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Abstract

This paper provides a Markov chain model for the term structure and

credit risk spreads of bond process. It allows dependency between the

stochastic process modeling the interest rate and the Markov chain process

describing changes in the credit rating of the bonds by their mutual

dependency on a hidden Markov chain. This Markov chain can be thought

of as the underlying economic conditions. The model also allows a new

interpretation of risk premia used in previous approaches. It also uses a

linear programming approach to strip the bonds of their coupons in such a

way as to guarantee there is no mis-pricing.
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1. Introduction

Corporate bond pricing models have been in existence for twenty-five years but it is only

recently that a pricing model, which incorporates a firm’s credit rating as an indicator of the

likelihood of default, has been developed. This is surprising since the rating of a company given

by the major international credit rating agencies is the most widely available estimate of the

credit risk involved in investing in the firm’s bonds. The first model of bond prices to

incorporate credit ratings (Jarrow, Lando, Turnbull, 1977) assumed that the stochastic process

describing the rating and possible bankruptcy of the firm was independent of the stochastic

process giving future interest rates and hence the default-free bond prices. This paper presents

a generalization of this model in which the two processes are dependent through their

relationship with the stochastic process describing the state of the underlying economy. The

model also generalizes the idea of risk premia adjustments by reinterpreting them as beliefs that

the future of the rating and bankruptcy process is more extreme than it has been historically.

This paper also introduces a procedure based on linear programming for stripping out the zero-

bond prices for risky and riskless bonds in a way that guarantees there is no mis-pricing.

Since Merton’s ground breaking paper, Merton (1974), there has been a number of

modeling approaches to the price of risky debt. Duffee’s review, Duffee (1996), and the paper

by Jarrow et al, Jarrow (1997), outline these types of models. The first model views the firm’s

liabilities as contingent claims against the underlying assets and assumes that bankruptcy and

bond non-payment occurs when the firm’s assets are exhausted. This was the model introduced

by Merton (1974), but it leads to smaller credit spreads than those that actually occur. Black

and Cox (1976) adjusted the model by defining bankruptcy to occur where liabilities are some

fixed proportion of the assets and this leads to more realistic credit spreads. Shimko, Teejima

and van Deventer (1993) generalized the model by allowing the riskless interest rates to follow

a stochastic rather than a deterministic process and that the interest rate stochastic process was

correlated with the firm’s asset process . Kim et al (1993) allowed bankruptcy to be triggered at

an exogenously specified asset value. Leland (1994) and Leland and Toft (1996) used this type

of model, but with endogoneous conditions to define when bankruptcy is declared, to examine

how important is the maturity of the debt as well as the amount. The difficulty with this

approach is that it depends on knowledge of the firm’s assets, which are not tradable and are
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only partially observable. Also it has to deal with the often complex priority structure of a firm’s

liabilities.

The second approach assumes that on bankruptcy, the firm will pay off a pre-specified

fraction of the risk-free value of the instrument where bankruptcy is again triggered when the

firm’s assets first reach some specified limit. This idea, first developed by Hull and White

(1991) enables one to ignore the debt priority problem but still assumes knowledge of the asset

value stochastic process. The Hull and White model assumed independence of the stochastic

process giving the firm’s asset value and the process giving the risk-free values of the

instruments, which is essentially the process describing the interest rate movements. Longstaff

and Schwartz (1995) generalized the model by allowing non-zero correlations between the two

processes. Since in both these models bankruptcy occurs when the asset value, which is a

continuous process, hits a pre-specified limit, firms never default unexpectedly. For this reason,

Madan and Unal (1994) and Lando (1994), modeled the asset value as a jump process so that

the firm’s value can suddenly jump below the bankruptcy level.

The third approach ignores the asset value completely and again overcomes the debt

liability structure by assuming that on bankruptcy a given fraction of each promised dollar is

paid off. This approach assumes the bankruptcy process is specified exogenously and does not

depend on the firm’s underlying assets. (e.g. Jarrow and Turnbull (1995), Litterman and Iben

(1991)).  Lando’s thesis (1994) was the first to use the evolution of the firm’s credit rating as a

model for the bankruptcy process. In the second essay in his thesis, he develops a continuous

time Markov model in which he assumes the bankruptcy process and the process that gives the

risk free bond prices are independent. This model and a discrete time equivalent model appear

in the seminal paper by Jarrow et al (1997) but both assume independence between the interest

rate process and the credit rating process. This assumption means their model can not take into

account Duffee’s point (Duffee 1996) that “defaults are primarily driven by the business cycle,

which derives variations in the financial variables on which most derivatives are priced.

Benninga ( Chapter 17, 1997) develops a similar spreadsheet model for finding the expected

returns on a risky bond using the probabilities of default, the transition probabilities that the

bond’s credit rating will move from one level to another and the percentage recovery on the

face value of the bond.

Our paper extends the model in the Jarrow, Lando, Turnbull (1997) paper in two ways.

Firstly it allows dependency between the stochastic process describing interest rates and hence

the risk-free bond’s prices, and the stochastic process describing the movement in bond’s credit
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rating by linking them both to an underlying process which describes the state of the economy.

