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1 Introduction

Financial risks refer to adverse changes in the market value of financial po-

sitions, such as bonds, stocks, options, or other derivatives. With respect to

the cause of price changes we may distinguish between market and credit risk.

Market risk results from variations in underlying market prices or rates. For

a bond for example, market risk arises from the variability of riskless interest

rates. Credit risk is due to changes in the credit quality of the counterparty

in the contract. For a bond, the creditworthiness of its issuer, which can be

a (sovereign) government or a corporation, affects the bond price, since it is

uncertain whether the issuer will be able to fulfil its obligations (coupon, prin-

cipal) or not. Another example is a long option position, which exposes its

holder to the credit risk of the option seller if the option is in the money.

Financial institutions hold typically thousands of financial positions. From

a risk measurement and management point of view, individual risks play here

only a minor role; of significance is only the aggregated risk associated with an

institution’s portfolio. This aggregated risk is closely related to the dependence

between individual risks.

In this paper we give an introduction to the modeling of individual and

dependent credit risks, as well as the valuation of defaultable securities. Our

recurrent example will be a corporate bond.

At first glance, credit risk might be viewed as part of market risk and

one could argue to apply methods well known in market risk modeling also to

credit risks. This seems however difficult; there is a number of reasons which

call for a distinction between market and credit risk. One reason is that credit-

risky positions may be illiquid (think of bank loans, for example), so that

market prices are not readily determined. A related point is that, due to the

fact that bankruptcy is a rare event, historical default data is relatively sparse,

compared to data related to market prices and rates, which are abound. Also

the information needed for credit risk analysis is mainly contract-specific, as

opposed to prices and rates which apply market-wide. The problems arising

from the lack of credit risk-related data are indeed challenging; they call for

methods fundamentally different from those specific to market risk analysis.

A crucial step in credit risk analysis is the modeling of a credit event

with respect to some issuer or counterparty. Examples of credit events include

failure to pay a due obligation, bankruptcy, repudiation/moratorium, or credit

rating change. In the first three cases we also speak of a default, and the terms

credit risk and default risk can be used interchangeably.

In the literature, two distinct approaches to model a default have evolved.
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In the so-called structural approach, one makes explicit assumptions about the

dynamics of a firm’s assets, its capital structure, as well as its debt and share

holders. It is then supposed that the firm defaults if its assets are not sufficient

to pay off the due debt. In this situation corporate liabilities can be considered

as contingent claims on the firm’s assets. Recognizing that a firm may default

well before the maturity of the debt, one may alternatively assume that the

firm goes bankrupt when the value of its assets falls below some lower thresh-

old. While this structural approach is economically appealing, some implied

credit spread properties (the credit spread is the excess yield demanded by

bond investors for bearing the risk of borrower default) hardly match empiri-

cal observations. This is due to the fact that in the structural framework the

default can be anticipated by bond investors.

In the reduced form approach, the default is not causally modeled in terms

of a firm’s assets and liabilities, but is typically given exogenously. In this ad-

hoc approach, the default occurs completely unexpectedly, by surprise so to

speak. The stochastic structure of default is directly prescribed by an intensity

or compensator process. Defaultable bond prices can be represented in terms

of the intensity or the compensator, leading to tractable valuation formulas

very similar to those arising in ordinary default-free term structure modeling.

Due to the unpredictability of defaults, the implied credit spread properties

are empirically quite plausible.

2 Structural Modeling of Credit Risk

2.1 Classic Option-theoretic Approach

The philosophy of the structural approach, which goes back to Black & Scholes

(1973) and Merton (1974), is to consider corporate liabilities as contingent

claims on the assets of the firm. Here the firm’s market value (that is the total

market value of the firm’s assets) is the fundamental state variable.

Let us consider an economy with a financial market, where uncertainty

is modeled by some probability space (Ω,F , P ). Consider a firm with market

value V = (Vt)t≥0, which represents the expected discounted future cash flows

of the firm. The firm is financed by equity and a zero coupon bond with face

value K and maturity date T . The firm’s contractual obligation is to pay the

amount K back to the bond investors at time T . Suppose debt covenants grant

bond investors absolute priority: if the firm cannot fulfil its obligation, then

bond holders will immediately take over the firm. In this case we say the firm
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defaults on its debt; the random default time τ is accordingly given by

τ =

{
T if VT < K

∞ if else.

We define the default indicator function

1{τ=T} =

{
1 if τ = T ⇔ VT < K

0 if else.

Assuming that the firm is neither allowed to repurchase shares nor to issue

any new senior or equivalent claims on the firm, at the debt’s maturity T we

have the following payoffs to the firm’s liabilities:

Assets Bonds Equity

No Default VT ≥ K K VT −K

Default VT < K VT 0

Table 1: Payoffs to the firm’s liabilities at maturity

If at T the asset value VT exceeds or equals the face value K of the bonds,

the bond holders will receive their promised payment K and the shareholders

will get the remaining VT −K. However, if the value of assets VT is less than

K, the ownership of the firm will be transferred to the bondholders. Equity is

then worthless (because of limited liability of equity, the shareholders cannot

be forced to make up the amount K−VT ). Summarizing, the value of the bond

issue BT
T at time T is given by

BT
T = min(K,VT ) = K −max(0, K − VT ) (1)

which is equivalent to that of a portfolio composed of a default-free loan with

face value K maturing at T and a short European put position on the assets

of the firm V with strike K and maturity T . The value of the equity ET at

time T is given by

ET = max(0, VT −K), (2)

which is equivalent to the payoff of a European call option on the assets of the

firm V with strike K and maturity T .

With the payoff specifications just described, we are able to value corpo-

rate liabilities as contingent claims on the firm’s assets. Taking as given some

riskless short rate process (rt)t≥0, we suppose that there is a security with value
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βt = exp(
∫ t

0
rsds) at time t, which provides a riskless investment opportunity.

