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Abstract

This paper provides a Markov chain model for the term structure and
credit risk spreads of bond process. It alows dependency between the
stochastic process modeling the interest rate and the Markov chain process
describing changes in the credit rating of the bonds by their mutua
dependency on a hidden Markov chain. This Markov chain can be thought
of as the underlying economic conditions. The model also alows a new
interpretation of risk premia used in previous approaches. It also uses a

linear programming approach to strip the bonds of their coupons in such a

way as to guarantee there is no mis-pricing.
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1. I ntroduction

Corporate bond pricing models have been in existence for twenty-five years but it is only
recently that a pricing model, which incorporates a firms credit rating as an indicator of the
likelihood of default, has been developed. Thisis surprising since the rating of a company given
by the major international credit rating agencies is the most widely available estimate of the
credit risk involved in investing in the firms bonds. The first model of bond pricesto
incorporate credit ratings (Jarrow, Lando, Turnbull, 1977) assumed that the stochastic process
describing the rating and possible bankruptcy of the firm was independent of the stochastic
process giving future interest rates and hence the default-free bond prices. This paper presents
ageneralization of thismodel in which the two processes are dependent through their
relationship with the stochastic process describing the state of the underlying economy. The
model also generalizes the idea of risk premia adjustments by reinterpreting them as beliefs that
the future of the rating and bankruptcy process is more extreme than it has been historicaly.
This paper also introduces a procedure based on linear programming for stripping out the zero-
bond prices for risky and riskless bonds in away that guarantees there is no mis-pricing.

Since Mertons ground breaking paper, Merton (1974), there has been a number of
modeling approaches to the price of risky debt. Duffees review, Duffee (1996), and the paper
by Jarrow et al, Jarrow (1997), outline these types of models. The first model views the firms
liabilities as contingent claims against the underlying assets and assumes that bankruptcy and
bond non-payment occurs when the firms assets are exhausted. This was the model introduced
by Merton (1974), but it leads to smaller credit spreads than those that actually occur. Black
and Cox (1976) adjusted the model by defining bankruptcy to occur where liabilities are some
fixed proportion of the assets and this leads to more realistic credit spreads. Shimko, Tegjima
and van Deventer (1993) generaized the model by allowing the riskless interest rates to follow
a stochastic rather than a deterministic process and that the interest rate stochastic process was
correlated with the firms asset process . Kim et a (1993) allowed bankruptcy to be triggered at
an exogenously specified asset value. Leland (1994) and Leland and Toft (1996) used this type
of model, but with endogoneous conditions to define when bankruptcy is declared, to examine
how important is the maturity of the debt as well as the amount. The difficulty with this

approach is that it depends on knowledge of the firms assets, which are not tradable and are



only partialy observable. Also it has to deal with the often complex priority structure of afirms
liabilities.

The second approach assumes that on bankruptcy, the firm will pay off a pre-specified
fraction of the risk-free value of the instrument where bankruptcy is again triggered when the
firms assets first reach some specified limit. Thisidea, first developed by Hull and White
(1991) enables one to ignore the debt priority problem but still assumes knowledge of the asset
value stochastic process. The Hull and White model assumed independence of the stochastic
process giving the firms asset value and the process giving the risk-free values of the
instruments, which is essentially the process describing the interest rate movements. Longstaff
and Schwartz (1995) generalized the model by allowing non-zero correlations between the two
processes. Since in both these models bankruptcy occurs when the asset value, whichisa
continuous process, hits a pre-specified limit, firms never default unexpectedly. For this reason,
Madan and Unal (1994) and Lando (1994), modeled the asset value as a jump process so that
the firms value can suddenly jump below the bankruptcy level.

The third approach ignores the asset value completely and again overcomes the debt
liability structure by assuming that on bankruptcy a given fraction of each promised dollar is
paid off. This approach assumes the bankruptcy processis specified exogenously and does not
depend on the firms underlying assets. (e.g. Jarrow and Turnbull (1995), Litterman and Iben
(1991)). Landosthesis (1994) wasthe first to use the evolution of the firms credit rating as a
model for the bankruptcy process. In the second essay in his thesis, he develops a continuous
time Markov model in which he assumes the bankruptcy process and the process that gives the
risk free bond prices are independent. This model and a discrete time equivalent model appear
in the semina paper by Jarrow et a (1997) but both assume independence between the interest
rate process and the credit rating process. This assumption means their model can not take into
account Duffees point (Duffee 1996) that tlefaults are primarily driven by the business cycle,
which derives variations in the financia variables on which most derivatives are priced.
Benninga ( Chapter 17, 1997) develops a similar spreadsheet model for finding the expected
returns on arisky bond using the probabilities of default, the transition probabilities that the
bonds credit rating will move from one level to another and the percentage recovery on the
face value of the bond.

Our paper extends the model in the Jarrow, Lando, Turnbull (1997) paper in two ways.
Firstly it allows dependency between the stochastic process describing interest rates and hence

the risk-free bonds prices, and the stochastic process describing the movement in bonds credit



rating by linking them both to an underlying process which describes the state of the economy.
The transition probabilities between states in the two processes (interest rates and credit rating)
vary depending on the state of the economy process. This extension is Model 0 of section two.

Lando (1994) in the third essay of his thesis suggested a bond pricing model based on
survival analysis where the probability of a bond defaulting is given by a process whose
parameters can include interest rate information, although no empirical calculations are made
using this model. The interest rate information affects the probability of the bonds credit rating
changing but if the rating does change it does not affect the probability of which rating it will
move to. Our model (Model 0) has a more indirect connection between interest rate and credit
ratings but one that allows more general interactions. We also investigate how good the
models bond prices fit with empirical data.

Two different versions of this extension which allows connection between interest rates
and credit rating changes are considered and one of them allows a re-interpretation of the risk
premium ideas suggested by Jarrow, Lando and Turnball (1997). In order to get their model to
give prices for the risky bonds that agreed with actual values, they modified the historically
derived transition matrix between ratings, P* by making it a mixture of this and the identity
matrix, namely p(t) P* + (1-p(t))l. They interpret the p(t) as risk premium but unfortunately
some of the risk premium are negative and others are very large. An aternative interpretation
isthat thisis an example of the mover-stayer Markov chain model (Frydman et al 1985 ) where
there is a heterogeneous set of bonds, some of which will never change their ratings (the
stayers) and others of which are moving'around. The view that the ratings of bonds will never
change is a very optimistic one because it guarantees that there will be no defaults. An equally
extreme but pessimistic view is that al bonds of the given rating will default at the next period.
Recently Kijima and Komoribayashi (1998) also identified that this might be a better choice of
risk premium than that suggested by Jarrow et al (1997). Model 1S ( S for subjective) of
section two allows for the pricing of the bonds to reflect the markets relative belief between
the historic movements of credit ratings and both these two extreme aternatives. The risk
premium can then be interpreted as the belief the market puts on the extreme risky (or riskless)
future scenarios.