The transition probabilities between states in the two processes (interest rates and credit rating)

vary depending on the state of the economy process. This extension is Model 0 of section two.

Lando (1994) in the third essay of his thesis suggested a bond pricing model based on

survival analysis where the probability of a bond defaulting is given by a process whose

parameters can include interest rate information, although no empirical calculations are made

using this model. The interest rate information affects the probability of the bond’s credit rating

changing but if the rating does change it does not affect the probability of which rating it will

move to. Our model (Model 0 ) has a more indirect connection between interest rate and credit

ratings but one that allows more general interactions. We also investigate how good the

model’s bond prices fit with empirical data.

Two different versions of this extension which allows connection between interest rates

and credit rating changes are considered and one of them allows a re-interpretation of the risk

premium ideas suggested by Jarrow, Lando and Turnball (1997). In order to get their model to

give prices for the risky bonds that agreed with actual values, they modified the historically

derived transition matrix between ratings, PA by making it a mixture of this and the identity

matrix, namely π(t) PA + (1-π(t))I. They interpret the π(t) as risk premium but unfortunately

some of the risk premium are negative and others are very large. An alternative interpretation

is that this is an example of the mover-stayer Markov chain model (Frydman et al 1985 ) where

there is a heterogeneous set of bonds, some of which will never change their ratings (the

stayers) and others of which are ‘moving’ around. The view that the ratings of bonds will never

change is a very optimistic one because it guarantees that there will be no defaults. An equally

extreme but pessimistic view is that all bonds of the given rating will default at the next period.

Recently Kijima and Komoribayashi (1998) also identified that this might be a better choice of

risk premium than that suggested by Jarrow et al (1997). Model 1S ( S for subjective) of

section two allows for the pricing of the bonds to reflect the market’s relative belief between

the historic movements of credit ratings and both these two extreme alternatives. The risk

premium can then be interpreted as the belief the market puts on the extreme risky (or riskless)

future scenarios.

Empirical work on bond pricing requires one to calculate the zero-coupon prices for

risky bonds from the bonds in the market almost all of which have coupons. Longstaff and

Schwartz (1992) take averages of bond prices and coupon rates and average maturity over a

number of months and find the best regression fit. Jarrow et al (1997) takes the average price
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and average coupon rate for each combination of bond rating and maturity period and then

uses these values to solve a triangular system of equations to get zero coupon bond prices.

However both methods can lead to mis-pricing. The zero coupon bond prices need not

decrease with maturity or lower credit rating. One can overcome these difficulties and use the

full details of each bond in the market rather then average values by using linear programming

to find the zero-coupon bond prices which minimise the l1-average errors and ensure that no

mis-pricing can occur.

In the next section, the bond pricing models which allow for dependency between credit

rating movements and interest rate movements are introduced. Section three describes the

linear programming method of ensuring no mis-pricing when stripping out the coupons from

risky and riskless bonds. Section four describes the empirical data used to determine the

parameters of the bond pricing models outlined in section two. The results in terms of bond

prices and risk premium of using this data in the models of section two are also discussed.

Section five draws some conclusion.

2. Models of bond prices

The bond prices are modeled as a discrete time trading economy both because discrete

time simplifies the mathematics and because the credit rating information is summarized in

discrete time formats (see Standard and Poor (1997a)). There are three interconnected

processes which make up the model. Firstly the underlying economic conditions, Et, are

modeled as a discrete-time time homogenous Markov chain with two states {G(Good),

B(Bad)}. Let

g = Prob{Et+1 = GEt = G} b = Prob{Et+1 = BEt = B} (2.1)

The interest  rate process over time periods t = 0,1,2 … T is a generalization of the lattice

Markov chain model outlined in Pliska (Pliska, Ch.6, 1997). To be precise let It denote a

stochastic process with initial value I0 = 0 and state space I = {0,1, … T}. The transition

probabilities satisfy.

P{It+1 = n+1It = n, Et = G} = pg(t,n) for n ∈ I

P{It+1 = n It = n, Et = G} = 1–pg(t,n) for n ∈ I (2.2)

P{It+1 = n+1 It = n, Et = B} = pb(t,n) for n ∈ I

P{It+1 = n It = n, Et = B} = 1–pb(t,n) for n ∈ I
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Although It is neither time homogeneous nor a Markov chain, the process (It, t, Et) is

both a Markov chain and time homogeneous. The process It gives knowledge of the spot

interest rate r. If It = n, Et = G, then the spot interest rate is rt(n,G) while if It = n, Et = B, the

interest rate is rt(n,B). Moreover it implies knowledge of future interest rates so that if It = n,

Et = G, spot interest rates next period will be one of rt+1(n+1,G), rt+1(n+1,B), rt+1(n,G) and

rt+1(n,B). The transition probabilities defined in (2.2) are the conditional risk neutral transition

probabilities for the process.

The third process Rt describes the evolution of the credit rating of the bond. Assume

there are M+1 possible rating levels (0,1,2, … M) where 0 is the rating given to risk-free

government bonds. Risky corporate bonds have a rating from 1 (most secure – i.e. AAA in S

and P ) to M –1 (least secure – C-grade in S and P ), with M corresponding to bankruptcy. Rt is a

discrete time process which is almost a Markov chain since the transition probabilities are

defined by

P{Rt+1 = k Rt = j, Et = G} = pG
jk(t)

P{Rt+1 = k Rt = j, Et = B} = pB
jk(t) (2.3)

with ΣpG
jk(t) = ΣpB

jk(t) = 1 for all t.