For expositional purposes, in some situations discussed below we shall assume

that rt = r is constant. Assuming that there are no arbitrage opportunities

in the financial market, there exists a probability measure P̃ , equivalent to

the physical measure P , such that the processes of security prices, discounted

with respect to β, are P̃ -martingales [Harrison & Kreps (1979) and Harrison

& Pliska (1981)]. P̃ is called equivalent martingale measure, and we let Ẽ[·]
denote the corresponding expectation operator. Putting Zt = β−1

t , the value

of a riskless (i.e. non-defaultable) zero bond maturing at T is at time t = 0

given by

B̄T
0 = Ẽ[ZT ]. (3)

The value BT
0 of the defaultable zero bond at time t = 0 can be written as

BT
0 = Ẽ[ZT BT

T ] = Ẽ[ZT (K −max(0, K − VT ))]

= KB̄T
0 − Ẽ[ZT (K − VT )1{τ=T}], (4)

which is the value of a riskless loan with face K less the risk-neutral expected

discounted default loss. If the bond were default-free, then this expected loss

would be zero. The equity value E0 at time t = 0 is given by

E0 = Ẽ[ZT ET ] = Ẽ[ZT max(0, VT −K)]. (5)

The computation of the involved expectations requires an assumption about

the dynamics of the assets. Following the classic route, let us model the evo-

lution of the asset value V through time by a geometric Brownian motion:

dVt

Vt

= µdt + σdWt, V0 > 0, (6)

where µ ∈ R is a drift parameter, σ > 0 is a volatility parameter, and W is a

standard Brownian motion. The SDE (6) has the unique solution

Vt = V0e
mt+σWt (7)

where we put m = µ − 1
2
σ2. Supposing additionally that interest rates rt =

r > 0 are constant, we are in the classic Black-Scholes setting. Riskless bond

prices are simply B̄t
0 = Zt = e−rt and the equity value is explicitly given by

the Black-Scholes call option formula BSC :

E0 = BSC(σ, T, K, r, V0) = V0Φ(d1)−KB̄T
0 Φ(d2) (8)
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where Φ is the standard normal distribution function and

d1 =
ln(V0

K
) + (r + 1

2
σ2)T

σ
√

T

d2 = d1 − σ
√

T

Similarly, the value BT
0 of the bonds at time t = 0 is given by

BT
0 = KB̄T

0 −BSP (σ, T,K, r, V0) = V0Φ(−d1) + KB̄T
0 Φ(d2) (9)

where BSP is the Black-Scholes put option formula. Equivalently, we can find

BT
0 as the difference between asset and equity value, i.e. BT

0 = V0 − E0. By

comparison of (9) and (4), we see that the risk-neutral expected discounted

default loss of the bond investors is equal to the value of the put position:

Ẽ[ZT (K − VT )1{τ=T}] = BSP (σ, T, K, r, V0).

With our specific assumption on asset dynamics, we can also write down default

probabilities explicitly. From the definition of default,

P [τ = T ] = P [VT < K] = P [V0e
mT+σWT < K]

= P [mT + σWT ≤ ln
K

V0

]

= P [WT <
ln( K

V0
)−mT

σ
]

= Φ(
ln( K

V0
)−mT

σ
√

T
) (10)

since WT is normally distributed with mean zero and variance T . Setting µ = r,

we find the risk-neutral default probability

P̃ [τ = T ] = Φ(−d2) = 1− Φ(d2).

We consider the following numerical example with results shown in Table 2:

V0 = 100, K = 75, r = 5%, σ = 20%, µ = 10%, T = 1 year.

The credit yield spread or simply credit spread is the difference between

the yield on a defaultable bond and the yield an otherwise equivalent default-

free zero bond. This is the excess return demanded by bond investors to bear

the potential losses due to a default of the bond issuer. Since the yield y(t, T )
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Equity E0 = 28.97

Bonds BT
0 = 71.03

Riskless Bonds B̄T
0 = 71.34

Default Probability P [τ = T ] = 3.3%

Risk-neutral Default Probability P̃ [τ = T ] = 5.6%

Table 2: Numerical example in the Black-Scholes setting

on a bond with price b(t, T ) satisfies b(t, T ) = e−y(t,T )(T−t), we have for the

credit spread S(t, T ) prevailing at time t,

S(t, T ) = − 1

T − t
(ln BT

t − ln KB̄T
t ), T > t. (11)

The term structure of credit spreads is the schedule of S(t, T ) against T , holding

t fixed. In the Black-Scholes setting, we obtain

S(0, T ) = − 1

T
ln

(
Φ(d2) +

1

d
Φ(−d1)

)

where d = K
V0

e−rT is the discounted debt-to-asset value ratio, which can be

considered as a measure of the firm’s leverage. We see that the spread is a

function of maturity T , asset volatility σ (the firm’s business risk), and leverage

d. In Figure 1 we plot the term structure of credit spreads for varying d. We

fix r = 6% per year and σ = 20% per year. Letting d = 0.9, in Figure 2 we

plot spreads for varying asset volatilities σ.

Note finally that the assumption of constant interest rates was introduced

for simplicity only. A generalization to stochastically varying interest rates,

which are possibly correlated with the firm’s asset value, is straightforward

and can be found, for example, in Shimko, Tejima & van Deventer (1993).

2.2 First-Passage Model

In the last section we supposed that the firm may only default at debt maturity

T , irrespective of the asset value path leading to the value VT . There, the firm

value was allowed to dwindle to nearly nothing without triggering a default; all

that matters was its level at debt maturity. This is clearly not in the interest

of the bond holders, as noted first by Black & Cox (1976). Bond indenture

provisions therefore often include safety covenants providing the bond investors

with the right to reorganize or foreclose on the firm if the asset value hits

some lower threshold for the first time. This threshold can be pre-specified by
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Figure 1: Term structure of credit spreads, varying firm lever-

age d (classic model).

the covenant, or endogenously determined by allowing the equity investors to

optimally choose the time to default. For a given threshold process (Dt, t ≥ 0)

with 0 < D0 < V0, the default time τ is then given by

τ = inf{t > 0 : Vt ≤ Dt} (12)

so that τ is a random variable valued in (0,∞]. For example, one could assume

that the dynamics of both V and (Dt, t ≥ 0) are governed by an independent

geometric Brownian motion, which would lead us to consider the (geometric

Brownian motion) process (Vt/Dt)t≥0 hitting the constant 1. A reasonable

choice for a deterministically varying threshold is Dt = Ke−k(T−t) for some

discount rate k ∈ R, meaning that the threshold is given by the discounted

liabilities K which are due at T .