Empirical work on bond pricing requires one to calculate the zero-coupon prices for
risky bonds from the bonds in the market almost al of which have coupons. Longstaff and
Schwartz (1992) take averages of bond prices and coupon rates and average maturity over a

number of months and find the best regression fit. Jarrow et a (1997) takes the average price



and average coupon rate for each combination of bond rating and maturity period and then
uses these values to solve atriangular system of equations to get zero coupon bond prices.
However both methods can lead to mis-pricing. The zero coupon bond prices need not
decrease with maturity or lower credit rating. One can overcome these difficulties and use the
full details of each bond in the market rather then average values by using linear programming
to find the zero-coupon bond prices which minimise the |;-average errors and ensure that no
Mis-pricing can occur.

In the next section, the bond pricing models which allow for dependency between credit
rating movements and interest rate movements are introduced. Section three describes the
linear programming method of ensuring no mis-pricing when stripping out the coupons from
risky and riskless bonds. Section four describes the empirical data used to determine the
parameters of the bond pricing models outlined in section two. The resultsin terms of bond
prices and risk premium of using this datain the models of section two are aso discussed.

Section five draws some conclusion.

2. Models of bond prices
The bond prices are modeled as a discrete time trading economy both because discrete

time simplifies the mathematics and because the credit rating information is summarized in
discrete time formats (see Standard and Poor (19974)). There are three interconnected
processes which make up the model. Firstly the underlying economic conditions, E;, are
modeled as a discrete-time time homogenous Markov chain with two states { G(Good),
B(Bad)}. Let

g = Prob{E.; = G¥E =G} b = Prob{E., = BYE, = B} (2.1)
Theinterest rate process over time periodst = 0,1,2 .T. isa generalization of the lattice
Markov chain model outlined in Pliska (Pliska, Ch.6, 1997). To be precise let |, denote a
stochastic process with initial value I = 0 and state space | ={0,1, .T}. The transition
probabilities satisfy.

P{l1 = n+1%4, = n, E; = G} = py(tn) fornT |
P{lea=nY;=n, E = G} = 1py(tn) forni | (2.2
P{lw1=n+1 %, =n, E = B} = pu(tn) forni |

P{ls1=n%,=n, E =B} = 1py(tn) fornT |



Although I, is neither time homogeneous nor a Markov chain, the process (I, t, E;) is
both a Markov chain and time homogeneous. The process I; gives knowledge of the spot
interest rater. If ;= n, E; = G, then the spot interest rate is r(n,G) whileif I, = n, E; = B, the
interest rate isry(n,B). Moreover it implies knowledge of future interest rates so that if I, = n,
E: = G, spot interest rates next period will be one of r..(n+1,G), rua1(n+1,B), rua(n,G) and
r+1(n,B). The transition probabilities defined in (2.2) are the conditional risk neutral transition
probabilities for the process.

The third process R; describes the evolution of the credit rating of the bond. Assume
there are M+1 possible rating levels (0,1,2, .M) where O is the rating given to risk-free
government bonds. Risky corporate bonds have arating from 1 (most secure+.e. AAAInS
and P) to M % (least secure-€-gradein Sand P ), with M corresponding to bankruptcy. R isa
discrete time process which is almost a Markov chain since the transition probabilities are
defined by

P{Ru1 =k YR =], E = G} = p°k(t)
P{Ru1 =k YR, =], E = B} = p%k(t) (2.3
with Sp®(t) = Sp®i(t) = 1 for dl t.

Note that p®uo(t) = p®oo(t) = 1 and pCum(t) = p°um(t) = 1 for al timest. Thus (R, t, E)
aswdl as (R, Iy, t, E) arefinite state stationary Markov chains. Unlike Jarrow et a (1997) the
rating process R; and the interest rate process (I, t) are not now independent, but are related
through their mutual dependency on the economic conditions process E;. If we assumed E; has
only one possible state then this model reduces to the Jarrow model though no specific form of
the interest process is used there. Taking there to be only one economic state for the process E;
reduces the interest rate process (I, t) to the lattice interest rate model detailed in Pliska
(Pliska 1997). Having defined the evolution of the economic variables, it is now possible to
define and calculate the bond prices in the model.

Let Z%(n, E, j) bethetimet price of a zero-coupon bond promising to pay adollar at
time swhen the bond rating isj at timet and the interest and economic conditions then are |, =
n and E; = E, where E is either G, B or some distribution of belief over the two possibilities.
One feature of discrete time models is that several events occur in the same time period. One
can choose arbitrarily what the order of these events will be. We assume that Z%(n, E, j) isthe
price of the bond at the beginning of period t, when the bond is redeemed at the end of period

s. During any period, we assume all changes of state occur towards the end of the period after



the redemption date for that period, with first changesin interest rate I;, then changes in rating
R: and finally changes in the economic condition E:. If acompany defaults, it is assumed that
afraction f of the face value of the bond will be repaid.

In order for the discounted zero coupon bond prices to be free of arbitrage opportunities,
then they must be martingales, and so the price at any period must be the expected value of
future bond prices under the risk neutral probabilities. Using the sequence of events within a
period described above, this martingal e requirement leads to the equations

P (O{Pe(t. |62, (1 + LEK) + (- §[Z5,,(n+1,E° k)

@ 1 0
Zi(nEj) =
1+ (nE) g,

+(1- pelt, n))[eZtsﬂ(n, E k) +(1- e)Zfﬂ(n, EC,k)]}

forOEtESET, OE£nf£t, OEjEM-1 (2.4)
whereE=GorBandif E=G,e=gand E°=B whileif E=B,e=b, E°=B.
Also following the ordering of events within a period, defined above, one gets

1

t S\ —
Zyn,E )= 1+ r.(nE)

ifji?M and Z%(n,E,M)=1f " t,5n,E. (2.5)

At t=0, assume lp =0, and E, iseither G, B or adistribution (p, 1-p) over (G, B). The
prices of bonds at timet =0 can be used to identify the prices of zero-coupon bonds Z%(0,
Eo, j) by using methods discussed more fully in section three of this paper. Thus the model
appears to have 3+2T(T+1) + 2T(M-1)(M-2) parameters-g, b, f, 2T(T+1) parameters of the
form py(t,n), pu(t,n), r(n,G), r(n,B), and 2T(M-1)(M-2) of the form p®(t), p°i(t) given

& pht)=&pft)=1.

