential problem with RMSE is that it may provide a biased picture of the quality of model

performance due to a model over-fitting the noise in the data. With in-sample estimation, usually
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the more parameters utilized, the better the fit. To avoid this problem, we provide an out-of-
sample test. The second GCV test statistic is an out-of-sample goodness of fit measure that is
predictive in nature.'® The lower the GCV statistic, the better the out-of-sample model fit.

The average RMSE and GCV statistics for each firm and model are contained in Table 5.
As indicated, the RMSE is lower for models 2 — 5 than for model 1. This is as expected,
however, because the RMSE is an in-sample statistic and models 2 — 5 have more parameters.
More importantly, the out-of-sample GCV statistic is lower for model 2 than it is for model 1.
This again confirms the importance of including a liquidity discount into the model structure.

In summary, the best performing model based on either RMSE or the GCV statistic is
model 2. This evidence is consistent with liquidity risk being idiosyncratic and not systematic
risk. The importance of additional company and industry specific variables is an interesting topic
for future research.

The impact of these different liquidity discount models on the aggregate estimate of the
liquidity discount for each firm is contained in column 7 of Table 5. The biggest impact occurs
between model 1 (no liquidity discount) and models 2 — 5. Across the different liquidity discount
models 2 — 5, the differential impact on the estimate of the liquidity discount does not appear to
be that significant.

8. Absolute Performance of the Credit Risk Model

The above analysis was for the relative performance of models 1 — 5. The absolute
performance of the models is much more difficult to ascertain. Conceptually, this is because the
default process’ parameters are unobservable. The default parameters are from a distribution
whose realization is a binary variable — default, no default. And, for most firms (in fact, for all

firms in our sample), the default realization has not occurred. It is possible to compare the

' To understand this out-of-sample GCV statistic, we first consider the CV method in terms of its
forecasting ability. Assuming that the random errors have zero mean, the true regression curve g has the
property that, if an observation Y is taken at a point t, the value g(t) is the best predictor of Y in terms of

MSE. Thus a good choice of estimator g(%) would be one that gives a small value of (Y - g(t))z for a new

n
. . . ~ (=i 2 ~(—i
observation Y at point t. Therefore, we can write the CV as: CV = Z (YI -gf ')(ti)) /n where g’ ’)(Z,-)
i=1
is the slope estimate without using the ith observation. Since we have cross-sectional and time series data,
CV is computationally intensive. Indeed, we need to do the NNLS estimation nxn times. To reduce this

u 2
computation to only n times we use the GCV statistic: GCV = Z (Yl - gt ))2 / n(l - itr(A )j
n

i=1

where Z (Y, —g(t,))’ /n is the SSE of the cross-section regression. A is equal to X (X'X)™ X", where
i=1

X is the Jacobian at each date. The smaller the GCV statistic, the better the model in terms of its prediction

power [for more detail see Wahba (1985)].

19



implied default parameters with historical based default frequencies for “like” firms. This is, in
fact, the topic for a companion paper [see Chava and Jarrow (2000)].

Nonetheless, the absolute performance of the reduced form credit risk model can be
partially gauged by examining the time series stability of the estimated parameters, the R of the
regression model, and the percentage pricing error (RMSE/average bond price). The time series
stability of the estimated parameters was discussed in section 5 above. In summary, that evidence
supports the necessity of including a liquidity discount into the debt-pricing model. The R?
statistic, as mentioned previously, is quite high for all model structures — often greater than .85
(see Table 5). This indicates the ability of the model to explain a large percentage of the variation
in the bond price data. The average R* for the “best” performing model 2 is .87.

The average percentage pricing error across firms and model types is quite low. As seen
in Table 5, the average percentage pricing error fluctuates around 1 percent of the bond’s bid
price, and is often much less. The overall average percentage pricing error for the “best”
performing model 2 is 1.1 percent. This is a small pricing error despite the facts that: (i) only a
small number of bonds were used in the estimation, (ii) the estimates are based on monthly
observations (not daily or weekly), (iii) a rolling estimation procedure is employed, and (iv) the
term structure and credit risk models implemented are quite simple.

9. Conclusion

This paper provides an empirical investigation of a reduced form credit risk model that
includes both liquidity risk and correlated defaults. The estimation is for twenty different firms’
debt issues using monthly bond prices over a six-year time period from May 1991 — March 1997.
Five different liquidity discount models are investigated.

Based on various statistical measures, both in- and out- of sample, the evidence supports
the importance of including a liquidity discount into a credit risk model to capture liquidity risk.
The inclusion of a liquidity discount increases the stability of the estimated parameters, it reduces
the credit risk model’s average pricing error, and it significantly impacts the one-year default
probability estimation.

Three conclusions can be drawn with respect to the specific debt-pricing model
estimated. First, the model fits the data quite well. Second, the expected loss appears to depend
on the spot rate of interest, but not a market index. This captures the integration of market and
credit risk. Third, liquidity risk appears to be idiosyncratic and not systematic risk. The
importance of an industry effect in both the default intensity and the liquidity discount is an open

question.
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Future research is also needed to compare the implied default probabilities estimated
using the above model to both: historical default frequencies and default probabilities implicit in

credit derivative prices.
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Appendix: Determination of the t-scores in Table 3.

Let x; represent the coefficient from the i" regression for i = I, ..., m where m = the number of

regressions.

m
Table 2 contains X = Y, x; /m . We want to compute the standard error for X .
i=1]

Let E(x; )= and Var(x; )= 0')5 for all i.