As an example, let us calculate default probabilities for the case where

V is governed by (6) and the threshold is constant through time, Dt = D for

t ≥ 0. We define the running minimum log-asset process M = (Mt)t≥0 by

Mt = min
s≤t

(ms + σWs),

i.e. M keeps track of the historical low of the log-asset value. With (12) we
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Figure 2: Term structure of credit spreads, varying asset

volatility σ (classic model).

then find for the default probability

P [τ ≤ T ] = P [min
s≤T

Vs ≤ D]

= P [min
s≤T

(V0e
ms+σWs) ≤ D]

= P [MT ≤ ln(D/V0)].

That is, the event of default by time T is equivalent to the running minimum

log-asset value at T being below the adjusted default threshold ln(D/V0). Using

the fact that the distribution of Mt is inverse Gaussian1, we have

P [τ ≤ T ] = 1− Φ

(
mT − ln(D/V0)

σ
√

T

)
+ e

2m ln(D/V0)

σ2 Φ

(
ln(D/V0) + mT

σ
√

T

)
.

Clearly, to obtain risk-neutral default probabilities, we set the asset value drift

equal to the riskless short rate in the above formula.

The calculation of bond prices is a straightforward exercise in the current

framework. Let R ∈ [0, 1] be a random variable expressing the recovery rate as

a percentage of the bonds face value. That means, (1−R)K is the value bond

investors lose in the event of a default before T . Suppose that the recovered

1To find that distribution, one first calculates the joint distribution of the pair (Wt,M
W
t ),

where MW is the running minimum of W , by the reflection principle. Girsanov’s theorem is
then used to extend to the case of Brownian motion with drift.
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amount is paid out at T . Then

BT
0 = Ẽ[ZT K(1{τ>T} + R1{τ≤T})]

= Ẽ[ZT K(1− (1−R)1{τ≤T})]

= KB̄T
0 − Ẽ[ZT K(1−R)1{τ≤T}], (13)

which is the value of a riskless loan with face value K and the risk-neutral

expected discounted default loss. Note the analogy to the classic model (4). Of

course, if we assume that default, riskless interest rate, and recovery rate are

mutually independent,

BT
0 = KB̄T

0 (1− Ẽ[1−R]P̃ [τ ≤ T ]), (14)

so that we need riskless bond prices B̄T
0 = Ẽ[ZT ], the risk-neutral expected

recovery rate Ẽ[R], and risk-neutral default probabilities P̃ [τ ≤ T ] to value

the defaultable bond.

Structural default models share a common characteristic, namely the pre-

dictability of default events. Since investors can observe at any time the near-

ness of the assets to the default threshold, they are warned in advance when

a default is imminent as long as assets and threshold follow some continuous

process. Put another way, in structural models default is not a total surprise

event. Let us mention three consequences of this property. First, bond prices do

not jump downwards upon default, but converge continuously to their default-

contingent value. Second, the financial market is complete: a default can always

be (delta) hedged through positioning in bond or stock, respectively. Third and

perhaps most importantly, short credit spreads, i.e. spreads for maturities go-

ing to zero, are zero:

lim
h↓0

S(t, t + h) = 0, (15)

almost surely. That this is in fact implied by the predictability of defaults

is proven by Giesecke (2001b), who shows that in any model with predictable

defaults the short spread vanishes. Zero short spreads mean that bond investors

do not demand a risk premium for assuming the default risk of an issuer, as long

as the time to maturity is sufficiently short. For realistic parameterizations this

can be up to a couple of months, as Figure 3 shows. There, assuming constant

interest rates r = 6% and zero recovery R = 0, we plot credit spreads

S(0, T ) = − 1

T
ln P̃ [τ > T ]
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Figure 3: Term structure of credit spreads, varying asset

volatility σ (first-passage model).

for varying asset volatilities σ (we set V0 = 1, and D = 0.7). Irrespective of the

riskiness of the firm, for small maturities the spread vanishes, which is hardly

confirmed by empirical observations.

A way around this problem is to assume that the asset process is subject

to jumps. Then there is always a chance that the firm value jumps unexpect-

edly below the default threshold. Zhou (2001b) studies spreads in case assets

follow some jump-diffusion process, while Hilberink & Rogers (2002) analyze

the general case where assets are modeled through a Lévy process. Another

approach to avoid predictability is to drop the assumption of perfect informa-

tion, which will be discussed later in more detail. Note that both jumps and

incomplete information make the structural model in fact more realistic.

2.3 Dependent Defaults

A number of studies have investigated historical bond price and default data.

They found, quite plausibly, that credit spreads as well as aggregate default

rates are strongly related to general macro-economic factors such as the level

of default-free interest rates, GDP growth rates, equity index returns and other

business cycle indicators. Another observation from the latest Moody’s report

is that there are default clusters around times of economic downturn. This

clustering refers to infection effects and cascading defaults, where the default

of a firm immediately increases the default likelihood of another firm dramat-

ically. In its extreme form, a default directly triggers the default of another

firm. Such effects can for instance be induced through mutual capital holdings,
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financial guarantees, or parent-subsidiary relationships. In a recession, default

rates increase and so does the likelihood of observing infectious defaults. Re-

cent evidence of the default clustering phenomenon includes the banking crisis

in Japan.

These empirical observations have an important consequence: defaults of

firms are stochastically dependent. We can distinguish two mechanisms leading

to default dependence. First, the financial health of any firm depends on com-

mon factors related to the state of the general economy. Second, firms are also

directly linked and thus the health of a particular firm also depends on the

default status of other firms. A thorough understanding of these mechanisms is

of vital importance for corporate security valuation, design and analysis of de-

fault insurance contracts, default risk aggregation and management, regulation

of financial institutions, and the counteraction of financial crises.