Ideally the model will satisfy TM+1 constraints in that it should closdly fit the zero
coupon bond prices Z%(0, Ey, j), fors=1, .T,, and j = 0, M-1 and at timet = O satisfies (2.5).
Since there are more parameters than constraints one could expect to impose other conditions
on the parameters. However there is less freedom than seems the case. If for example the
transition matrices p®(t) and p®(t) are assumed to be stationary and given by past history,
there should appear to be more than enough other parameters- 2T(T+1) + 3 - to satisfy
(M+1)(T+1) conditions. However, the number of parameters py(t,n), r«(n,G) etc increases
linearly with t, so there are only 3 parameters at t=0 to set the time-1 prices and only 8
parameters at t = 1 to set the time-2 prices. Thisis not enough to define the M+1 bond prices

given for each t-time for the early t-times.



parameters py(t,n), r(n,G) etc. are more than
enough to define the risk-free bond prices Z%(0, Eo, 0), and can help define good
approximations to the risky bond prices Z%(0, Eo, j) j 0. Thisreflects the fact that there are
an infinite number of future stochastic evolutions of interest rates which give the current yield
curve for riskless government bonds, but there is information in the yield structure of the risky

bonds which helps define which evolution is being assumed by the market.

Model 1: Smple Model
One obvious way of simplifying the number of parametersin Model O is to assume the
rating transitions are stationary and the interest rate transitions are state independent. Also, one
can assume the underlying economic state of the system only affects the probability of changes
in the interest rates and not the interest rate levels. This corresponds to keeping g, b, f asin
model 0 and defining
Po(tn) = Po(t);  Po(t) = pu(®) " it
1+r(nG)) =1 +r(nB)) =@ +r(0)/ct)" " nt,j, k,t (2.6)
The c(t) can beinterpreted as measures of the volatility of the time t spot interest rates.
One advantage of this model is that one can obtain the basic interest rate levels r(0) asan
analytic expression of the other parameters, g, b, c(t), py(t) and py(t). Before proving this
result note that the definition of Z%(n,E,0) and the assumption in (2.6) mean that we can
define z(n) by

_ 1 c(t)" n
=Z'(n,E,0) = = =c(t)"z,(0 2.7
z(n) «(n,E,0) 141 (ME) 1+1.(0) c(t)"z,(0) (2.7)
Also define the vector
i(n,0) = &: (0G0 (28)

:(n,B0),

Lemma
i): Define the following 2x2 matrices:
Pt = 9(1-py(t) + PoOC(t+D) ... ©(8)), (1-9)(1-Po(t) + Pg(t)C(t+1) ... ()

(1-b) (L-po(t) + pu(t)c(t+1).. c(9)), b(1-ps(t) + po(t)c(t+1) ... c(9)) (2.9)
then
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%(n,0) = Pf;%asg%j(n)zs(n)
D

(2.10)
. &P ?;SPf'lgg
) (0) = 1+r1 0 zzs?l((oc’)EEo’Og) aéb'g
s o AT eOP?;tPfglg
(2.11)

where & = (1,0) if Ey=Gand & =(0,1) if E;=B.

Proof:
i) can be proved using backward induction on t in Z:(n,E, 0) of (2.10) starting with

t = s. We will concentrate on Z,%(n,G,0) as the proof for the other component is the same.

— s — 1 _
Fort=s, Z°(n,G,0) = TG Z(n)

Assume (2.10) istrue for Z%(n,0) for k3 t+1. By (2.4)
1(n,G,0) = z(n)(Py(1)(9Z%1(n+1,G,0) + (1-9)Z%2(n+1,B,0)) + (1-py(t))(9Z7+2(n,G,0)
+ (1'g)zst+1(n’B’O))

=z,(N{p,Ig 0} O szggzj(m)) z(n+1)+(1-90 1O asggz,»(m)) z,(n+1)]

j=t+1 e
. o
%Zj Mzm+-90 KO PE

j=t+1

0

&”L an
+(1- p,Nlgl 0} O Pfaé Z M) z,(N]} (2.12)

j=t+1

Since z(n+1) = c(j)z(n) for j = t+1, s-1, (2.12) becomes
(g(l- Pg (1) + pg(M)c(t +1)...c(s) (1- 9)(A- Pg(t) + Py (t)C(t+1)---£(S))Zt(n)P?;%+1F15§%Zj(n)zs(n)
= (1 O)P ?;Llpf‘ggz j(N)z5(n)
1]
i) From (2.10) we have that the ratio of ZoY(0,Eo,0) and Zo"*(0,Eo,0) is

o
&0 Pfg%,» ©)2,(0
o &g

30,60 _

Z5O0E0 o & o 1?124 0)z, ,(0)
j=0 2

)L 80 R 280
=20 &OP gz L OP %=
20 07z 4 OF g

Hence (2.11) follows.
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The lemmaimplies that under model 1 once the 3T parameters py(t), pu(t), c(t), t=0,.T-
1 aregiven the parametersr,(0) can be chosen to ensure the zero-risk bond prices are met.
We will assume the economy transition probabilities g and b are given by estimating from
historic data. Thus all that remains to be fixed in the model are the rating transition matrices
Poik(t) and pZi(t).

This paper investigates two different ways of defining the rating transition matrices.

Model 1H: Historical Data

In this the transitions are estimated from the actual transitionsin ratings in the past and
the transition matrices are assumed to be time-independent. Thus one defines the transition
matrices P*°,(P*®?) -actual good (actual bad) - from actual historic data so that

Po(®) = p"%,  P°i(t) = p"%k, " t, O], kEM
(2.13)

It is clear that this model cannot hope to obtain all the risky bond prices completely
accurately, asthere are T(M-1) risky bond prices and now only 3T + 1 parameters available,

namely py(t), pu(t), c(t), and f.