The x; are identically distributed, but not independent. The regression coefficients x; are correlated

because the i” regression uses the past n months of bond price observations, so the /" and (i+1)" regression
overlap (n-2) months of data.

m
So, E(x)=E(XYx;/m)=pu . Weneed to determine Var(x ).
i=1

n+i—1
As an approximation in distribution (to the regression estimation), let x; = > j /n where y; j are
j =i

independent and identically distributed with E(y; )= and Var(y;)= o for all i and n = the number

of months in the regression (n = & for the estimation). This implies that x; and x;,; are overlapping n-2
observations. Note that:

n+m—1

m il Zlfyf/”mJ“zy//er X (nem=j)y;/mmif mzn
Sy /m=3. Yy, /nm=4" s f+m+1
m—

i=1 i=1 j=i Z]yj/nm+2yj/n+ X (n+m=j)y;/nm if m<n
Jj=m J=n+1

ij]/nm+2yl/m+2]yn+mj/nm if m>n
j}’l

ij]/nm+2yj/n+ Z]yn+m]/nm if m<n

] =m

Then,

var(Z]yj/nm+Zy]/m+ijn+mj/nm) if m2n
m
var( X x;/m)= /] J=n
=l var(zljyj/nerZyl/nJr Z]yn+mj/nm) if m<n
J Jj=m

0'2 n—1 .2 2 .
—5[2X ] /n“+(m-n+1)] if m=n
m j=1

2 2
0—2[22j2/n2+m—2(n—m+1)] if m<n
m° j=I n

k
Using Y j% =k(k+1)(2k+1)/6 , we get:
j=I
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2
_ 3nm
var(x) = 5
n 3n“m
But,

2 n+i—1 2
oy =var(x;)=var( Xy;/n)=0c"/n.
j=i

2

o | A=) e sy
2

m 3m

So, o =na§. Thus, vvar(x)=
2
O'M,]+M if m<n
3nm

A consistent estimator for the standard error of X is:

m
z&x 2
— " |n (I-n .
i=1 _+( > ) lf m>n
- m 3m
stderror(x )=

m

S0 d-m?)

= 1+ if m<n

m 3nm
m A
.zaxi
= = average

where &, is the standard error of the coefficient x; from the i" regression, and
1
m

standard errors of the coefficients x; from the m regressions.

X

The t-score is: —
stderror(x)

Under the null hypothesis that g =0, this is asymptotically normal with
mean 0 and standard derivation 1. The t-scores are reported in Table 3.
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Figure 1a: Liquidity Discount: exp(¥(t,T))
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Figure 1: Time Series Estimates of Xerox’s Liquidity Discount and Expected Loss
(per unit time) from December 1991 to March 1997.

The liquidity discount is (. )= yo+7, Sr(j)/5+7, ()47, ¥ (M(j)_M(j_U]u
j=t—4 j=t—4 M(J - ])

where y,,7,,7,.7; are constants, r(?) is the 3-month Treasury yield at time ¢, o“,i (t) is the 5-business

day volatility of the return on the S&P 500 index, and M(?) is the value of the S&P 500 index at time z. The

expected loss is a(t)=a, +a,;r(t)+a,Z(t) where a,,a;,a, are constants and Z(¢) is the time ¢

cumulative excess return per unit of risk on the S&P 500 index. The parameters y,,7,,7,,7; and

a,,a;,a, are estimated implicitly from the market price of Xerox’s debt over the current and previous

seven months. The time ¢ estimation uses only information available at time ¢#. Given are monthly
observations.
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Ticker SIC First Date Last Date Number Moodies S&P
Symbol Code usedinthe used in the of
Estimation Estimation Bonds

Financials
SECURITY PACIFIC CORP spc 6021 12/31/1991  07/31/1994 7 A3 A
FLEET FINANCIAL GROUP flt 6021 12/31/1991  10/31/1996 3 Baa2 BBB+
BANKERS TRUST NY bt 6022  01/31/1994  04/30/1994 3 Al AA
MERRILL LYNCH & CO mer 6211 12/31/1991  03/31/1997 14 A2 A
Food & Beverages
PEPSICO INC pep 2086  12/31/1991  03/31/1997 8 Al A
COCA - COLA cce 2086  12/31/1991  06/30/1994 3 A2 AA-
ENTERPRISES INC
Airlines
AMR CORPORATION amr 4512 02/29/1992  08/31/1994 2 Baal BBB+
SOUTHWEST AIRLINES luv 4512 05/31/1992  03/31/1997 3 Baal A-
CO
Utilities

CAROLINA POWER + cpl 4911  08/31/1992  01/31/1993 3 A2 A
LIGHT
TEXAS UTILITIES ELE CO txu 4911  04/30/1994  03/31/1997 4 Baa2 BBB

Petroleum
MOBIL CORP mob 2911 12/31/1991  02/29/1996 3 Aa2 AA
UNION OIL OF ucl 2911 12/31/1991  03/31/1997 6 Baal BBB
CALIFORNIA
SHELL OIL CO suo 2911  03/31/1992  02/28/1995 5 Aaa  AAA

Department Stores

SEARS ROEBUCK + CO S 5311 12/31/1991  08/31/1996 7 A2 A
DAYTON HUDSON CORP dh 5311  04/30/1993  03/31/1997 2 A3 A
WAL-MART STORES, INC wmt 5331 12/31/1991  03/31/1997 3 Aa3 AA

Technology
EASTMAN KODAK ek 3861  01/31/1992  09/30/1994 3 A2 A-
COMPANY
XEROX CORP XIX 3861 12/31/1991  03/31/1997 4 A2 A
TEXAS INSTRUMENTS txn 3674  10/31/1992  03/31/1997 3 A3 A
INTL BUSINESS ibm 3570  01/31/1994  03/31/1997 3 Al AA-
MACHINES

Table 1: Details of the Firms Included in the Empirical Investigation.