Note that pG
00(t) = pB

00(t) = 1 and pG
MM(t) = pB

MM(t) = 1 for all times t. Thus (Rt, t, Et)

as well as (Rt, It, t, Et) are finite state stationary Markov chains. Unlike Jarrow et al (1997) the

rating process Rt and the interest rate process (It, t) are not now independent, but are related

through their mutual dependency on the economic conditions process Et. If we assumed Et has

only one possible state then this model reduces to the Jarrow model though no specific form of

the interest process is used there. Taking there to be only one economic state for the process Et

reduces the interest rate process (It, t) to the lattice interest rate model detailed in Pliska

(Pliska 1997). Having defined the evolution of the economic variables, it is now possible to

define and calculate the bond prices in the model.

Let Zs
t(n, E, j) be the time t price of a zero-coupon bond promising to pay a dollar at

time s when the bond rating is j at time t and the interest and economic conditions then are It =

n and Et = E, where E is either G, B or some distribution of belief over the two possibilities.

One feature of discrete time models is that several events occur in the same time period. One

can choose arbitrarily what the order of these events will be. We assume that Zs
t(n, E, j) is the

price of the bond at the beginning of period t, when the bond is redeemed at the end of period

s. During any period, we assume all changes of state occur towards the end of the period after
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the redemption date for that period, with first changes in interest rate It, then changes in rating

Rt and finally changes in the economic condition Et. If  a company  defaults, it is assumed that

a fraction f of the face value of the bond will be repaid.

In order for the discounted zero coupon bond prices to be free of arbitrage opportunities,

then they must be martingales, and so the price at any period must be the expected value of

future bond prices under the risk neutral probabilities. Using the sequence of events within a

period described above, this martingale requirement leads to the equations
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for 0 ≤ t ≤ s ≤T,   0 ≤ n ≤ t,   0≤ j ≤ M-1 (2.4)

where E = G or B and if E = G, e = g and Ec = B while if E = B, e = b, Ec = B.

Also following the ordering of events within a period, defined above, one gets

Zt
t(n, E, j) = 

)E,n(r1
1

t+
 if j ≠ M  and    Zs

t(n, E, M) =  f   ∀ t, s, n, E.     (2.5)

At  t = 0, assume  I0 = 0, and E0  is either G, B or a distribution (p, 1-p) over (G, B). The

prices of bonds at time t = 0  can be used to identify the prices of zero-coupon bonds  Zs
0(0,

E0, j)  by using methods discussed more fully in section three of this paper. Thus the model

appears to have 3+2T(T+1) + 2T(M-1)(M-2) parameters – g, b, f, 2T(T+1) parameters of the

form pg(t,n), pb(t,n), rt(n,G), rt(n,B), and 2T(M-1)(M-2) of the form pG
jk(t), p

B
jk(t) given

1)t(p)t(p B
jk

k

G
jk =∑=∑  .

Ideally the model will satisfy TM+1 constraints in that it should closely fit the zero

coupon bond prices Zs
0(0, E0, j), for s = 1, … T, and j = 0, M-1 and at time t = 0 satisfies (2.5).

Since there are more parameters than constraints one could expect to impose other conditions

on the parameters. However there is less freedom than seems the case. If for example the

transition matrices pG
jk(t) and pB

jk(t)  are assumed to be stationary and given by past history,

there should appear to be more than enough other parameters -  2T(T+1) + 3 - to satisfy

(M+1)(T+1) conditions. However, the number of parameters pg(t,n), rt(n,G) etc increases

linearly with  t, so there are only 3 parameters at t=0 to set the time-1 prices and only 8

parameters at t = 1 to set the time-2 prices. This is not enough to define the M+1 bond prices

given for each t-time for the early t-times.
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parameters  pg(t,n), rt(n,G)  etc. are more than

enough to define the risk-free bond prices Zs
0(0, E0, 0), and can help define good

approximations to the risky bond prices Zs
0(0, E0, j) j ≠ 0. This reflects the fact that there are

an infinite number of future stochastic evolutions of interest rates which give the current yield

curve for riskless government bonds, but there is information in the yield structure of the risky

bonds which helps define which evolution is being assumed by the market.

Model 1: Simple Model

One obvious way of simplifying the number of parameters in Model 0 is to assume the

rating transitions are stationary and the interest rate transitions are state independent. Also, one

can assume the underlying economic state of the system only affects the probability of changes

in the interest rates and not the interest rate levels. This corresponds to keeping  g, b, f  as in

model 0 and defining

pg(t,n) = pg(t); pb(t,n) = pb(t) ∀ n,t

(1 + rt(n,G)) = (1 + rt(n,B)) = (1 + rt(0))/c(t)n ∀ n,t, j, k, t (2.6)

The c(t)  can be interpreted as measures of the volatility of the time t spot interest rates.