How can we accommodate this default correlation in the structural frame-

work? To model firms’ dependence on common economic factors in a natural

way, we can assume that assets are correlated through time. Let us consider

the simplest case with two firms, labelled 1 and 2, and asset dynamics

dV i
t

V i
t

= µidt + σidW i
t , V i

0 > 0, i = 1, 2, (16)

where µi ∈ R is a drift parameter, σi > 0 is a volatility parameter, and W i is a

standard Brownian motion. We let Cov(W 1
t ,W 2

t ) = ρσ1σ2t, i.e. the two asset

value processes are correlated with correlation coefficient ρ. Fixing some time

horizon T > 0, we then obtain for the joint default probability in the classic

setting

P [τ1 = T, τ2 = T ] = P [V 1
T < K1, V

2
T < K2]

= P [W 1
T < L1,W

2
T < L2]

= Φ2(ρ, L1, L2) (17)

where Φ2(ρ, ·, ·) is the bivariate standard normal distribution with correlation

ρ, and Li is called the standardized distance to default of firm i:

Li =
ln(Ki/V

i
0 )−mT

σi

√
T

.

In the first-passage model with constant thresholds Di
t = Di, we get for the
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joint default probability

p(T1, T2) = P [τ1 ≤ T1, τ2 ≤ T2] = P [min
s≤T1

V 1
s < D1, min

s≤T2

V 2
s < D2]

= P [M1
T1
≤ S1,M

2
T2
≤ S2]

= Ψ2(T1, T2; S1, S2; ρ)

where M i is the running minimum log-asset process of firm i, Ψ2(·, ·; ·, ·; ρ)

is the bivariate inverse Gaussian distribution function with correlation ρ, and

Si = ln(Di/V i
0 ) is the adjusted default threshold. This joint default probability

is calculated in closed-form by Zhou (2001a).

Having derived the joint distribution of (τ1, τ2), we can separate the com-

plete non-linear default dependence structure from the joint default behavior.

In fact, there exists a function Cτ , called the copula of (τ1, τ2), such that joint

default probabilities can be represented as

p(T1, T2) = Cτ (p1(T1), p2(T2)) (18)

where we denote pi(t) = P [τi ≤ t] (for general facts on copula functions we

refer to Nelsen (1999)). This representation is unique if the τi are continuous.

Note that this is only the case in the first-passage model, in which Cτ is the

inverse Gaussian dependence structure. In the classic model, the copula repre-

sentation of the joint default probability is not unique and the Gaussian copula

corresponding to (17) is only a possible default dependence structure. Cτ is a

joint distribution function with standard uniform marginals and satisfies the

Fréchet bound inequality

max(u + v − 1, 0) ≤ Cτ (u, v) ≤ min(u, v), u, v ∈ [0, 1]. (19)

If Cτ takes on the lower bound, defaults are perfectly negatively correlated (we

speak of countermonotone defaults); if it takes on the upper bound, defaults are

perfectly positively correlated (and we speak of comonotone defaults). Clearly,

if Cτ (u, v) = uv then defaults are independent.

(19) suggests a partial ordering on the set of copulas as function-valued

default correlation measures. A scalar-valued measure such as rank correlation

can perhaps provide more intuition about the degree of stochastic dependence

between the defaults. Spearman’s rank default correlation ρS is simply the

linear correlation ρ of the copula Cτ given by

ρS(τ1, τ2) = ρ(p1(τ1), p2(τ2)) = 12

∫ 1

0

∫ 1

0

Cτ (u, v)dudv − 3 (20)
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showing that ρS is a function of the copula Cτ only. While rank default cor-

relation measures the degree of monotonic default dependence, linear default

time correlation ρ(τ1, τ2) measures the degree of linear default time depen-

dence only. Another commonly used default correlation measure is the linear

correlation of the default indicator variables ρ(1{τ1≤t}, 1{τ2≤t}). The conclusions

drawn on the basis of ρ(τ1, τ2) and ρ(1{τ1≤t}, 1{τ2≤t}) should however be taken

with care. Both are covariance-based and hence are only the natural depen-

dence measures for joint elliptical random variables, cf. Embrechts, McNeil &

Straumann (2001). Neither default times nor indicators are joint elliptical, and

hence these measures can lead to severe misinterpretations of the true default

correlation structure. ρS is in contrast defined on the level of the copula Cτ

and therefore does not share these deficiencies.

Asset correlation arises from the dependence of firms’ on common eco-

nomic factors. Capturing the contagion effects arising from direct firm link-

ages is more difficult. Giesecke (2001a) provides a model for such contagion

mechanisms, where bond investors have incomplete information about the de-

fault thresholds of firms. In lack of complete information, investors form a

prior distribution on firms’ thresholds, which they update with the default

status information arriving over time. This updating can be thought of as a

re-assessment of a firm’s financial health in light of the default of some other,

closely linked firm. Such an immediate re-assessment leads to jumps in credit

spreads of surviving firms upon default events in the market, which can be

considered as information-based contagion effects. Both joint default probabil-

ity and default copula can be established in terms of the prior and the asset

correlation.

2.4 Parameter Estimation

To put a classical structural model to work, we have to estimate the following

set of parameters (Black-Scholes setting):

(T, r,K, V0, σ, Σ),

where Σ is the asset correlation matrix. The maturity date T as well as the

face value K of the firm’s bonds can be obtained from the terms of the bond

issue or the firm’s balance sheet. Riskless interest rates r can be estimated

from default-free Treasury bond prices via standard procedures. However, the

asset value V0 and its volatility σ cannot be observed directly. If the firm is

publicly traded, we can estimate V0 and σ indirectly from observed equity

prices E0 and equity volatility σE. Given these quantities, we solve a system of
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two equations for V0 and σ. The first is provided by the Black-Scholes formula

E0 = BSC(σ, T, K, r, V0), cf. (8). The second is

σEE0 = Φ(d1)σV0. (21)

This relation is obtained from applying Itô’s lemma to the equity value Et =

f(Vt, t), yielding

dEt = (
∂Et

∂V
µVt +

1

2

∂2Et

∂V 2
σ2V 2

t +
∂Et

∂t
)dt +

∂Et

∂V
σVtdWt, (22)

and comparing the diffusion coefficient to that of the equity dynamics

dEt = µEEtdt + σEEtdWE
t , (23)

which arise from the assumption that f is a C2 function in its first argument (a

C2 function of an Ito process (6) is again an Ito process with dynamics (23)).