An aternative approach is to assume that the market does not accept that the historic
movements in ratings are the ones that will occur in the future. The markets view is a mixture
of beliefs, some based on historic movements, some on more extreme views of the movements.

We consider two extreme positions. catastrophe and no change.

The catastrophe view (C) is that in the coming year all risky bonds of al rating will
default. This corresponds to a transition matrix
a®000... 016
P = goopo... oL~
€0000... 015

The no change position (NC) isthe lazy view that all bonds will keep the same rating in

the coming year and corresponds to as transition matrix P*“=1.
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Model 1S— Subjective Ratings

Assume that in the good’'time periods, the market takes as the rating transition matrix, a
mixture of the historic rating changes in good times and the extreme view that there will be no
changes. In the bad'time periods, the markets view is amix of the historic rating changes in bad
periods and the extreme view that al bonds will default. We assume that the ratio of the
mixture can differ for different bond ratings and for different time periods. This leads to the
definition:

PE(®) = p°(.) Pk + (1-p°G.1) P

Pk(t) = p°(i.t) POk + (1-p°(.0) P i .
(2.14)

Thevaues p®(j,t), p®(j,t) could then be considered atype of risk premium measure. In
this case, it is how much weight the market puts on the extreme view of the future. In fact, one
can reinterpret the risk premium which Jarrow et a (1997) introduced into their paper as 1-
p®(j,t) in thisformulation if one assumes the only underlying state is G. This may explain why
they end up with negative risk premium in their calculation. They have only allowed for the
market to have a more optimistic view than the historic one of the future. This reinterpretation
however only makes sense if p®(j,t) £ 1 whereas Jarrow et al (1997) allow values greater than
1. Model 1S seeksto allow the market to have both a more optimistic and a more pessmistic
view of the future than was the historic average and for smplicity restricts optimistic viewsto

good years and pessimistic views to bad years..

3. Using Linear Programming to strip out coupons

Models of bond prices take zero-coupon bonds as their basic entity, whereas most bonds
have coupons which involve part payments during the life of the bond, as well asthe
redemption value to be paid on maturity. Thus there is a need to strip out the coupons and
calculate what the market price of the bond implies about the value of a bond that will just pay
1 unit at time t. Some authors (Longstaff, Schwartz (1995 )) take the average bond price,
coupon rate and maturity each month for over a given time period and fit aregression line. The
data however will include the changes over time in market sentiment and so does not reflect

the position at a given time. Jarrow, Lando and Turnbull (1997) split bonds into classes
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depending on their credit rating and their maturity. For each class the average market price and
average yield were taken to be the values for bonds of that rating and maturity. Solving a
triangular system of equations gave the zero-coupon bond prices. However, there was some
mis-pricing of their bonds with their calculated zero-coupon bond prices not necessarily
increasing as the credit rating improved nor decreasing as maturity increased. Alderson and
Zivney (1994) report smilar examples of mis-pricing in junk bonds and they show that
reported bond yields depend on which investment strategies are assumed.

One can set up the problem of stripping out the coupons to get zero-coupon bond prices
from bonds with coupons as a linear program, in the following way. Assume bonds are given
one of M credit ratings 0, 1, 2, .M-1 (credit rating M corresponds to default). Suppose there
are N bonds and all have maturity and coupon payments within the next T periods. Assume
bondi 1 £i £ N hasacurrent market price of p;, a credit rating of d(i) and the coupons and
redemption paymentsinvolve apayment of c(t) inperiodt, t=1, .T.Let R={icd(t) =j} | =
0, .M-1 be the set of bonds with rating j. Let the present value of a zero-coupon, j-rated bond
which pays one unit at timet, bev;(t), j =0, M-1,t=1, .T.

Idedlly one has
p, = tézlchi(t)vd(i)(t) "i=1...N (3.1
However, one cannot guarantee this will occur, so instead one requires

pi +a; = é_~1TCi(t)Vd(i)(t) +b; (32

where g3 0, b3 0 are the above' or below’errors in the market price.
Thus one can find vj(t) j = 0,M-1, t = 1, T by solving the following linear program, LP1.

Minimise é N +b)
i=1

[o] .
pta=g "GOvay®+h i=1..N
t=1

Vi) ® (L+m@O)v;(t+l) j=0,..M-1t=1,.T-1 (33)
Vi(®3 Vi) i=0,.M-2t=1..T (3.4)

3°0 B30 V()30 i=1..N,j=0..M-1t=1..T.

where m(t) is the minimum possible interest rate in period t.
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(3.3) guarantees that the zero-bond prices satisfy the obvious financial maturity requirements.
If m(t) = 0, (3.3) reduces to the requirement that the price of bonds decreases with increasing
maturity. Conditions (3.4) ensure that there is no mis-pricing on credit ratings so the bonds
with the best (lowest) credit rating have the highest prices.

The linear program has MT+2N variables and N+M(T-1) + (M-1)T constraints. Such
programs can be solved by dedicated linear programming solvers or by solvers in spreadsheet
packages such as EXCEL. The solver in EXCEL 97 can only deal with 200 variables, so only
less than 100 bonds can be dealt with at atime.. However, one can solve the problem as a set
of nested linear programs if one has more than 100 bonds, by solving first the prices of the O-
rated bonds only, dropping constraint (3.4) and applying (3.2) only toi e Ry. Then solve for
the vy (t) only replacing (3.4) by vi(t) £ vo(t), t=1, .T. where vo(t) was obtained from the
previous linear program and (3.2) only holds for i e R;. Repeating this procedure for all the

ratings in turn corresponds to solving LP1 but with an objective function

Minimiseé M-1 é Lj(ai +Dbj)
j=0 il R,

where L; is an order of magnitude greater then L., for i=0, .M-2.

The linear program LP1 gives the prices that best fit the actual bond datain the sense of

minimising the average absolute error, while also ensuring there is no mis-pricing.