Ticker Symbol is the firm’s ticker symbol. SIC is the Standard Industry Code. Number of Bonds is the
number of the firm’s different senior debt issues outstanding on the first date used in the estimation.
Moodies refers to Moodies’ debt rating for the company’s senior debt on the first date used in the
estimation. S&P refers to S&P’s debt rating for the company’s debt on the first date used in the estimation.
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1- SECURITY PACIFIC CORP

FINANCIALS

spc Yo T Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0012  0.1934  -0.0021 47 0.812 32
Model 2 -0.0065 0.007  0.1196  -0.0008 47 0.8366 32
Model 3 -0.0084  0.0411 0.0069  0.1197  -0.0003 47 0.8385 32
Model 4 -0.0078  -0.0046  0.1056 0.0035  0.1985  -0.0029 47 0.8499 32
Model 5 -0.0034  -0.0992  0.0383  0.3476  0.0033  0.2056  -0.0033 47 0.8557 32
2- FLEET FINANCIAL GROUP
fit Yo T Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0085  0.0054  0.0001 16 0.4143 57
Model 2 -0.0023 0.0157  -0.1195  -0.0006 16 0.4501 57
Model 3 -0.0075 0.254 0.0219  -0.2078  -0.0015 16 0.5031 57
Model 4 -0.0094  0.5403  0.1016 0.0327 -0.46  -0.0043 16 0.5803 57
Model 5 -0.0074  0.3125  0.2018  -0.3375  0.0336 -0.45  -0.0066 16 0.6582 57
3- BANKERS TRUST NY
bt Yo T Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0014 0.018 0 24 0.9504 4
Model 2 -0.0031 0.0064  -0.0508  -0.0003 24 0.9576 4
Model 3 0.0028  -0.1824 0.0056 -0.028  -0.0006 24 0.9583 4
Model 4 0.0095 -0.3909  0.0141 0.0042  0.0091  -0.0009 24 0.9589 4
Model 5 0.013  -0.4817 0.01 -0.662  0.0034  -0.0181 0.001 24 0.9613 4
4-MERRILL LYNCH & CO
mer Yo T Y2 Y3 a a; a Number R? Number
of Bonds of Reg
Model 1 0.0083  0.0154  -0.0007 132 0.8918 64
Model 2 -0.0068 0.0156  -0.0639  -0.0017 132 0.9 64
Model 3 -0.017  0.2331 0.0168  -0.0809  -0.0013 132 0.9024 64
Model 4 -0.0251 0.4294 0.023 0.0176  -0.0864  -0.0017 132 0.9044 64
Model 5 -0.0216  0.3445  -0.0383 04829  0.0181 -0.0873  -0.0015 132 0.907 64
FOOD & BEVERAGES
5-PEPSICO INC
pep Yo 11 Y2 13 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0026  0.0629 0 57 0.8554 64
Model 2 -0.0061 0.0063  0.0255  -0.0002 57 0.8616 64
Model 3 0.006  -0.2528 0.0064  0.0331  -0.0004 57 0.8635 64
Model 4 0.0199  -0.5636  0.0432 0.006  0.0544  -0.0007 57 0.8667 64
Model 5 0.0032  -0.2422  -0.0049  -0.2383  0.0071 0.026  -0.0005 57 0.8682 64
6-COCA-COLA ENTERPRISES INC
cce Yo T Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.003  0.0494  0.0003 24 0.8142 31
Model 2 -0.0096 0.011 -0.045 0.001 24 0.8783 31
Model 3 -0.0111 0.0064 0.0118  -0.0593  0.0018 24 0.8812 31
Model 4 -0.0191 0.2505  0.0472 0.0114  -0.0465 0.001 24 0.8884 31
Model 5 -0.0107 0.057 -0.1067  0.1239  0.0107 -0.0337  0.0012 24 0.8926 31
AIRLINES
7-AMR CORPORATION
Amr Yo T Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0134 0.064  0.0011 26 0.9216 31
Model 2 -0.0226 0.0283  -0.0863  0.0001 26 0.9346 31
Model 3 -0.0151  -0.1824 0.0259  -0.0546 0 26 0.9378 31
Model 4 -0.0172  -0.1521  -0.2317 0.0246  -0.0394  0.0018 26 0.9484 31
Model 5 -0.0157  -0.0927  -0.2293  -1.3426  0.0252  -0.0579  0.0026 26 0.9548 31
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8-SOUTHWEST AIRLINES CO