µE and σE are equity drift and volatility parameters, respectively, and WE is

a standard Brownian motion.

For a classical structural portfolio model, it remains to estimate the asset

correlation matrix Σ. In practice, such estimates are provided by KMV, for

example. KMV’s implementation assumes a factor model for asset returns, i.e.

ln V i
T =

n∑
j=1

wijψj + εi

where the ψj are (independently) normally distributed systematic factors, the

wij are the factor loadings, and the εi are iid normal idiosyncratic factors.

The pairwise asset correlation is now determined by the factors loadings, cf.

Kealhofer (1998).

3 Reduced Form Approach

While the structural approach is based on solid economic arguments, the re-

duced form approach is quite ad-hoc. Here one does not argue why a firm de-

faults, but models a default as a Poisson-type event which occurs completely

unexpectedly. The stochastic structure of default is prescribed by an exoge-

nously given intensity process (intensity based reduced form approach), or,

less restrictive, by the compensator process (compensator based reduced form

approach).
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3.1 Intensity Based Reduced Form Modeling

3.1.1 Default as Poisson Event

Let us first recall some well-known facts. Let T1, T2, . . . denote the arrival times

of some physical event. We call the sequence (Ti) a (homogeneous) Poisson

process with intensity λ if the inter-arrival times Ti+1−Ti are independent and

exponentially distributed with parameter λ. Equivalently, letting

Nt =
∑

i

1{Ti≤t} (24)

count the number of event arrivals in the time interval [0, t], we say that N =

(Nt)t≥0 is a (homogeneous) Poisson process with intensity λ if the increments

Nt−Ns are independent and have a Poisson distribution with parameter λ(t−s)

for s < t, i.e.

P [Nt −Ns = k] =
1

k!
λk(t− s)ke−λ(t−s). (25)

The fundamental assumption of the intensity based approach consists of

setting the default time equal to the first jump time of a Poisson process N

with given intensity λ [Jarrow & Turnbull (1995)]. Thus τ = T1 is exponentially

distributed with parameter λ and the default probability is given by

F (T ) = P [τ ≤ T ] = 1− e−λT . (26)

The intensity, or hazard rate, is the conditional default arrival rate given no

default:

lim
h↓0

1

h
P [τ ∈ (t, t + h] | τ > t] = λ, (27)

which may loosely be expressed as P [τ ∈ [t, t + dt) | τ > t] ≈ λdt. Letting f

denote the density of F , from (27) we obtain

λ =
f(t)

1− F (t)
. (28)

The valuation of defaultable bonds zero bonds is straightforward in the

intensity based approach. Let us assume that in the event of a default, bond

investors recover some constant fraction R ∈ [0, 1] of the unit face value of

the bond with maturity T . This convention is called recovery of face value or

simply constant recovery. Assume that interest rates r > 0 are constant; hence
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non-defaultable zero bond prices are given by B̄T
0 = e−rT . Supposing that the

recovery is paid at T , we then get for the defaultable bond price at time zero

BT
0 = Ẽ[e−rT (1{τ>T} + R1{τ≤T})]

= e−rT (e−λ̃T + R(1− e−λ̃T ))

= B̄T
0 − B̄T

0 (1−R)P̃ [τ ≤ T ], (29)

which is the value of a risk-free zero bond minus the value of the risk-neutral

expected default loss. In case R = 0 we have that

BT
0 = B̄T

0 P̃ [τ > T ] = e−(r+λ̃)T , (30)

i.e. we can value a defaultable bond as if it were default free by simply adjusting

the discounting rate. Instead of discounting with the risk-free interest rate r,

we discount with the default-adjusted rate r+ λ̃, where λ̃ is the risk-neutral in-

tensity. This is a central and important feature of the intensity based approach.

We will later see that this holds true also for more complex defaultable (zero

recovery) securities.

Another frequently applied recovery convention is called equivalent recov-

ery. Here bond investors receive a fraction R ∈ [0, 1] of an otherwise equivalent

default-free zero bond. Supposing that R is constant and that the recovery is

paid at default, we get

BT
0 = Ẽ[e−rT 1{τ>T} + e−rτRB̄T

τ 1{τ≤T}]

= Ẽ[e−rT 1{τ>T}] + RB̄T
0 −RẼ[e−rT 1{τ>T}]

= (1−R)Ẽ[e−rT 1{τ>T}] + RB̄T
0

= (1−R)B̄T
0 P̃ [τ > T ] + RB̄T

0 , (31)

which is the value of 1−R zero recovery bonds plus the value of R risk-free zero

bonds. While the latter amount is received by bond investors with certainty

(irrespective of whether a default occurs or not), the former amount is only

received when the firm survives until T .

Finally, the fractional recovery convention has investors receive a frac-

tion R ∈ [0, 1] of the pre-default market value BT
τ− = limt↑τ BT

t of the bond.

Assuming that R is constant and recovery is paid at default, we get

BT
0 = Ẽ[e−rT 1{τ>T} + e−rτRBT

τ−1{τ≤T}]

= e−(r+(1−R)λ̃)T , (32)

17



which is the value of a zero recovery bond with thinned risk-neutral default

intensity λ̃(1 − R). Put another way, we can value the fractional recovery

defaultable bond as if it were default-free by simply using the adjusted dis-

counting rate r + (1 − R)λ̃. Expression (32) can be explained intuitively as

follows. Suppose that the bond defaults with intensity λ̃. If default happens,

the bond becomes worthless with probability (1 − R), and its value remains

unchanged with probability R. Clearly, the pre-default value BT
τ− of the bond

is not changed by this way of looking at default. Consequently, for pricing the

bond we can just ignore the harmless default (that in which the value remains

unchanged), which occurs with intensity λ̃R. We then price the bond as if it

had zero recovery and a default intensity λ̃(1− R) (the intensity leading to a

default with complete loss of value). The pricing formula (32) is then implied

by (30).