One advantage of this model is that one can obtain the basic interest rate levels  rt(0)  as an

analytic expression of the other parameters, g, b, c(t), pg(t)  and pb(t). Before proving this

result note that the definition of  Zs
t(n,E,0)  and the assumption in (2.6) mean that we can

define zt(n) by

zt(n) = Zt
t(n,E,0) = )(0zc(t)

(0)r1

c(t)

E)(n,r1

1
t

n

t

n

t

=
+

=
+

(2.7)

Also define the vector
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t(n,0) = 








)0,B,n(Z
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s
t

s
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Lemma

i): Define the following 2x2 matrices:

Ps
t =  g(1-pg(t) + pg(t)c(t+1) … c(s)), (1-g)(1-pg(t) + pg(t)c(t+1) … c(s))

 (1-b)(1-pb(t) + pb(t)c(t+1).. c(s)), b(1-pb(t) + pb(t)c(t+1) … c(s)) (2.9)

then
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where e0 = (1,0)  if  E0 = G and  e0 = (0,1)  if  E0 = B.
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The lemma implies that under model 1 once the 3T parameters pg(t), pb(t), c(t), t=0,….T-

1  are given the parameters rt(0)  can be chosen to ensure the zero-risk bond prices are met.

We will assume the economy transition probabilities  g and b are given by estimating from

historic data. Thus all that remains to be fixed in the model are the rating transition matrices

pG
jk(t)  and  pB

jk(t).

This paper investigates two different ways of defining the rating transition matrices.

Model 1H: Historical Data

In this the transitions are estimated from the actual transitions in ratings in the past and

the transition matrices are assumed to be time-independent. Thus one defines the transition

matrices PAG,(PAB) – actual good (actual bad) - from actual historic data so that

PG
jk(t) = pAG

jk,   p
B

jk(t) = pAB
jk,  ∀t, 0≤j, k≤M

(2.13)

It is clear that this model cannot hope to obtain all the risky bond prices completely

accurately, as there are T(M-1) risky bond prices and now only 3T + 1 parameters available,

namely pg(t), pb(t), c(t), and f.

An alternative approach is to assume that the market does not accept that the historic

movements in ratings are the ones that will occur in the future. The markets view is a mixture

of beliefs, some based on historic movements, some on more extreme views of the movements.

We consider two extreme positions: catastrophe and no change.

The catastrophe view (C) is that in the coming year all risky bonds of all rating will

default. This corresponds to a transition matrix

PC
 = 

















01...0000

10...0000
10...0000

MM

The no change position (NC) is the lazy view that all bonds will keep the same rating in

the coming year and corresponds to as transition matrix PNC = I.
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Model 1S – Subjective Ratings

Assume that in the ‘good’ time periods, the market takes as the rating transition matrix, a

mixture of the historic rating changes in good times and the extreme view that there will be no

changes. In the ‘bad’ time periods, the market’s view is a mix of the historic rating changes in bad

periods and the extreme view that all bonds will default. We assume that the ratio of the

mixture can differ for different bond ratings and for different time periods. This leads to the

definition:

PG
jk(t) = πG(j,t)  pNC

jk + (1-πG(j,t)) pAG
jk

PB
jk(t) = πB(j,t)  pC

jk + (1-πB(j,t)) pAB
jk .

(2.14)

The values  πG(j,t), πB(j,t)  could then be considered a type of risk premium measure. In

this case, it is how much weight the market puts on the extreme view of the future. In fact, one

can reinterpret the risk premium which Jarrow et al (1997) introduced into their paper as 1-

πG(j,t)  in this formulation if one assumes the only underlying state is G. This may explain why

they end up with negative risk premium in their calculation. They have only allowed for the

market to have a more optimistic view than the historic one of the future. This reinterpretation

however only makes sense if πG(j,t) ≤ 1 whereas Jarrow et al (1997) allow values greater than

1. Model 1S seeks to allow the market to have both a more optimistic and a more pessimistic

view of the future than was the historic average and for simplicity restricts optimistic views to

good years and pessimistic views to bad years..

3. Using Linear Programming to strip out coupons

Models of bond prices take zero-coupon bonds as their basic entity, whereas most bonds

have coupons which involve part payments during the life of the bond, as well as the

redemption value to be paid on maturity. Thus there is a need to strip out the coupons and

calculate what the market price of the bond implies about the value of a bond that will just pay

1 unit at time t. Some authors (Longstaff, Schwartz (1995 )) take the average bond price,

coupon rate and maturity each month for over a given time period and fit a regression line. The

data however will include the changes over time in market sentiment and so does not reflect

the position at a given time. Jarrow, Lando and Turnbull (1997) split bonds into classes
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depending on their credit rating and their maturity. For each class the average market price and

average yield were taken to be the values for bonds of that rating and maturity. Solving a

triangular system of equations gave the zero-coupon bond prices. However, there was some

mis-pricing of their bonds with their calculated zero-coupon bond prices not necessarily

increasing as the credit rating improved nor decreasing as maturity increased. Alderson and

Zivney (1994) report similar examples of mis-pricing in junk bonds and they show that

reported bond yields depend on which investment strategies are assumed.