luv Yo T Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0184  -0.0986  -0.0035 27 0.8432 59
Model 2 0.0071 0.0142  -0.0617  -0.0027 27 0.8513 59
Model 3 0.0108  -0.0417 0.0146  -0.0617  -0.0027 27 0.8539 59
Model 4 0.0168  -0.2548  -0.0536 0.0218 -0.13  -0.0044 27 0.8621 59
Model 5 0.009 -0.2063 -0.1335  -0.3788 0.0238  -0.1489  -0.0043 27 0.8718 59
UTILITIES
9-CAROLINE POWER + LIGHT
cpl Yo T Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0105  -0.0006 -0.018 24 0.8559 6
Model 2 -0.0042 0.0146  -0.0305 -0.0181 24 0.8598 6
Model 3 -0.0091 0.1352 0.0165 -0.0688  -0.0178 24 0.8605 6
Model 4 -0.0118 03229  -0.4386 0.0191  -0.0898  -0.0194 24 0.8686 6
Model 5 -0.022 0.6041  -0.4699 0.1241 0.0214  -0.1067  -0.0219 24 0.8727 6
10-TEXAS UTILITIES ELE CO
txu Yo T Y2 Y3 a a; a Number R? Number
of Bonds of Reg
Model 1 0.0108  -0.0215  -0.0022 29 0.8329 36
Model 2 0.0054 0.0057 0.0264  -0.0015 29 0.837 36
Model 3 0.0201  -0.2835 0.004 0.0499  -0.0015 29 0.8395 36
Model 4 0.0349  -0.5343  -0.2725 0.0062 0.0305  -0.0018 29 0.85 36
Model 5 0.0161 -0.1118  -0.1959  -1.7487 0.0024 0.0611  -0.0008 29 0.8591 36
PETROLEUM
11-MOBIL CORP
mob Yo 11 Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0038 0.0114  -0.0005 31 0.9787 51
Model 2 -0.0028 0.0067  -0.0201  -0.0009 31 0.9824 51
Model 3 0.0003  -0.0958 0.0068  -0.0207 -0.001 31 0.9829 51
Model 4 0.0036  -0.2213 0.0071 0.0076  -0.0321  -0.0012 31 0.9835 51
Model 5 0.0005  -0.1364  0.0257  -0.1457 0.0077  -0.0347 -0.001 31 0.984 51
12-UNION OIL OF CALIFORNIA
ucl Yo 71 Y2 13 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0109  -0.0153  -0.0013 31 0.9219 64
Model 2 -0.0024 0.013  -0.0385 -0.0016 31 0.9255 64
Model 3 -0.0226 0.4015 0.0155  -0.0778  -0.0018 31 0.927 64
Model 4 -0.0387 0.7875  -0.0232 0.0136 -0.062  -0.0017 31 0.9298 64
Model 5 -0.0289 0.5747  -0.0698 0.596 0.0139  -0.0597 -0.0016 31 0.9312 64
13-SHELL OIL CO
suo Yo T Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0008 0.0721 0.0003 36 0.8309 36
Model 2 -0.0097 0.0103  -0.0386  -0.0004 36 0.8556 36
Model 3 -0.0113 0.0286 0.0108  -0.0437  -0.0005 36 0.8575 36
Model 4 -0.0046  -0.1822  -0.1238 0.013  -0.0703  -0.0005 36 0.8618 36
Model 5 -0.0084  -0.0672  -0.0622 0.1001 0.0144  -0.0808 -0.0014 36 0.8638 36
DEPARTMENT STORES
14-SEARS ROEBUCK + CO
s Yo T Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0069 0.0833 0.0009 42 0.7245 57
Model 2 -0.0063 0.0108 0.0455 0.0007 42 0.7338 57
Model 3 0.0029  -0.2729 0.0095 0.0654 0.0006 42 0.7379 57
Model 4 0.0119  -0.5485 -0.2141 0.0122 0.0243 0.0012 42 0.7474 57
Model 5 0.0307 -0.927  -0.1149 0.7994 0.0122 0.0799  -0.0005 42 0.7641 57
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15-DAYTON HUDSON CORP

dh Yo T Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0024 0.0889 0.001 20 0.8859 48
Model 2 -0.051 0.0138 0.0043 0.0005 20 0.9219 48
Model 3 -0.0372  -0.3116 0.0129 0.0174 0.0006 20 0.9229 48
Model 4 0.0237  -1.7798  -0.0709 0.0118 0.0393 0.0004 20 0.927 48
Model 5 -0.0136  -0.9273  -0.1076  -1.8731 0.0123 0.0161 0.0011 20 0.9322 48
16-WAL-MART STORES, INC
wmt Yo T Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0098  -0.0639  -0.0016 58 0.9415 64
Model 2 0.0042 0.0063  -0.0282  -0.0012 58 0.943 64
Model 3 0.0079  -0.1257 0.0059  -0.0236  -0.0011 58 0.9438 64
Model 4 0.0157  -0.3443  -0.0186 0.0058  -0.0228  -0.0011 58 0.945 64
Model 5 0.0082  -0.1769  -0.0285  -0.4038 0.0064  -0.0357  -0.0008 58 0.946 64
TECHNOLOGY
17-EASTMAN KODAK COMPANY
ek Yo T Y2 Y3 a a; a Number R? Number
of Bonds of Reg
Model 1 0.003 0.0984  -0.0005 29 0.9257 33
Model 2 -0.0089 0.0102 0.0235  -0.0012 29 0.9379 33
Model 3 -0.0177 0.3019 0.0102 0.0247  -0.0013 29 0.9394 33
Model 4 -0.0247 0.541  -0.0249 0.0092 0.04 -0.0012 29 0.9421 33
Model 5 -0.022 0.482  -0.0653 -0.083 0.0092 0.039  -0.0011 29 0.9429 33
18-XEROX CORP
Xrx Yo T Y2 Y3 a a; a Number R? Number
of Bonds of Reg
Model 1 0.0151  -0.1022  -0.0017 39 0.921 64
Model 2 -0.0024 0.0157  -0.1123  -0.0004 39 0.9235 64
Model 3 -0.0224 0.4989 0.0189  -0.1562 0 39 0.926 64
Model 4 -0.0215 0.4888  -0.1402 0.0214  -0.1788 0 39 0.9286 64
Model 5 -0.027 0.5427  -0.1375 0.5588 0.0229  -0.1936  -0.0004 39 0.9308 64
19-TEXAS INSTRUMENTS
txn Yo 71 Y2 13 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0094 -0.0164  -0.0007 24 0.8947 54
Model 2 0.0049 0.0066 0.0114  -0.0004 24 0.9142 54
Model 3 0.0135  -0.1859 0.0057 0.0232  -0.0004 24 0.9153 54
Model 4 0.0348  -0.7707  -0.1243 0.0045 0.0367 0 24 0.9211 54
Model 5 0.0251  -0.5054  -0.0549  -0.6919 0.0045 0.0347 0.0003 24 0.8947 54
20-INTL BUSINESS MACHINES
ibm Yo T Y2 Y3 a a a Number R’ Number
of Bonds of Reg
Model 1 0.0049 0.0188  -0.0001 24 0.8942 39
Model 2 -0.016 0.0161  -0.0997 -0.001 24 0.9134 39
Model 3 -0.0086  -0.1215 0.0154  -0.0918  -0.0009 24 0.9149 39
Model 4 -0.0352 0.484  -0.0148 0.0196  -0.1394  -0.0012 24 0.9231 39
Model 5 -0.0305 03662  -0.0097 0.2081 0.0204  -0.1442  -0.0014 24 0.9281 39

Table 2: Averages of the Parameter Estimates from the Non-linear Debt Regression.