4.  Dataand resultsof an example using US bond prices

The models of section two and three were applied to data on US bond prices and credit
ratings obtained from DATASTREAM and Standard and Poor (Standard and Poor 19973,
1997b) respectively. 64 of the US Treasury Bonds which make up the DATASTREAM US
yield curve data set in 1995 and 1996 were taken as the riskless bonds. Their market price on
3" July 1996 was taken -the data being chosen as an example of amid-week, mid-year, pre-
holiday period. The set of risky bonds satisfied three criteria. They werein the
DATASTREAM database of US industrial and US financia bonds; their market prices and
S& P rating for 3 July 1996 were available; there were no callable dates. The extra option that
being callable gives a bond is more difficult to strip out of the price than the coupons. There
were 178 such bondsin total (7 rated AAA, 24 rated AA, 61 rated A, 68 rated BBB, 12 rated
BB, 6 rated B). DATASTREAM does not usually record the prices of C-rated speculative
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bonds but there were 8 bonds in the set that moved from C to investment grade or vice versa
during the year (Standard and Poor 1997b) and hence we were able to obtain the 1996 market
price when they were C-rated.



TABLE 1 Zero-coupon bond prices

16

Y ear 1996 9197 1998 1999 2000 2001 2002 2003 2004
RISKLESS| 0.9713 0.9187 0.8827 0.8300 0.7760 0.6979 0.6754 0.6305 0.5638
AAA 0.9713 0.9187 0.8821 0.7939 0.7667 0.6979 0.6521 0.6208 0.5638
AA 0.9713 0.9187 0.8821 0.7939 0.7667 0.6979 0.6521 0.6117 0.5638
A 0.9713 0.9187 0.8786 0.7939 0.7645 0.6814| 0.6521 0.5949 0.5638
BBB 0.9713 0.9187 0.8309 0.7939 0.6879 0.6810, 0.6476 0.5865 0.4931
BB 0.9713 0.9147 0.7936 0.7857 0.6590 0.6296 0.6233 0.5865 0.4931
B 0.9713 0.9147 0.7936 0.7857 0.6590 0.6296 0.6233 0.4126 0.4085
C 0.9713 0.7110 0.6723 0.6656 0.6590 0.5722 0.4362 0.4098 0.4058
Y ear 2005 2006 2007 2008 2009 2010 2011to020 2021+
RISKLESS| 0.5435 0.5147 0.5046 0.4947 0.4850 04755 0.2317 0.1402
AAA 0.5419 0.4789 0.4039 0.3999 0.3959 0.3920, 0.2317 0.1402
AA 0.5419 0.4789 0.4039 0.3999 0.3959 0.3920, 0.2317 0.1259
A 0.4994 0.4789 0.4039 0.3999 0.3467 0.3433 0.2087 0.1259
BBB 0.4882 0.4789 0.4039 0.3825 0.3467 0.3387 0.2087 0.1259
BB 0.4045 0.3978 0.3938 0.3825 0.3467 0.3387 0.2087 0.1259
B 0.4045 0.3978 0.3938 0.3825 0.3421 0.3387 0.2087 NA
C 0.4017 0.3978 0.3938 NA NA NA NA NA

The linear program developed in section three was applied to the 250 bonds in total, and
the zero-coupon prices for each individual year 1996 to 2010, one common price for years
2011 to 2020, and one common price for al years beyond 2020 were calculated. It was
assumed that there would be no bankruptcies in the rest of 1996 so v;(1996) was assumed
constant for al ratings j. The results are given in table 1 where there was no price available for
C-rated zero-coupon prices beyond 2007 because there were no such bonds with maturity
beyond this date.

Theyield curves for the various rated bonds are given in Figure 1.

Figure 2 graphs the spreads for risky bonds for their yields compared with those riskless
bonds. The curves are not smooth and the spreads of differently rated bonds converge and then
separate at several points but the general shape seems reasonable. The highest spread is for the
C-rated bonds of early maturity and in general the spreads for these bonds decrease with time.
The lowest spreads are for the AAA-rated bonds of early maturity and these spreads slowly
increase with time. Note that the linear programme derives the same values for the price of C-
rated bonds with a greater than twelve year maturity as for B-rated bonds of the same maturity

because there were no examples of the former for the linear programme to use.
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Figure 1:Bond Prices from Linear Programming
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The data for the rating process was obtained from the Standard and Poor Rating
Performance (S& P 1997a) which gives the number of bonds making each possible annual
ratings transition for the years 1981-1996. The decision on which were the good’and bad’

years in the underlying process used two sets of data. Firstly the annual rating transitions
were investigated and % downgradings +% defaults -% upgradings taken as a measure of the
ratings changes in that year. The years were then ordered according to this measure and the
highest rated were taken as good. Secondly, after examining Dow Jones Index long-term and
short-term interest rates, US unemployment data, US CPS Industry Production, leading
indicators and yield spreads, we classified the years as good or bad. With one change, the two
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Fig2:Spreads from LP prices as of 1996
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sequences agreed with one another with the ratings sequence lagging one year behind the

subjective economic sequence. This lagged economic sequence was thus used and 81, 84, 87,
92, 93, 94, 96 were classified as good years and 82, 83, 85, 86, 88, 89, 90, 91, 95 classified as
bad. Totaling the annual bond ratings changes for these two sequences separately and then

trandating into percentages led to the annual transition matrices for good and bad years

respectively given in table 2. In this table the rows represent the bond rating at the beginning of

ayear and the columns represent the bond rating at the beginning of the next year, while the

values are the probability of such atransition in good and bad years.

TABLE 2: Credit ratings transition matrices for good and bad years

Good AAA AA A BBB BB B C DEFAULT
AAA 0.898588| 0.09371| 0.006418| 0.001284 0 0 0 0
AA 0.007007| 0.923331| 0.065952| 0.00371 0 0 0 0
A 0.000448| 0.021281| 0.933692| 0.039651| 0.002912| 0.001568| 0.000224| 0.000224
BBB 0.000351| 0.001405| 0.053057| 0.896697| 0.040408| 0.007027| 0.000351| 0.000703
BB 0.000491| 0.001473| 0.004912| 0.078094| 0.828094| 0.079077| 0.005403| 0.002456
B 0 0| 0.004162| 0.005945| 0.087396| 0.837099| 0.026754| 0.038644
C 0 0| 0.004651| 0.004651| 0.027907| 0.15814| 0.64186| 0.162791
Bad AAA AA A BBB BB B C DEFAULT
AAA 0.915984| 0.07377| 0.008197 0| 0.002049 0 0 0
AA 0.006141| 0.896622| 0.085977| 0.007506| 0.001024| 0.002388| 0.000341 0
A 0.00119| 0.026775| 0.896271| 0.06188| 0.010115| 0.002975 0| 0.000793
BBB 0.000323| 0.004523| 0.063974| 0.853958| 0.058158| 0.014216| 0.001939| 0.002908
BB 0| 0.000936| 0.007491| 0.072566| 0.802903| 0.084738| 0.013577| 0.01779
B 0| 0.001665| 0.001249| 0.003331| 0.054538| 0.822648| 0.04746| 0.069109
C 0.003401 0| 0.006803| 0.017007| 0.027211| 0.078231| 0.598639| 0.268707
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One can check using c? tests that the transitions for a given row are significantly different

in the two matrices.