Now suppose, as it is often the case in practice, that after a default a

reorganization takes place and the bond issuing firm continues to operate. At

any default before the bond’s maturity, investors loose some fraction (1−R),

where R ∈ [0, 1], of the bond’s pre-default market value BT
τ−. In that case,

the payoff of the bond at maturity T is given by the random variable RNT ,

where NT ∈ Z+ is the number of defaults by time T , cf. (24). Letting R be a

constant, we obtain for the bond price

BT
0 = Ẽ[e−rT RNT ] = e−rT

∞∑

k=0

RkP̃ [NT = k]

= e−rT

∞∑

k=0

Rk (λ̃T )k

k!
e−λ̃T

= e−(r+(1−R)λ̃)T (33)

where for the second line we have used the Poisson distribution function (25),

and in the last line we have used the fact that
∑∞

k=0
1
k!

zk = ez. So from a pricing

perspective, the possibility of multiple defaults with fractional recovery does

not complicate the problem.

Having investigated bond prices, we can now look at the resulting credit

yield spreads. From our general formula, with a zero recovery convention we

get

S(0, T ) = − 1

T
ln

e−(r+λ̃)T

e−rT
= λ̃ (34)

so that the spread is in fact given by the risk-neutral intensity. With different

recovery assumptions analogous results obtain. Obviously, even for maturities
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going to zero the spread is bounded away from zero. That is, for very short

maturities bond investors still demand a premium for default risk. This em-

pirically confirmed property is due to modeling default as a Poisson event,

which implies that the default is totally unpredictable. That means default is

a complete surprise event; there is no way to anticipate it as was the case in

the structural approach. This has also consequences for bond price behavior:

upon default, bond prices will jump to their recovery values. But from a pricing

perspective, the unpredictability of defaults leads to markets being incomplete

in the intensity based framework. As long as there is no asset having default

contingent payoffs available for trading, defaultable bonds cannot be perfectly

hedged. An intuitive explanation for this is that unpredictable jumps in bond

prices cannot be duplicated with predictable trading strategies.

With a constant intensity (and recovery rates), the term structure of credit

spreads is of course flat. For richer term structures, we need more sophisticated

intensity models. An extension towards time variation and stochastic variation

in intensities is considered in the following three sections.

3.1.2 Time-Varying Intensities

The simple (homogeneous) Poisson process can be generalized as follows. N is

called an inhomogeneous Poisson process with deterministic intensity function

λ(t), if the increments Nt −Ns are independent and for s < t we have

P [Nt −Ns = k] =
1

k!

(∫ t

s

λ(u)du

)k

e−
R t

s λ(u)du (35)

The default probability is then given by

P [τ ≤ T ] = 1− P [NT = 0] = 1− e−
R T
0 λ(u)du (36)

Assuming constant interest rates r > 0, zero recovery credit spreads are then

given by

S(0, T ) = − 1

T
ln

e−rT−R T
0 λ̃(u)du

e−rT
=

1

T

∫ T

0

λ̃(u)du (37)

and, analogously to the constant intensity case, we find for short spreads

lim
t↓0

S(0, t) = λ̃(0), (38)

to be compared with (15) in the structural case.
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For derivatives pricing purposes in practice, one often assumes that (risk-

neutral) intensities are piecewise constant:

λ̃(t) = ai, t ∈ [Ti−1, Ti], i ∈ 1, 2, . . . , n (39)

for some n ≥ 1 and constants Ti, which represent the maturities of n traded

default-contingent instruments such as bonds or default swaps of the same

issuer. Given some estimate of riskless interest rates r and some recovery as-

sumption, the prices of these instruments can then be used to back out the

constants ai, i.e. to calibrate the risk-neutral intensity λ̃(t) from observed mar-

ket prices.

3.1.3 Cox Process

A Cox process N with intensity λ = (λt)t≥0 is a generalization of the inhomo-

geneous Poisson process in which the intensity is allowed to be random, with

the restriction that conditional on the realization of λ, N is an inhomogeneous

Poisson process. For this reason N is also called a conditional Poisson process

or a doubly-stochastic Poisson process. The conditional default probability is

therefore given by

P [τ ≤ T | (λt)0≤t≤T ] = 1− P [NT = 0 | (λt)0≤t≤T ] = 1− e−
R T
0 λudu (40)

The law of iterated expectations then leads to the unconditional default prob-

ability:

P [τ ≤ T ] = E[P [τ ≤ T | (λt)0≤t≤T ]] = 1− E[e−
R T
0 λudu] (41)

Lando (1998) applies the Cox process framework to model default as the

first time a continuous-time Markov chain U with state space {1, . . . , Y } hits

the absorbing state Y . The process U models the credit rating of some firm

over time. State 1 is interpreted as the highest credit rating category (’AAA’ in

Moody’s system), state Y −1 is interpreted as the lowest rating before default,

and state Y is the default state. The evolution of the Markov chain is described

by a generator matrix Λ with random transition intensities λi,j(Xt), which are

modeled as (continuous) functions of some state process X:

Λt =




−λ1(Xt) λ1,2(Xt) . . . λ1,Y (Xt)

λ2,1(Xt) −λ2(Xt) . . . λ2,Y (Xt)
...

λY−1,1(Xt) −λY−1,2(Xt) . . . λY−1,Y (Xt)

0 0 . . . 0




,
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where

λi(Xt) =
Y∑

j=1,j 6=i

λi,j(Xt), i = 1, . . . , Y − 1.

Intuitively, for small ∆t we can think of λi,j(Xt)∆t as the probability that the

firm currently in rating class i will migrate to class j within the time interval

∆t. Consequently, λi(Xt)∆t is the probability that there will be any rating

change in ∆t for a firm currently in class i. This generalizes the model proposed

earlier by Jarrow, Lando & Turnbull (1997), where the transition intensities

λi,j were assumed to be constant. With τ = inf{t ≥ 0 : Ut = Y }, the default

process is a Cox process with random default intensity λt = λUt,Y (Xt) at time

t (note that the default intensity is represented by the last column in the above

generator matrix Λ).

3.1.4 General Stochastic Intensities

Using the Doob-Meyer decomposition theorem, one can show that there exists

an increasing and predictable process A with A0 = 0 such that the difference

process 1{τ≤t} − Aτ , where Aτ
t = At∧τ is the process A stopped at τ , is a

martingale. The unique process Aτ is called the compensator of the default

indicator process. If A is absolutely continuous, i.e.