Table 2 contains the average parameter estimates (7,,7;,7,.73,a,.4;,4d, ), across the months in Table 1,
from the non-linear debt regressions. They are presented for each company and for each model type,
separated by industries. Model 1 has no liquidity discount. Model 2 includes only the first liquidity
discount parameter y,, Model 3 contains the first two liquidity discount parameters, and so forth. The
number of bonds corresponds to the average number of bonds used in each of the monthly regressions. The
average R is given. The Number of Reg refers to the number of distinct regressions performed over the
observation period given in Table 1.
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1- SECURITY PACIFIC CORP

FINANCIALS

spe Yo T Y2 Y3 a a a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 0.2819  2.7639"  -0.6505 47 0.0002 32
0.4254  0.0701 0.1701
Model 2 -2.81647 4.1070° 23.5748" -0.0035 47 0.1124 32
0.0448 0.2215 0.0045  0.4893
Model 3 -0.0826  22.7643" 0.7333 0.1660  0.0043 47 0.1409 32
0.4632 0.0049 0.3753 0.2897  0.3691
Model 4 -0.9345  -0.4333  12.1760" 0.4156  0.4182  -0.0169 47 0.1041 32
0.1823 0.2218 0.0000 0.4204 02976  0.4886
Model 5 -0.0118 -17.8704"  0.6163 171.2255"  0.2841 0.4279 -0.0210 47 0.0751" 32
0.4864 0.0167 0.1043 0.0000 0.4232 03185  0.4875
2- FLEET FINANCIAL GROUP
fit Yo T Y2 Y3 a a a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 0.6711 0.3265  -0.2349 16 0.3362 57
0.3333 0.2363  0.1625
Model 2 -2.9728" 3.2078"  -2.6361°  0.0063 16 0.4753 57
0.0660 0.1705 0.0525  0.4841
Model 3 0.0466  -42.1781" 0.5309  -0.0869 -0.0014 16 0.5717 57
0.4257 0.0072 0.3407 03625  0.3374
Model 4 2.0675° -2.3262" 41.4808" 0.7369  -0.2621  -0.0315 16 0.5585 57
0.0934 0.0880 0.0006 0.3163 03362  0.4723
Model 5 -0.0178  -4.8128"  0.9689  -264.818"  0.6068  -0.2036  -0.0268 16 0.5963 57
0.4609 0.0155 0.1815 0.0006 0.3416 03224  0.4664
3- BANKERS TRUST NY
bt Yo 2 Y2 Y3 a a; a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 0.1358  0.0550  -0.0240 24 0.0070 4
0.4465 0.3707  0.3948
Model 2 -0.9243 4.4063" -5.5819" -0.0024 24 0.0947 4
0.1781 0.1250  0.0026  0.4986
Model 3 0.0124  -55.5685" 0.3330  -0.0825  -0.0541 24 0.2150 4
0.4944 0.0000 0.3726 04556  0.4716
Model4 07816  -1.7180"  3.3353" 0.2418  -0.0214  -0.0064 24 0.3556 4
0.2605 0.1478 0.0004 0.4072  0.4537  0.4971
Model 5 0.0242  -39.8571"  0.0222  -173.768"  0.1876  -0.0409  0.0045 24 0.3540 4
0.4903 0.0000 0.4097 0.0000 0.4272 04699  0.4975
4-MERRILL LYNCH & CO
mer Yo T Y2 Y3 a a a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 8.1734"  0.3176" -4.1362" 132 0.0000 64
0.0907  0.0848  0.0370
Model 2 -16.1905" 16.9420° -51.7314" -0.1162 132 0.1769 64
0.0105 0.0370  0.0130  0.4191
Model 3 -0.6937  493.1328" 2.2514"  -0.4761  -1.4089 132 0.2475 64
0.2778 0.0002 0.1293 0.3090  0.1719
Model 4 -13.8636" 17.9381" 21.1521" 2.1107°  -04735 -0.0284 132 0.2454 64
0.0514 0.0777 0.0009 0.1437 02976 04751
Model 5 -0.0949  194.8086" -1.6719° 1193.061° 19.7803" -0.4329  -0.0334 132 0.2458 64
0.4619  0.01461 0.0647 0.0000 0.1557  0.3161 0.4748
FOOD & BEVERAGES
5-PEPSICO INC
pep Yo T Y2 Y3 a a a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 0.2749  2.2308"  0.2828 57 0.0001 64
0.4294  0.0712  0.1724
Model 2 -7.2623" 3.6325"  10.37117  -0.0041 57 0.2893 64
0.0260 0.1568 0.0100  0.4838
Model3  0.0115 -191.0761" 0.3657 02069  -0.0775 57 0.3477 64
0.4501 0.0003 0.3755 0.3807  0.3547
Model 4 2.0088°  -5.9499" 63.3143" 0.2374 02693  -0.0017 57 0.3519 64
0.1166 0.0888 0.0000 0.4196 03693  0.4899
Model 5 0.0042  -53.3278"  1.1639  -217.142°  0.2549  0.1950  0.0011 57 0.3823 64
0.4832 0.0170 0.1482 0.0000 0.4174 03878  0.4899
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6-COCA-COLA ENTERPRISES INC