One can set up the problem of stripping out the coupons to get zero-coupon bond prices

from bonds with coupons as a linear program, in the following way. Assume bonds are given

one of M credit ratings 0, 1, 2, … M-1 (credit rating M corresponds to default). Suppose there

are N bonds and all have maturity and coupon payments within the next T periods. Assume

bond i 1 ≤ i ≤ N has a current market price of pi, a credit rating of d(i) and the coupons and

redemption payments involve a payment of  ci(t) in period t, t = 1, … T. Let Rj = {i d(t) = j} j =

0, … M-1 be the set of bonds with rating j. Let the present value of a zero-coupon, j-rated bond

which pays one unit at time t, be vj(t), j = 0, … M-1, t = 1, … T.

Ideally one has

N1i)t(v)t(cp )i(di
1t

T
i K=∀∑=

=
(3.1)

However, one cannot guarantee this will occur, so instead one requires

∑ +=+
=1t

i)i(di
T

ii b)t(v)t(cap (3.2)

where ai ≥ 0, bi ≥ 0 are the ‘above’ or ‘below’ errors in the market price.

Thus one can find vj(t) j = 0,…M-1, t = 1,…T by solving the following linear program, LP1.
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where m(t) is the minimum possible interest rate in period t.
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(3.3) guarantees that the zero-bond prices satisfy the obvious financial maturity requirements.

If m(t) = 0, (3.3) reduces to the requirement that the price of bonds decreases with increasing

maturity. Conditions (3.4) ensure that there is no mis-pricing on credit ratings so the bonds

with the best (lowest) credit rating have the highest prices.

The linear program has MT+2N variables and N+M(T-1) + (M-1)T constraints. Such

programs can be solved by dedicated linear programming solvers or by solvers in spreadsheet

packages such as EXCEL. The solver in EXCEL 97 can only deal with 200 variables, so only

less than 100 bonds can be dealt with at a time.. However, one can solve the problem as a set

of nested linear programs if one has more than 100 bonds, by solving first the prices of the 0-

rated bonds only, dropping constraint (3.4) and applying (3.2) only to i ε R0. Then solve for

the v1(t) only replacing (3.4) by  v1(t) ≤ v0(t), t=1, … T where v0(t) was obtained from the

previous linear program and (3.2) only holds for i ε R1. Repeating this procedure for all the

ratings in turn corresponds to solving LP1 but with an objective function

)b(aLMinimise i
Ri

ij
0j

1M

j

+∑∑
∈=

−

where Li is an order of magnitude greater then Li+1 for i=0, … M-2.

The linear program LP1 gives the prices that best fit the actual bond data in the sense of

minimising the average absolute error, while also ensuring there is no mis-pricing.

4. Data and results of an example using US bond prices

The models of section two and three were applied to data on US bond prices and credit

ratings obtained from DATASTREAM and Standard and Poor (Standard and Poor 1997a,

1997b) respectively. 64 of the US Treasury Bonds which make up the DATASTREAM US

yield curve data set in 1995 and 1996 were taken as the riskless bonds. Their market price on

3rd July 1996 was taken -the data being chosen as an example of a mid-week, mid-year, pre-

holiday period. The set of risky bonds satisfied three criteria. They were in the

DATASTREAM database of US industrial and US financial bonds; their market prices and

S&P rating for 3rd July 1996 were available; there were no callable dates. The extra option that

being callable gives a bond is more difficult to strip out of the price than the coupons. There

were 178 such bonds in total (7 rated AAA, 24 rated AA, 61 rated A, 68 rated BBB, 12 rated

BB, 6 rated B). DATASTREAM does not usually record the prices of C-rated speculative
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bonds but there were 8 bonds in the set that moved from C to investment grade or vice versa

during the year (Standard and Poor 1997b) and hence we were able to obtain the 1996 market

price when they were C-rated.
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TABLE 1 Zero-coupon bond prices

Year 1996 9197 1998 1999 2000 2001 2002 2003 2004
RISKLESS 0.9713 0.9187 0.8827 0.8300 0.7760 0.6979 0.6754 0.6305 0.5638
AAA 0.9713 0.9187 0.8821 0.7939 0.7667 0.6979 0.6521 0.6208 0.5638
AA 0.9713 0.9187 0.8821 0.7939 0.7667 0.6979 0.6521 0.6117 0.5638
A 0.9713 0.9187 0.8786 0.7939 0.7645 0.6814 0.6521 0.5949 0.5638
BBB 0.9713 0.9187 0.8309 0.7939 0.6879 0.6810 0.6476 0.5865 0.4931
BB 0.9713 0.9147 0.7936 0.7857 0.6590 0.6296 0.6233 0.5865 0.4931
B 0.9713 0.9147 0.7936 0.7857 0.6590 0.6296 0.6233 0.4126 0.4085
C 0.9713 0.7110 0.6723 0.6656 0.6590 0.5722 0.4362 0.4098 0.4058
Year 2005 2006 2007 2008 2009 2010 2011to20 2021+
RISKLESS 0.5435 0.5147 0.5046 0.4947 0.4850 0.4755 0.2317 0.1402
AAA 0.5419 0.4789 0.4039 0.3999 0.3959 0.3920 0.2317 0.1402
AA 0.5419 0.4789 0.4039 0.3999 0.3959 0.3920 0.2317 0.1259
A 0.4994 0.4789 0.4039 0.3999 0.3467 0.3433 0.2087 0.1259
BBB 0.4882 0.4789 0.4039 0.3825 0.3467 0.3387 0.2087 0.1259
BB 0.4045 0.3978 0.3938 0.3825 0.3467 0.3387 0.2087 0.1259
B 0.4045 0.3978 0.3938 0.3825 0.3421 0.3387 0.2087 NA
C 0.4017 0.3978 0.3938 NA NA NA NA NA