At =

∫ t

0

λsds (42)

for some non-negative process λ = (λ)t≥0, then λ is called an intensity of τ .

From this we can show that for t < τ the intensity satisfies

λt = lim
h↓0

1

h
P [τ ∈ (t, t + h] | Ft] (43)

almost surely, where Ft can be thought of as the information available to

bond investors at time t (including survivorship information and other state

variables). The interpretation of λt as a conditional default arrival rate is analo-

gous to the Poisson case, cf. (27), where the conditioning information consisted

only of survivorship information. Under technical conditions, in this general

case default probabilities are given by

P [τ ≤ T ] = 1− E[e−
R T
0 λudu], (44)

cf. Duffie & Singleton (1999) and Duffie, Schroder & Skiadas (1996). As for

the valuation of defaultable securities, the results derived in the Poisson case
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can be generalized as follows. Consider a defaultable security (X,T ) paying off

a random variable X at T if no default occurs and zero otherwise (for X = 1

this is a defaultable zero bond with zero recovery). This security has under

technical conditions a value given by

Ẽ
[
e−

R T
0 rsdsX1{τ>T}

]
= Ẽ

[
Xe−

R T
0 (rs+λ̃s)ds

]
(45)

where r is the risk-free short rate process and λ̃ is the risk-neutral intensity

process for default. Also in the most general case, the defaultable claim (X, T )

can be valued as if it were default-free by simply adjusting the rate used for

discounting by the risk-neutral intensity. In the intensity based framework,

defaultable term structure modeling exactly parallels ordinary non-defaultable

term structure modeling.

Due to these modeling parallels, affine processes used for (risk-free) short

rate modeling play a prominent role also for stochastic intensity models. The

basic affine intensity model is given by

dλt = a(b− λt)dt + σ
√

λtdWt + dJt,

which has a diffusive component W (a standard Brownian motion with volatil-

ity σ), and a jump component J (an independent jump process with Poisson

arrival intensity c and exponential jump size distribution with mean d). While

the diffusive component models the continuous changes of the issuer’s credit

quality over time, the jumps model abrupt and unexpected changes in the

credit quality. The parameter a controls the mean-reversion rate and the long-

run mean of λ is given by b + cd/a. The famous Cox-Ingersoll-Ross model is

the special case where c = 0. For affine intensities default probabilities (44) are

in closed-form. For the estimation of an affine intensity model without jumps

see, for example, Duffee (1998) or Duffie, Pedersen & Singleton (2000).

In the general setting, under technical conditions on λ̃ short spreads satisfy

lim
T↓t

S(t, T ) = λ̃t (46)

almost surely, as expected. In the general intensity based approach, credit

spreads are bounded away from zero, and short spreads are given by the risk-

neutral intensity.

3.1.5 Default Correlation

To accommodate default correlation arising from the dependence of firms on

common economic factors, a natural way is to introduce correlation between
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firms’ intensity processes through time. However, defaults are then indepen-

dent given the intensity paths. For example, one could set λi
t = ht +hi

t for firm

i, where h and hi are independent processes. h would model the systematic

default intensity from macro-economic shocks, while hi models the idiosyn-

cratic, or firm-specific, default intensity. With correlated default intensities,

joint default probabilities are easily computed. In the two firm case,

P [τ1 > t, τ2 > t] = E[e−
R t
0 (λ1

u+λ2
u)du], (47)

and we have that

P [τ1 ≤ t, τ2 ≤ t] = E[e−
R t
0 (λ1

u+λ2
u)du + e−

R t
0 λ1

udu + e−
R t
0 λ2

udu]− 1. (48)

In order to induce a stronger type of correlation, one can let the intensity of

a particular firm jump upon the default of some other firm(s), corresponding

to the idea of contagion among defaults. In particular, this would allow to

model direct inter firm linkages, cf. Jarrow & Yu (2001). Another idea is to

admit common jumps in intensities, corresponding to joint credit events. For

a discussion of such types of models, we refer to Duffie & Singleton (1998).

Giesecke (2002a) considers a simple model which is based on the assump-

tion that a firm’s default is driven by idiosyncratic as well as other regional,

sectoral, industry, or economy-wide shocks, whose arrivals are modeled by in-

dependent Poisson processes. In this approach a default is governed again by

a Poisson process and default times are jointly exponentially distributed. In

the bivariate case, suppose there are Poisson processes N1, N2, and N with

respective intensities λ1, λ2, and λ. We interpret λi as the idiosyncratic shock

intensity of firm i, while we think of λ as the intensity of a macro-economic

or economy-wide shock affecting both firms simultaneously. Firm i defaults if

either an idiosyncratic or a systematic shock (or both) strike the firm for the

first time (that is, firm i defaults with intensity λi + λ). The joint survival

probability is found to be

s(t, u) = P [τ1 > t, τ2 > u] = P [N1
t = 0, N2

u = 0, Nt∨u = 0]

= s1(t)s2(u) min(eλt, eλu). (49)

Defining θi = λ
λi+λ

, the copula Kτ associated with s is given by

Kτ (u, v) = s(s−1
1 (u), s−1

2 (v)) = min(vu1−θ1 , uv1−θ2),

and is called the exponential copula. The copula Cτ associated with the joint

default probability p can be calculated from Kτ via

Cτ (u, v) = Kτ (1− u, 1− v) + u + v − 1
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Figure 4: Rank and linear default correlation in the exponen-

tial model.