cce Yo T Y2 Y3 a a a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 1.3866 0.8110  -0.6902 24 0.0161 31
0.3260 0.0815 0.1385
Model 2 -7.8061" 494617 -11.2644" 0.0201 24 0.1309 31
0.0222 0.0225 0.0433 0.4644
Model 3 -0.1935  -8.1359" 0.8045  -0.2558  0.3406 24 0.1616 31
0.4205 0.0107 0.2795 0.4236 0.2459
Model 4 -42193"  3.6938"  21.1966" 0.7362  -0.2211  0.0064 24 0.2094 31
0.0386 0.0703 0.0151 0.3086 0.4206 0.4869
Model 5 -0.0318  21.2825" -1.3620 -25.8086"  0.6432  -0.1745  0.0081 24 0.2427 31
0.4784 0.0000 0.1006 0.0000 0.3263 0.4282 0.4884
AIRLINES
7-AMR CORPORATION
Amr Yo T Y2 13 a a; a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 5.7981 1.2952 0.9313 26 0.0173 31
0.0330°  0.1603 0.1477
Model 2 -17.7134" 5.0806° -16.3786" -0.0089 26 0.3054 31
0.0134 0.0306 0.0053 0.4752
Model 3 -0.1897  -168.585" 1.0632  -0.1146  -0.1466 26 0.3957 31
0.3911 0.0000 0.2063 0.4043 0.2490
Model 4 -1.6442°  -1.1826 -295.966" 1.1666  -0.1536  0.0046 26 0.2729 31
0.0502 0.0592 0.0000 0.2594 0.3400 0.4911
Model 5 0.0003  -49.6778" -2.3903" -1431.08"  1.0377  -0.1159  0.0119 26 0.2069 31
0.4584 0.0101 0.0146 0.0000 0.2608 0.3616 0.4910
8-SOUTHWEST AIRLINES CO
luv Yo T Y2 Y3 a a a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 6.9117" -2.7826" -3.9155" 27 0.0044 59
0.0664 0.0398 0.0540
Model 2 5.0020" 3.7845"  -13.2640" -0.0479 27 0.6245 59
0.0505 0.1339 0.0000 0.4773
Model 3 0.1609  -181.142° 0.5043  -0.0916  -0.3751 27 0.6337 59
0.3603 0.0016 0.3324 0.4208 0.3427
Model 4  4.7397"  -5.0962" -99.4887" 0.6315  -0.1701  -0.0280 27 0.5360 59
0.0589 0.0436 0.0003 0.3004 0.3891 0.4876
Model 5 0.0207  -48.2290" -1.2779  -578.965"  0.6730  -0.1965 -0.0267 27 0.4910 59
0.4599 0.0113 0.0342 0.0000 0.3004 0.3822 0.4874
UTILITIES
9-CAROLINE POWER + LIGHT
cpl Yo T Y2 Y3 ay a; a Number F-test  Number
of Bonds (gamma) of Reg
Model 1 0.7559  -0.0622  -1.4007 24 0.0070 6
0.2540 0.2939 0.0992
Model 2 -0.3761 2.2033°  -1.4132  -0.0761 24 0.5641 6
0.3572 0.1168 0.0525 0.4697
Model 3 -0.0189  8.8490" 0.3872  -0.0587  -0.7423 24 0.7487 6
0.4919 0.0594 0.3538 0.4452 0.2500
Model 4 -0.4438 0.6867 -34.3115" 0.4478  -0.0676  -0.0468 24 0.6528 6
0.3487 0.3112 0.0337 0.3319 0.4341 0.4813
Model 5 -0.0152  20.1177°  -1.0647 -13.7776"  0.4572  -0.0569  -0.0491 24 0.6955 6
0.4939 0.0028 0.1694 0.0000 0.3287 0.4453 0.4804
10-TEXAS UTILITIES ELE CO
txu Yo 2 Y2 Y3 a a; a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 3.1579°  -0.8421 -3.0611" 29 0.0031 36
0.1335 0.1544 0.1217
Model 2 5.6394" 1.5927  4.7999°  -0.0280 29 0.5150 36
0.0354 0.1875 0.0434 0.4867
Model 3 0.1860 -287.861" 0.0949 0.1011  -0.1569 29 0.6128 36
0.4267 0.0057 0.4626 0.4510 0.4166
Model 4 2.5856"  -3.6714" -199.786" 0.0956 0.0882  -0.0149 29 0.5015 36
0.0777 0.0832 0.0000 0.4627 0.4372 0.4934
Model 5 0.0332  -8.3863" -1.6014 -1339.96"  0.0233 0.1099  -0.0059 29 0.4466 36
0.4729 0.0117 0.1583 0.0000 0.4908 0.4520 0.4965
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11-MOBIL CORP