Looking at the pattern of good and bad years in the sequence which gives these
transition matrices and adding in years 1980 and 1997 both of which are classified as good
years enables us to estimate g and b. There are 5 times a bad year is followed by abad year
and 4 times it is followed by a good year. Good years were followed by good years 4 times and
by bad years 4 times. This data leads to the estimates g=4/8 and b=5/9. We assume that in mid-

1996 when the bond prices are taken it is not yet clear if the economic conditionsin 1996 are

Fig 3:Survival Probabilities for 2-state model starting in Good

State
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good or bad and so we assume that since 1995 was a bad year the chance 1996 is bad is 5/9.
Hence we assume Eq=(4/9, 5/9). and the price of j-rated t-maturity zero-coupon bondsin 1996
is taken as 4/9Z'4(0,G,j)+ 5/92'4(0,B,)).

The effect on the rating transitions of a hidden underlying 2-state model of the economy
can be shown by looking at the survival probabilities ( i.e. the probabilities of not defaulting )
after t periods for bonds rated j now. Figure 3 shows the results of this for the 2-state model
starting in agood year .One can do similar calculations for both the 2-state model starting in a
bad year and the 1-state model where one calculates the transition matrix from all years put
together The one-state survival probabilities al lie below the two-sate survival probabilities

when the current year is assumed good and are al above the two-state survival probabilities



20

when the current year is bad, The largest differences in the three graphs occur in the early years
of B and C rated bonds. Of course eventually the survival probabilities will become O for all

ratings in both models since in both cases the ratings process is an absorbing Markov chain.

All the parametersin the ratings and the underling economic processes have been defined
above from historical data. The only parameters left to be defined in Model 1H are those
describing the interest rate process -c(t), pg(t), pu(t) for al t up to T- and f, the fraction of the
face valuerepaid if abond is defaulted. We will concentrate on the time interval 1996 2006, so
seek to build a model that matches the July 3™ 1996 bond prices for zero-coupon bonds
maturity at the end of each of these 11 years. Our ordering of the events during a year means
that no bond will default during the rest of 1996 and hence the price of bonds maturing in this
period is the same for all credit ratings. This follows from (2.5) and the discussion preceding it.

One possible approach is to choose reasonable values for the interest rate parameters and
find the value of f that gives the best match with the prices obtained in Table 2. As an example
we chose c(t)=1, py(t)=0.6, pp (t) =0.4 for al t and then find the value of f which minimises the
mean square error (MSE) over the 8 different ratings (T-bill, AAA, AA, A, BBB, BB, B, C)
and the 11-years of the models zero-coupon bond prices compared with the actual bond prices.
The best value is f= 0.3631 with error 0.001200 and the implied risk free interest rates and

bond prices are givenin Table 3.

TABLE 3: Parameter values for Model 1H with optimal f and chosen c,p.

96| 97| 98| 99| 2000f 2001, 2002| 2003| 2004| 2005| 2006

c(t) 1.00| 1.00| 1.00| 1.00] 1.00f 1.00| 1.00| 1.00f 1.00| 1.00| 1.00

.Ppg(t) | 0.60[ 0.60] 0.60] 0.60] 0.60] 0.60] 0.60| 0.60, 0.60| 0.60| 0.60

po(t) | 0.40] 0.40| 0.40[ 0.40| 0.40, 0.40, 0.40| 0.40| 0.40| 0.40| 0.40

r(0)% | 2.95| 5.73| 4.07| 6.35| 6.96| 11.19| 3.33| 7.11| 11.84| 3.73| 5.60

g= 050b= 056f= 0.36 MSE= 0.001200|

One can seek a better fit by optimizing over the interest rate parameters as well asf.
There are limits on the parameters -the py(t), ps(t) must be probabilities and c(t) must be less
than or equal to 1 in order that the actual interest rates r(n,E) are monotonically increasing in
n, which ensures that the interest rates r(n,E) reflect the underlying ordering in the interest rate
space |.. To avoid the modeling partially collapsing to a deterministic one we will in fact

impose 0.05£ p 4(t), pu(t) £ 0.95. and to ensure volatility is not too great we require c(t) 2 0.5.
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Finally to ensure consistency with the assumptions underlying the derivation of the real zero-
coupon prices we will assume the risk-free spot interest ratesin all years are at least 1%. Using
the non-linear solver in Excel gives the parameter values in Table 4 as the ones that minimise
M SE with a MSE value of 0.000856.

TABLE 4:Parameter values for model 1H with optimal f, ¢ and p.

96| 97| 98] 99| 2000[ 2001, 2002, 2003| 2004| 2005| 2006

c(t) 1.00| 0.97| 0.97| 1.00] 1.00{ 1.00| 0.98| 0.96| 0.98| 0.99| 1.00

Pg(t) 0.14| 0.95| 0.05| 0.05| 0.05| 0.05] 0.05| 0.95| 0.21| 0.60| 0.61

Py (t) 0.95| 0.92| 0.05| 0.05| 0.05] 0.05] 0.05| 0.28] 0.05| 0.35| 0.46

r(0)% | 2.95| 5.31| 1.00| 6.35| 6.96] 11.19| 1.00| 1.00| 7.12| 1.00| 5.60

g= 050b= 0.56f= 0.4387 MSE 0.000856|

The results of table 4 suggest amodel where the interest rates are expected to rise
considerably in the years 1999-2001 and in al years except 96 the chance of interest rates
rising is higher if it is good year than if it isabad year.