The parameter vector θ = (θ1, θ2) controls the degree of dependence between

the default times. If the firms default independently of each other (λ = 0

or λ1, λ2 → ∞), then θ1 = θ2 = 0 and we get Cτ (u, v) = uv, the product

copula. If the firms are perfectly positively correlated and the firms default

simultaneously (λ →∞ or λ1 = λ2 = 0), then θ1 = θ2 = 1 and Cτ (u, v) = u∧v,

the Fréchet upper bound copula. Spearman’s rank correlation ρS is simply

ρS(τ1, τ2) =
3λ

3λ + 2λ1 + 2λ2

, (50)

while linear default time correlation is given by

ρ(τ1, τ2) =
λ

λ + λ1 + λ2

. (51)

As discussed in Section 2.3, ρ is not an appropriate default correlation mea-

sure. This is obvious when we compare (50) and (51). Clearly ρ ≤ ρS and linear

default correlation underestimates the true default dependence, cf. Figure 4,

where we plot both measures as functions of the joint shock intensity λ. We fix

λ1 = λ2 = 0.01, which corresponds to a one-year default probability of about

1% when firms are independent. If λ is zero, then firms default independently

and ρ = ρS = 0. With increasing λ, the joint shock component of the de-

fault risk dominates the idiosyncratic component, and the default correlation

increases.
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3.2 Compensator Based Reduced Form Modeling

In the previous Section 3.1 we described the intensity based reduced form mod-

els, where the stochastic structure of default was described through an intensity

process. In this section, we consider a more general reduced form modeling ap-

proach, in which the stochastics of default are described through the default

compensator [Giesecke (2001b)]. While we still assume that the default is an

unpredictable surprise event, we do not require that an intensity exists. From

the technical point of view, this means we assume the default compensator to

be merely continuous, but not necessarily absolutely continuous. If an intensity

does in fact exist, intensity based and compensator based models are of course

equivalent. The existence of an intensity is however not granted in general, as

we will see in the next section when we integrate structural and reduced form

approach.

Let us briefly re-consider the notion of the compensator. There exists an

increasing and predictable process A with A0 = 0 such that the difference

process defined by 1{t≥τ} −Aτ
t , where Aτ = A·∧τ , is a martingale. That is, the

unique compensator Aτ counteracts the increasing default indicator process

in a predictable way, such that the difference between default indicator and

compensator forms a martingale. Thus the increment of the compensator can

be viewed as the expected increment of the default indicator, given all available

information Ft at time t: dAτ
t = “E[d1{t≥τ} | Ft]”.

Assuming that the default is unpredictable, under some technical condi-

tions we can establish the default probability in terms of the process A:

P [τ ≤ T ] = 1− E[e−AT ], (52)

cf. Giesecke (2001b). Note the analogy to (44). If an intensity does in fact exist,

then (52) is equivalent to (44). Now consider a defaultable security (X, T )

paying off a random variable X at T if no default occurs and zero otherwise.

If the default is unpredictable, under some additional technical conditions the

value of (X, T ) can be written as

Ẽ
[
e−

R T
0 rsdsX1{τ>T}

]
= Ẽ

[
Xe−

R T
0 rsds−AT

]
. (53)

Again, if an intensity exists this price representation is equivalent to (45).

The credit spread term structure properties induced by the compensator

based model are very similar to those in the intensity based model. Due to the

unpredictability of defaults, the short spread does not necessarily vanish as was

the case in the structural approach. Likewise, bond prices do not continuously

converge but jump to their default contingent values. These properties are

empirically quite plausible.
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4 Integrating Both Approaches

While the structural approach is economically sound, it implies less plausible

credit spread properties. The reduced form approach is ad hoc though, but

tractable and implies plausible credit spread properties. A natural question

arising then is whether and to what extent both approaches are consistent.

This question can be answered by considering (42) together with the properties

of the compensator. If the default is predictable, as in the structural approach,

then the compensator is given by the default jump process itself: Aτ
t = 1{t≥τ}.

In this case Aτ is discontinuous and admits no intensity. We can thus conclude

that structural and reduced form approach are not consistent.

The key to unify both approaches lies in the probabilistic properties of

the default event. To integrate structural and compensator based reduced form

approach, the default must at least be unpredictable in the structural model.

To achieve this, jumps in the asset process as in Zhou (2001b) are not sufficient,

unless the asset value is modeled through a pure jump process. A more suc-

cessful starting point is to drop the restrictive perfect information assumption

commonly made in structural models [Duffie & Lando (2001)]. With imper-

fect information on assets and/or default threshold, investors are at any time

uncertain about the nearness of the assets to the threshold. While then the

default is an unpredictable event, it is not obvious whether an intensity exists.

This depends in fact on the extent of the available information. If investors

have imperfect asset information in form of noisy accounting reports which are

received at discrete points in time, an intensity does exist. This was shown by

Duffie & Lando (2001), who directly computed the intensity as the limit (43).

If assets follow a geometric Brownian motion with volatility σ, they obtained

λt =
1

2
σ2az(t,D),

where a(t, ·) is the conditional log-asset density given the noisy accounting

reports and survivorship, and D is the a priori known default threshold. For

general observation schemes, Giesecke (2001b) considers the default compen-

sator. With incomplete asset and threshold observation (a realistic information

assumption for a private firm) the compensator is under technical conditions

given by Aτ = A·∧τ with

At = − ln

(
1−

∫ 0

−∞
H(t, x) g(x) dx

)

where H(t, ·) is the conditional distribution of the running minimum asset

value Mt given the imperfect asset information, and g is the density of the
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threshold D. Here, given again technical conditions, an intensity exists; it can

be directly calculated from Aτ :

λt =

∫ 0

−∞ Ḣ(t, x) g(x) dx

1− ∫ 0

−∞ H(t, x) g(x) dx
, t ∈ (0, τ),

where Ḣ(t, x) = ∂
∂t

H(t, x). In this situation compensator and intensity based

reduced form modeling are in fact equivalent. But this changes if there is

imperfect threshold observation only, which might be a reasonable assumption

for a firm with listed stock. Then the compensator is given by Aτ = A·∧τ with

At = − ln G(Mt),

where G is investors’ prior default threshold distribution. Here the compen-

sator is singular and an intensity does not exist. While in this situation the

compensator based price representation (53) still holds, the intensity based

price representation (45) breaks down. Here the generality provided by the

compensator pays off, as we need to presume only the unpredictability of de-

faults for pricing purposes, but not an intensity.

The idea of furnishing an intensity based model with structural interpre-

tation is generalized in Giesecke (2002b) to the multi-firm case with correlated

defaults. Based on the explicitly constructed compensators for successive de-

fault events, efficient algorithms for the simulation of correlated defaults can

be formulated.
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