The linear program developed in section three was applied to the 250 bonds in total, and

the zero-coupon prices for each individual year 1996 to 2010, one common price for years

2011 to 2020, and one common price for all years beyond 2020 were calculated. It was

assumed that there would be no bankruptcies in the rest of 1996 so vj(1996) was assumed

constant for all ratings j. The results are given in table 1 where there was no price available for

C-rated zero-coupon prices beyond 2007 because there were no such bonds with maturity

beyond this date.

The yield curves for the various rated bonds are given in Figure 1.

Figure 2 graphs the spreads for risky bonds for their yields compared with those riskless

bonds. The curves are not smooth and the spreads of differently rated bonds converge and then

separate at several points but the general shape seems reasonable. The highest spread is for the

C-rated bonds of early maturity and in general the spreads for these bonds decrease with time.

The lowest spreads are for the AAA-rated bonds of early maturity and these spreads slowly

increase with time. Note that the linear programme derives the same values for the price of C-

rated bonds with a greater than twelve year maturity as for B-rated bonds of the same maturity

because there were no examples of the former for the linear programme to use.
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The data for the rating process was obtained from the Standard and Poor Rating

Performance (S&P 1997a) which gives the number of bonds making each possible annual

ratings transition for the years 1981-1996. The decision on which were the ‘good’ and ‘bad’

years in the underlying process used two sets of data. Firstly the annual rating transitions

were investigated and % downgradings +% defaults -% upgradings taken as a measure of the

ratings changes in that year. The years were then ordered according to this measure and the

highest rated were taken as good. Secondly, after examining Dow Jones Index long-term and

short-term interest rates, US unemployment data, US CPS Industry Production, leading

indicators and yield spreads, we classified the years as good or bad. With one change, the two

Figure 1:Bond Prices from Linear Programming
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sequences agreed with one another with the ratings sequence lagging one year behind the

subjective economic sequence. This lagged economic sequence was thus used and 81, 84, 87,

92, 93, 94, 96 were classified as good years and 82, 83, 85, 86, 88, 89, 90, 91, 95 classified as

bad. Totaling the annual bond ratings changes for these two sequences separately and then

translating into percentages led to the annual transition matrices for good and bad years

respectively given in table 2. In this table the rows represent the bond rating at the beginning of

a year and the columns represent the bond rating at the beginning of the next year, while the

values are the probability of such a transition in good and bad years.

TABLE 2: Credit ratings transition matrices for good and bad years

Good AAA AA A BBB BB B C DEFAULT
AAA 0.898588 0.09371 0.006418 0.001284 0 0 0 0
AA 0.007007 0.923331 0.065952 0.00371 0 0 0 0
A 0.000448 0.021281 0.933692 0.039651 0.002912 0.001568 0.000224 0.000224
BBB 0.000351 0.001405 0.053057 0.896697 0.040408 0.007027 0.000351 0.000703
BB 0.000491 0.001473 0.004912 0.078094 0.828094 0.079077 0.005403 0.002456
B 0 0 0.004162 0.005945 0.087396 0.837099 0.026754 0.038644
C 0 0 0.004651 0.004651 0.027907 0.15814 0.64186 0.162791

Bad AAA AA A BBB BB B C DEFAULT
AAA 0.915984 0.07377 0.008197 0 0.002049 0 0 0
AA 0.006141 0.896622 0.085977 0.007506 0.001024 0.002388 0.000341 0
A 0.00119 0.026775 0.896271 0.06188 0.010115 0.002975 0 0.000793
BBB 0.000323 0.004523 0.063974 0.853958 0.058158 0.014216 0.001939 0.002908
BB 0 0.000936 0.007491 0.072566 0.802903 0.084738 0.013577 0.01779
B 0 0.001665 0.001249 0.003331 0.054538 0.822648 0.04746 0.069109
C 0.003401 0 0.006803 0.017007 0.027211 0.078231 0.598639 0.268707
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One can check using χ2 tests that the transitions for a given row are significantly different

in the two matrices.

Looking at the pattern of good and bad years in the sequence which gives these

transition matrices and adding in years 1980 and 1997 both of which are classified as good

years enables us to estimate g and b.  There are 5 times a bad year is followed by a bad year

and 4 times it is followed by a good year. Good years were followed by good years 4 times and

by bad years 4 times. This data leads to the estimates g=4/8 and b=5/9. We assume that in mid-

1996 when the bond prices are taken it is not yet clear if the economic conditions in 1996 are

good or bad and so we assume that since 1995 was a bad year the chance 1996 is bad is 5/9.