In section two it was pointed out that one could not match all the bond prices with the
historical model 1H but a nearer fit may be possible if one alowed subjective views of the
future ratings transitions as suggested in Model 1S. Initialy one would expect that with the
extraflexibility that the risk premiums parameters, p°(j,t), p°(j,t) give one could match the real
prices exactly. The time 1-risk premiums p©(j,1), p°(j,1) can be used to match the time-1 bond
prices Z,'(0,Ey,j), then the time-2 risk premiums can be defined to get the time-2 maturity
bonds and so on. In each case the bond price is alinear function of the corresponding risk
premium and so the solution can be obtained by solving linear equations or by linear
programming. However since (2.5) implies the O-maturity bond prices are the same for all
ratings, the risk premium p®(j,t) in the good state has no effect if it is defined in this way unless
there is a chance there is an immediate transition to the default state M. From Table 2 one can
see that there is no such chance of default for AAA and AA bonds. A second problem is the
stability of such acalculation. The time-1 risk premiums are set by the time-1 bond prices but
they in turn are afactor in all the longer maturity bonds. Any error in the time-1 bond pricesis
then reflected in the time-1 premium and the time-2 premium have to correct for these if they
want to match the time 2 bond prices. Thus any errors grow as the risk premiums seek to

compensate for errorsin earlier risk premiums.



TABLE 5: risk premium using interest rate date of table 3

p° 96 97 98 99 0 1 2 3 4 5
AAA 0 0 0| 0.0006| 0.0237| 0.0270| 0.0195| 0.0159 0 0
AA 0.0185 0 0 0 0 0 0| 0.2503 0 0
A 0.1026 0 0 0 0 0 0| 0.2513 0 0
BBB 0 0 0 0 0 0 0 0 0 0
BB 0.2616| 0.2600| 0.2645| 0.2714| 0.3008| 0.0353 0 0| 0.0940 0
B 0 0 0 0 0 0 0| 0.5166| 0.9802 1
C 0.1647| 0.5050| 0.7201| 0.4875| 0.6492| 0.4439| 0.3853| 0.3836| 1.0000 1
pB

AAA | 0.0023| 0.0015| 0.0673 0 0 0 0 0 0/0.148228
AA 0.0091 0| 0.0593 0 0 0 0 0 0/0.239304
A 0.0167 0| 0.0784 0 0| 0.0142| 0.0767 0 0 0
BBB 0| 0.1578 0| 0.0214 0 0 0| 0.0638 0 0
BB 0| 0.2378 0 0 0 0| 0.3763| 0.2638 0 0
B 0 0 0 0 0 0| 0.7824| 0.0000 0 0
C 0.1407 0 0 0 0 0 0 0 0 0
c(t) 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000 1
.pg(t). | 0.6000| 0.6000] 0.6000| 0.6000| 0.6000{ 0.6000| 0.6000| 0.6000{ 0.6000 0.6
.po(t). | 0.4000| 0.4000| 0.4000| 0.4000| 0.4000| 0.4000| 0.4000| 0.4000| 0.4000 0.4
r(0)% | 2.9548| 5.7256| 4.0726| 6.3550| 6.9631|11.1916| 3.3336| 7.1093| 11.8366|3.731883
g= 0.5000B= 0.5556f= 0.3631 MSE= 0.000565|
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An aternative is to give up the advantage of linearity and use al the risk premia to match

all the bond pricesin one go. Since bond prices of maturity t depend on products of the risk

premium for all times up to t thisis anon-linear problem. One can solve the problem using

non-linear algorithms including the onesin Excel. Thisis the approach we adopt here. Table 5

shows the risk premiathat arise if one uses the data for the interest rate process given by Table

3. Using risk premia reduces the Mean Square Error over the 88 prices to 0.000565.

Table 6 shows the results when the data of table 4 which was the interest rate parameters

that minimized mean square error the most were used . In this case the adding of risk premium
brings the M SE down from 0.0008564 to 0.000533.

TABLE 6: Risk premium using risk data of Table 4

G 96

97

98

99

0

1

2 3

N

a1

AAA 0.0002

0.0002

0.0003

0.0571

0.0767

0.0715

0.0622|0.1823




AA 0.3685|0.0418|0.0001|0.0001 0 0/0.0001|0.2501 0 0
A 0.1730 0 0 0 0 0 0/0.2513 0 0
BBB 0 0 0 0/0.0335 0 0 0]{0.0043 0
BB 0.2623|0.2623|0.2667|0.2764|0.1682 0 0 0]0.1526|0.0050
B 0 0 0 0 0 0 0] 0.5940|1.0000{ 1.0000
C 0.1675]0.5462|0.7365|0.4559|0.6651| 0.4490|0.7031|0.3953|1.0000|1.0000
pB

AAA 0 0 0 0 0 0 0 0 0/0.0045
AA 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0
BBB 0/0.0883 0 0 0 0 0 0 0 0
BB 0/0.1799 0/0.0582 0 0/0.1545|0.0392 0 0
B 0 0 0 0 0 0/0.7839 0 0 0
C 0.2724 0 0 0 0 0 0 0 0 0
c(t) 1.0000{0.9725|0.9725|1.0000|1.0000| 1.0000{0.9822(0.9561|0.9774|0.9867
.Ppg(t) |0.1446|0.9500|0.0500{0.0500|0.0500{ 0.0500|0.0500|0.9500|0.2125|0.6000
.p u(t) [0.9500]{0.9234|0.0500|0.0500{0.0500| 0.0500|0.0500|0.2802|0.0500{0.3512
r(0)% |2.9548|5.3055|1.0000|6.3550|6.9631|11.1916|1.0000(1.0000|7.1243|1.0000
g= 0.5000B= 0.5556f= 0.4387 MSE= 0.000533|

then finding the best risk premium for this interest rate data, one could seek to optimize over

interest rate data and the risk premium at the same time to try and find a good fit to the bond

Instead of first finding the interest rate data that best fits the bond price structure and
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price structure. Table 7 gives the results of doing exactly that and leads to a fit where the Mean
Square Error is 0.000198.

fitting of the B and C rated bonds. There were not many of these in the original sample and

their zero-coupon prices are the most suspect since they are not underpinned by prices of

Most of thiserror - the total square error over the 88 bond pricesis 0.01744 +sin the

lower rated bonds. The parameters can be chosen so that the total square error over the 66 BB

and higher rated bond prices is 0.002739 which corresponds to a mean square error of

0.000034.