PETROLEUM

mob Yo T Y2 Y3 a a a Number F-test ~ Number
of Bonds (gamma) ofReg
Model 1 41398 0.5739  -0.6277 31 0.0009 51
0.2184 0.0327 0.1417
Model 2 -13.74" 8.6393"  -18.98"  -0.0453 31 0.2297 51
0.0221 0.0211 0.0232 0.4783
Model 3 0.0144 -151.1° 1.1888  -0.1405 -0.4414 31 0.2513 51
0.3389 0.0063 0.1893 0.3904 0.3152
Model 4 1.3997 -7.853" -13.24" 1.3660  -0.2807  -0.0370 31 0.2480 51
0.0402 0.0242 0.0003 0.2240 0.3361 0.4835
Model 5 -0.0400 -36.91° 1.1006 -397.9 1.3519  -0.3080  -0.0282 31 0.2808 51
0.4382 0.0000 0.1106 0.0084 0.2258 0.3467 0.4844
12-UNION OIL OF CALIFORNIA
ucl Yo 2 Y2 Y3 a a; a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 2.7483"  0.2021 -1.4434 31 0.0034 64
0.1729 0.1026 0.0947
Model 2 -2.821° 49479 -12.06"  -0.0343 31 0.4866 64
0.0219 0.1369 0.0293 0.4763
Model 3 -0.3393  459.717 1.0650  -0.3185  -0.3399 31 0.5034 64
0.3619 0.0000 0.2884 0.3474 0.3005
Model 4 -8.225" 11.537° -48.24" 1.0700  -0.3444  -0.0188 31 0.4501 64
0.0889 0.0962 0.0000 0.3257 0.3442 0.4866
Model 5 -0.0714 122.63" -2.235" 523.49" 09765  -0.3127 -0.0163 31 0.4858 64
0.4494 0.0108 0.0520 0.0000 0.3291 0.3531 0.4871
13-SHELL OIL CO
suo Yo T T2 13 N a; a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 0.1369 1.4713 0.1705 36 0.0004 36
0.4520 0.1115 0.1416
Model 2 -6.415" 49529 -10.48°  0.0038 36 0.1563 36
0.0213 0.0338 0.0616 0.4838
Model 3 -0.1550  2.54317 0.8302  -0.1863  0.0650 36 0.2239 36
0.4263 0.0000 0.2609 0.4031 0.3316
Model 4 -0.3532 -3.344° -70.64" 0.9976  -0.3071  -0.0062 36 0.2557 36
0.0616 0.0776 0.0173 0.2641 0.3684 0.4902
Model 5 -0.0172 -14.66" -0.4279 2.2451° 0.9377  -0.2704 -0.0160 36 0.3123 36
0.4765 0.0151 0.0847 0.0000 0.2547 0.3694 0.4887
DEPARTMENT STORES
14-SEARS ROEBUCK + CO
s Yo T Y2 Y3 a a a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 1.3235 1.6674°  0.6127 42 0.0004 57
0.2311 0.1404 0.1129
Model 2 -4.816 3.6028°  7.1801°  0.0345 42 0.4363 57
0.0820 0.1500 0.0553 0.4645
Model 3 0.0469 -154.6" 0.4636 0.1066 0.1999 42 0.4946 57
0.4351 0.0078 0.3584 0.3929 0.2974
Model 4 2.2220" -6.796" -117.67 0.6184  -0.0089  0.0119 42 0.4445 57
0.1358 0.1243 0.0000 0.3588 0.3510 0.4848
Model 5 0.0872 -123.1° -1.860" 276.31° 0.5578 0.0545  -0.0093 42 0.3375 57
0.4454 0.0099 0.1366 0.0000 0.3566 0.3580 0.4805
15-DAYTON HUDSON CORP
dh Yo T Y2 Y3 a a a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 0.5250 1.1928 0.8991 20 0.0423 48
04189  0.1272  0.1494
Model 2 -44.83" 1.7267°  -1.1274  0.0032 20 0.0912 48
0.0000 0.2341 0.0091 0.4915
Model 3 -0.3282 -246.0° 0.2030 0.0430 0.0764 20 0.1869 48
0.3738 0.0000 0.4221 0.4597 0.4209
Model 4 6.9778" -19.17° -57.59" 0.1708 0.0528 0.0014 20 0.2439 48
0.1076 0.0890 0.0000 0.4349 0.4619 0.4973
Model 5 -0.0132 -130.1° -1.2059  -1597.8" 0.1591 0.0404 0.0053 20 0.2591 48
0.4818 0.0027 0.0780 0.0000 0.4392 0.4585 0.4971
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16-WAL-MART STORES, INC

wmt Yo T Y2 Y3 a a a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 6.2730"  -3.089"  -2.443" 58 0.0013 64
0.0431 0.0668 0.0482
Model 2 6.5468" 2.5800"  -10.95° -0.0317 58 0.6031 64
0.0455 0.0963 0.0151 0.4833
Model 3 0.1441 -108.5" 0.3646  -0.0695  -0.2371 58 0.6788 64
04111 0.0002 0.3699 0.4450 0.3638
Model 4 5.1426°  -8.805" -58.55" 0.3793  -0.1032  -0.0080 58 0.6017 64
0.0467 0.0826 0.0000 0.3768 0.4309 0.4949
Model 5 0.0077 -34.19° -0.7960  -542.183" 03664  -0.1143  -0.0051 58 0.6193 64
0.4701 0.0107 0.0480 0.0000 0.3776 0.4351 0.4957
TECHNOLOGY
17-EASTMAN KODAK COMPANY
ek Yo T Y2 13 a a a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 1.3771  3.7408" -1.0150 29 0.0023 33
0.2553 0.0661 0.1370
Model 2 -12.00" 4.5982"  5.6228"  -0.0353 29 0.1432 33
0.0001 0.0565 0.0026 0.4758
Model 3 -0.4943  461.49" 0.8045 0.0248  -0.4289 29 0.2158 33
0.3495 0.0017 0.2764 0.4316 0.2565
Model 4 -8.196" 15.403°  -72.37" 0.7044 0.0492  -0.0108 29 0.2479 33
0.0843 0.0677 0.0000 0.3226 0.4171 0.4919
Model 5 -0.0350 186.67°  -1.746"  -68.3966°  0.5711 0.0472  -0.0069 29 0.3489 33
0.4806 0.0094 0.0209 0.0000 0.3336 0.4269 0.4937
18-XEROX CORP
Xrx Yo T Y2 13 a a a Number F-test ~ Number
of Bonds (gamma) of Reg
Model 1 6.9969°  -3.615"  -1.768" 39 0.0003 64
0.0645 0.0770 0.1017
Model 2 -1.8237 7.6634°  -43.89"  -0.0175 39 0.5057 64
0.0744 0.0959 0.0105 0.4616
Model 3 -0.4643  500.22° 1.2901  -0.4918  -0.2347 39 0.4381 64
0.3299 0.0006 0.1983 0.3202 0.2911
Model 4 -42137  8.8823"  -119.8" 1.3794  -0.5756  0.0015 39 0.4192 64
0.0784 0.0635 0.0003 0.2047 0.3089 0.4892
Model 5 -0.0574 100.16°  -4.227°  649.613" 1.3643  -0.5659  -0.0046 39 0.4322 64
0.4641 0.0009 0.0562 0.0000 0.2035 0.3135 0.4879
19-TEXAS INSTRUMENTS
txn Yo T Y2 Y3 a a a Number F-test ~ Number
of Bonds (gamma) ofReg
Model 1 4.8313%  -1.1123  -1.6203 24 0.0070 54
0.2245 0.0549 0.1055
Model 2 1.6465" 1.5178  3.4678" -0.0210 24 0.2911 54
0.0075 0.2652 0.0079 0.4833
Model 3 0.2326  -290.84" 0.2001 0.1176  -0.2104 24 0.3984 54
0.3668 0.0090 0.4243 0.4243 0.3762
Model 4 6.6159" -13.281"  -175.9" 0.1310 0.1390  -0.0052 24 0.3697 54
0.0732 0.0977 0.0000 0.4512 0.4140 0.4947
Model 5 0.0623  -109.99"  -0.9385 -681.103"  0.1089 0.1262  -0.0010 24 0.4350 54
0.4577 0.0120 0.0740 0.0000 0.4594 0.4196 0.4956
20-INTL BUSINESS MACHINES
ibm Yo 2 Y2 Y3 a a; a Number F-test  Number
of Bonds (gamma) of Reg
Model 1 2.3048°  0.4984  -0.1800 24 0.0070 39
0.1920 0.1489 0.2187
Model 2 -30.72° 4.2548° -24.18"  -0.0237 24 0.2624 39
0.0033 0.0647 0.0046 0.4898
Model 3 -0.1740  -162.97" 0.4147  -0.0593  -0.1913 24 0.3137 39
0.3715 0.0000 0.3503 0.4192 0.4211
Model 4 -8.4517  9.2233"  86.762" 0.5169  -0.1197  -0.0091 24 0.3152 39
0.0473 0.0589 0.0000 0.3345 0.4025 0.4956
Model 5 -0.0596  78.0873"  0.7851"  150.454°  0.5224  -0.1155 -0.0121 24 0.3242 39
0.4567 0.0207 0.0733 0.0000 0.3323 0.4047 0.4948