Hence we assume E0=(4/9, 5/9). and the price of j-rated t-maturity zero-coupon bonds in 1996

is taken as 4/9Zt
0(0,G,j)+ 5/9Zt

0(0,B,j).

The effect on the rating transitions of a hidden underlying 2-state model of the economy

can be shown by looking at the survival probabilities ( i.e. the probabilities of not defaulting )

after t periods for bonds rated j now. Figure 3 shows the results of this for the 2-state model

starting in a good year .One can do similar calculations for both the 2-state model starting in a

bad year and the 1-state model where one calculates the transition matrix from all years put

together The one-state survival probabilities all lie below the two-sate survival probabilities

when the current year is assumed good and are all above the two-state survival probabilities
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when the current year is bad, The largest differences in the three graphs occur in the early years

of B and C rated bonds. Of course eventually the survival probabilities will become 0 for all

ratings in both models since in both cases the ratings process is an absorbing Markov chain.

All the parameters in the ratings and the underling economic processes have been defined

above from historical data. The only parameters left to be defined in Model 1H are those

describing the interest rate process -c(t), pg(t), pb(t)  for all t up to T- and f, the fraction of the

face value repaid if a bond is defaulted. We will concentrate on the time interval 1996 –2006, so

seek to build a model that matches the July 3rd 1996 bond prices for zero-coupon bonds

maturity at the end of each of these 11 years. Our ordering of the events during a year means

that no bond will default during the rest of 1996 and hence the price of bonds maturing in this

period is the same for all credit ratings. This follows from (2.5) and the discussion preceding it.

One possible approach is to choose reasonable values for the interest rate parameters and

find the value of f that gives the best match with the prices obtained in Table 2. As an example

we chose c(t)=1, pg(t)=0.6, pb (t) =0.4  for all t and then find the value of f which minimises the

mean square error (MSE) over the 8 different ratings (T-bill, AAA, AA, A, BBB, BB, B, C)

and the 11-years of the models zero-coupon bond prices compared with the actual bond prices.

The best value is f= 0.3631 with error 0.001200 and the implied risk free interest rates and

bond prices are given in Table 3.

TABLE 3: Parameter values for Model 1H with optimal f and chosen c,p.

96 97 98 99 2000 2001 2002 2003 2004 2005 2006
c(t) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.pg(t) 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
.pb(t) 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
r(0)% 2.95 5.73 4.07 6.35 6.96 11.19 3.33 7.11 11.84 3.73 5.60
g= 0.50 b= 0.56 f= 0.36 MSE= 0.001200

One can seek a better fit by optimizing over the interest rate parameters as well as f.

There are limits on the parameters – the pg(t), pb(t) must be probabilities and c(t) must be less

than or equal to 1 in order that the actual interest rates  rt(n,E) are monotonically increasing in

n, which ensures that the interest rates rt(n,E) reflect the underlying ordering in the interest rate

space I.. To avoid the modeling partially collapsing to a deterministic one we will in fact

impose 0.05≤ p g(t), pb(t) ≤ 0.95. and to ensure volatility is not too great we require c(t) ≥ 0.5.
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Finally to ensure consistency with the assumptions underlying the derivation of the real zero-

coupon prices we will assume the risk-free spot interest rates in all years are at least 1%. Using

the non-linear solver in Excel gives the parameter values in Table 4 as the ones that minimise

MSE with a MSE value of 0.000856.

TABLE 4:Parameter values for model 1H with optimal f, c and p.

96 97 98 99 2000 2001 2002 2003 2004 2005 2006
c(t) 1.00 0.97 0.97 1.00 1.00 1.00 0.98 0.96 0.98 0.99 1.00
.pg(t) 0.14 0.95 0.05 0.05 0.05 0.05 0.05 0.95 0.21 0.60 0.61
pb(t) 0.95 0.92 0.05 0.05 0.05 0.05 0.05 0.28 0.05 0.35 0.46
r(0)% 2.95 5.31 1.00 6.35 6.96 11.19 1.00 1.00 7.12 1.00 5.60
g= 0.50 b= 0.56 f= 0.4387 MSE 0.000856

The results of table 4 suggest a model where the interest rates are expected to rise

considerably in the years 1999-2001 and in all years except 96 the chance of interest rates

rising is higher if it is good year than if it is a bad year.

In section two it was pointed out that one could not match all the bond prices with the

historical model 1H but a nearer fit may be possible if one allowed subjective views of the

future ratings transitions as suggested in Model 1S. Initially one would expect that with the

extra flexibility that the risk premiums parameters, πG(j,t), πB(j,t) give one could match the real

prices exactly. The time 1-risk premiums πG(j,1), πB(j,1) can be used to match the time-1 bond

prices Z0
1(0,E0,j), then the time-2 risk premiums can be defined to get the time-2 maturity

bonds and so on. In each case the bond price is a linear function of the corresponding risk

premium and so the solution can be obtained by solving linear equations or by linear

programming. However since (2.5) implies the 0-maturity bond prices are the same for all

ratings, the risk premium πG(j,t) in the good state has no effect if it is defined in this way unless

there is a chance there is an immediate transition to the default state M. From Table 2 one can

see that there is no such chance of default for AAA and AA bonds. A second problem is the

stability of such a calculation. The time-1 risk premiums are set by the time-1 bond prices but

they in turn are a factor in all the longer maturity bonds. Any error in the time-1 bond prices is

then reflected in the time-1 premium and the time-2 premium have to correct for these if they

want to match the time 2 bond prices. Thus any errors grow as the risk premiums seek to

compensate for errors in earlier risk premiums.
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TABLE 5: risk premium using interest rate date of table 3