TABLE 7: Risk premiawhen optimizing over both risk and interest rate parameters

97

99

0

1

2

3

N

a1

o

0.0111

0.0309|0.0265

0.0109

0.0348
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AA 10.4139 0 0 0 0 0 0/0.5266 0 0
A 0.2771]0.2906/0.0135 0 0 0 0/0.2518|0.0129 0
BBB 0 0 0 0 0 0 0 0/0.0156 0
BB |0.2600|0.2614|0.2607|0.2640(0.2701|0.2885|0.0067|0.1982|0.1513 0.0020
B 0 0 0 0 0 0 0/0.5230]1.0000 1.0000
C 0.2876|0.5665|0.9773(1.0000|1.0000|0.0000|1.0000{0.2201|1.0000 1.0000
pB

AAA 10.0371|0.0604|0.2568 0]/0.1554/0.2114/0.0299|0.2438|0.0186 0.3651
AA ]0.0333|0.0610|0.2761 0/0.1098/0.2451 0 0 0 0.7921
A 0.0510|0.0444/|0.2742|0.0295|0.1862|0.1455|0.5496 0 0 0
BBB 0/0.3284 0/0.3350 0 0 0/0.4111 0 0
BB 0/0.4091 0/0.4530 0 0/1.0000{1.0000]1.0000 0
B 0/0.2138 0/0.3097 0 0/1.0000{1.0000]1.0000 0
C 0.6006 0 0 0 0/1.0000/1.0000{0.3708|0.6164 0.1009
c(t) |1.0000{0.9810|0.9704|0.9517|0.9485|0.9177|0.9819|0.9659|0.9477 0.9862
.pg(t) 10.9500{0.0500{0.0500{0.0500/0.0500/0.2495|0.9161|0.4390|0.0500 0.4886
.p(t) |0.0500]0.0500{0.0500|0.0500{0.0500|0.0500{0.0500/0.0500{0.0500 0.2620
r(0)% |2.9548|3.8136|1.0000{1.0000|1.0000{1.0000|1.0000|1.0000|1.0000 1
g= 0.5000 b= 0.5556f= 0.5072 MSE= 0.000198|

Comparing the risk premiain Tables 5,6 and 7 the only noticeable featurein table 5,
where al but one of the interest rate parameters were fixed is that the premia suggest the
market is overly optimistic about the survival of C-rated bonds. This over-optimism of the
market is much more marked in Table 6 where the interest rate parameters are those that best
fitted the bond prices. 38 of the 70 possible p®(j,t) are non-zero including the C-rated ones for
al timest while only 8 of the 70 p®(j,t) are non-zero. So on balance the prices reflect a market
that is much more likely to accept there will be no change in bond ratings than one that is
worrying that they will default. The interest rate parameters show the market expects alarge
risein interest rate in the 1999-2001 period. When asin Table 7, one alows both the interest
rates and the risk premium to be moving at the same time to find a best fit to the prices, one
gets afit where the error decreases by 60%. However what happensis that the risk premium
seek to describe not just the spread between the differently rated bonds but also the term
structure of all bonds. Thus the interest rate parameters in this case suggest an interest rate
structure that is essentially deterministic and flat. All the uncertainty in it has been translated

into a much more complex risk premium structure.

One can recover the model with only one underlying economic state ( which is akin to
the Jarrow model ( Jarrow et al 1997)) by setting g=1 and starting in state E; = G. The results
of doing this and finding the best fit to the bond prices over f, c(t) and py(t), pu(t) are givenin
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Table 8. Comparing the results with the comparable 2-state model in Table 4 one finds the
MSE is now 0.001231 whereas the 2-state model has a M SE of 0.000856 which is 30% lower.

TABLE 8: Parameter values for 1-state model with optimal f, c and p

1996 1997| 1998] 1999] 2000] 2001] 2002] 2003] 2004] 2005] 2006
c(t) 1 1 1 1 1l 097 0.99] 098 097 099 0.99
Py [ 095 095 095 057 013 005 0.05 028 056 059 06
r(0)% | 2.95] 5.73] 4.07] 6.36] 6.96 1 1 1 1 1 1
g= 1 f=  0.40669 MSE= 0.001231]

The improvement the 2-state model makes over the 1-state model is even more marked
in the results with risk premia, where we follow the Jarrow model and only allow the more
optimistic extreme view in the good state. p® is the probability in our model that the market is
taking the no change view in the good state. Table 9 gives the risk premia values and all the
other parameters which best fit the bond prices in the 1-state model obtained by taking g=1. In
this case the mean square error (MSE) of the 1-state model is 0.001003 while that for the 2-
state model is 0.000198 -a cut in the error of 80%.

TABLE 9: Risk premiafor 1-state model optimizing over all parameters

Year 1996 1997| 1998] 1999 2000/ 2001 2002 2003] 2004 2005
AAA 0 0 0 0 0 0 0 0 0 0
AA 0 0 0 0 0| 0.0002 0 0 0 0
A 0 0 0 0 0 0| 0.2576 0 0 0
BBB 0 0 0 0 0 0 0 0 0 0
BB 0 0 0 0 0 0 0 0 0 0
B 0.4040 0 0 0 0 0 0 0 0 0
C 0| 0.0580| 0.4239| 0.1446| 0.2304 0 0 0 0 0
c(t) 1 1 1 1 1| 0.9541] 0.9891| 0.9728| 0.9541|0.9880
Pg(t) 0.05 0.05 0.95| 0.9497 0.05 0.05 0.05 0.05 0.05|] 0.05
.1(0)% 2.95 5.73 4.07 6.35 6.96 1.00 1.00 1.00 1.00f 1.00

g= 1 F= 0.407538 MSE=  0.001003]
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5. Conclusions

The previous sections develop a hidden Markov chain model for the term structure of
credit risk spreads further extending the ideas in Lando (19994), Jarrow and Turnbull (1995)
and Jarrow, Lando and Turnbull (1997). This model allows dependency between the rating
process and the interest rate process through their joint dependency on a state of the economy
process. The paper also provides areinterpretation of the idea of risk premia introduced
therein as the chance the markets view of the rating changes is more extreme than has been the
case in the past. The paper also uses linear programming to provide away of stripping the
coupons for bonds in such away as to minimise the mean absolute errors and at the same time

ensure there is no mis-pricing of the zero-coupon bond prices
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