34



Table 3: T-Scores and Average P-values for the Estimated Parameters from the
Non-linear Debt Regression

In each cell under the columns ( Vo ¥ ¥ 0¥ 44,44, ) the first number is the t-score for the

corresponding average parameter estimate in Table 1. This t-score is adjusted for the fact that the
regressions contain overlapping time intervals. The adjustment to the average standard error is:

mA mA
O (o
_51 8 -63 E] ' (1—'”2) .
stderror = —+t— if m>8 and 1+ if m<8
m m  3m m 24m

where &, is the standard error of the relevant coefficient from the i" regression and m is the number of

regressions. The second entry is the average P-score obtained from the t-tests of the individual regression
coefficients. The P-score from an individual t-test corresponds to the probability of rejecting the null
hypothesis that the coefficient is zero when it is true.

The Number of Bonds corresponds to the average number of bonds used in each of the monthly
regressions.

The Number of Reg refers to the number of distinct regressions performed over the observation period
given in Table 1.

The F-test column contains the average P-score where the P-scores are obtained from the F-tests of the
individual regressions. The P-score from an individual F-test corresponds to the probability of rejecting the

null hypothesis when it is true. The first row corresponds to the null hypothesis a, =a; =a, =0. The

second through fifth rows correspond to the null hypothesis: (i)y, =0, (@(i)y,=y,;=0,
(i) yy) =y, =7,=0,and (iV)y, =y, =y, =r3 =0, respectively.

" Significant at 90% level.
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Yo Y1 Y2 Y3 o ap )
Model 1 8/18 9/18 11/18
Model 2 8/18 11/18" 13/18 11/18
Model 3 12/18 16/18 11/18" 12/18 10/18
Model 4 15/18 17/18 11/18 10/18 13/18 12/18
Model 5 17/18" | 18/18" | 15/18" | 15/18" | 11/18" | 15/18" | 15/18"

" denotes best value.
Table 4: Unit Root Tests Summary

The modified Dickey-Fuller (DF) test statistic is given as the t-statistic of the p coefficient in the linear

regression: Ay, = u+ py, | + &, where y, represents the time ¢ value of each parameter, 4y, =y, —y,_; ,
and &, is an error term. The null hypothesis for a unit rootis p = 0. In the table, the entries under the

(70,71,72.73.99,4;,a,) columns correspond to the number of companies for the relevant coefficient

where the null hypothesis of a unit root is rejected at the 90 percent level. There are 18 total companies —
tests for a unit root.
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Firm | Number R? Number | GCV RMSE | RMSE/ e’ y) lydf
Averages | of Bonds of Reg Price
Model 1 37 0.8555| 44.7 1.7655 1.1770 0.0115 1.0000 0.0133 0.0136
Model 2 37 0.8709| 44.7 1.6659 1.1246 0.0110 1.0072 0.0185 0.0174
Model 3 37 0.8753 44.7 1.8080 1.1367 0.0111 1.0074 0.0187 0.0175
Model 4 37 0.8844| 44.7 1.9313 1.1277 0.0111 1.0079 0.0189 0.0174
Model 5 37 0.8910| 44.7 2.3073 1.1298 0.0111 1.0082 0.0192 0.0174

Table 5: Summary Statistics for Model Performance

The Number of bonds corresponds to the average number of bonds used in each of the monthly regressions.
The R? is the average value across all the regressions.

The Number of Reg refers to the number of distinct regressions performed over the observation period.
Given are the average Generalized Cross Validation statistics (GCV) and the average Root Mean Squared
Error (RMSE) where the averages are taken across all the months in Table 1 from the non-linear debt
regressions.

RMSE/ Price is the average Root Mean Squared Error (RMSE) from Table 4 divided by the average bond
price. It is a measure of the percentage pricing error.

exp(—y ) is the average liquidity discount determined using the estimated liquidity discount parameters
underlying Table 2.

A is the default intensity assuming a constant recovery rate of .5, based on the estimated default parameters
underlying Table 2.

1 yr dfp is the 1-year default probability for the various models, based on the estimated default parameters
underlying Table 2, and using a constant recovery rate of .5.
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