πG 96 97 98 99 0 1 2 3 4 5
AAA 0 0 0 0.0006 0.0237 0.0270 0.0195 0.0159 0 0
AA 0.0185 0 0 0 0 0 0 0.2503 0 0
A 0.1026 0 0 0 0 0 0 0.2513 0 0
BBB 0 0 0 0 0 0 0 0 0 0
BB 0.2616 0.2600 0.2645 0.2714 0.3008 0.0353 0 0 0.0940 0
B 0 0 0 0 0 0 0 0.5166 0.9802 1
C 0.1647 0.5050 0.7201 0.4875 0.6492 0.4439 0.3853 0.3836 1.0000 1
πB

AAA 0.0023 0.0015 0.0673 0 0 0 0 0 0 0.148228
AA 0.0091 0 0.0593 0 0 0 0 0 0 0.239304
A 0.0167 0 0.0784 0 0 0.0142 0.0767 0 0 0
BBB 0 0.1578 0 0.0214 0 0 0 0.0638 0 0
BB 0 0.2378 0 0 0 0 0.3763 0.2638 0 0
B 0 0 0 0 0 0 0.7824 0.0000 0 0
C 0.1407 0 0 0 0 0 0 0 0 0
c(t) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1
.pg(t). 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6
.pb(t). 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4
r(0)% 2.9548 5.7256 4.0726 6.3550 6.9631 11.1916 3.3336 7.1093 11.8366 3.731883
g= 0.5000 B= 0.5556 f= 0.3631 MSE= 0.000565

An alternative is to give up the advantage of linearity and use all the risk premia to match

all the bond prices in one go. Since bond prices of maturity t depend on products of the risk

premium for all times up to t this is a non-linear problem. One can solve the problem using

non-linear algorithms including the ones in Excel. This is the approach we adopt here.  Table 5

shows the risk premia that arise if one uses the data for the interest rate process given by Table

3. Using risk premia reduces the Mean Square Error over the 88 prices to 0.000565.

Table 6 shows the results when the data of table 4 which was the interest rate parameters

that minimized mean square error the most were used . In this case the adding of risk premium

brings the MSE down from 0.0008564 to 0.000533.

TABLE 6: Risk premium using risk data of Table 4

G 96 97 98 99 0 1 2 3 4 5
AAA 0.0002 0.0002 0.0003 0.0571 0.0767 0.0715 0.0622 0.1823 0 0
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AA 0.3685 0.0418 0.0001 0.0001 0 0 0.0001 0.2501 0 0
A 0.1730 0 0 0 0 0 0 0.2513 0 0
BBB 0 0 0 0 0.0335 0 0 0 0.0043 0
BB 0.2623 0.2623 0.2667 0.2764 0.1682 0 0 0 0.1526 0.0050
B 0 0 0 0 0 0 0 0.5940 1.0000 1.0000
C 0.1675 0.5462 0.7365 0.4559 0.6651 0.4490 0.7031 0.3953 1.0000 1.0000
πB

AAA 0 0 0 0 0 0 0 0 0 0.0045
AA 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0
BBB 0 0.0883 0 0 0 0 0 0 0 0
BB 0 0.1799 0 0.0582 0 0 0.1545 0.0392 0 0
B 0 0 0 0 0 0 0.7839 0 0 0
C 0.2724 0 0 0 0 0 0 0 0 0

c(t) 1.0000 0.9725 0.9725 1.0000 1.0000 1.0000 0.9822 0.9561 0.9774 0.9867
.pg(t) 0.1446 0.9500 0.0500 0.0500 0.0500 0.0500 0.0500 0.9500 0.2125 0.6000
.p b(t) 0.9500 0.9234 0.0500 0.0500 0.0500 0.0500 0.0500 0.2802 0.0500 0.3512
r(0)% 2.9548 5.3055 1.0000 6.3550 6.9631 11.1916 1.0000 1.0000 7.1243 1.0000
g= 0.5000 B= 0.5556 f= 0.4387 MSE= 0.000533

Instead of first finding the interest rate data that best fits the bond price structure and

then finding the best risk premium for this interest rate data, one could seek to optimize over

interest rate data and the risk premium at the same time to try and find a good fit to the bond

price structure. Table 7 gives the results of doing exactly that and leads to a fit where the Mean

Square Error is 0.000198.

Most of this error  - the total square error over the 88 bond prices is 0.01744 – is in the

fitting of the B and C rated bonds. There were not many of these in the original sample and

their zero-coupon prices are the most suspect since they are not underpinned by prices of

lower rated bonds. The parameters can be chosen so that the total square error over the 66 BB

and higher rated bond prices is 0.002739 which corresponds to a mean square error of

0.000034.

TABLE 7: Risk premia when optimizing over both risk and interest rate parameters

πG 96 97 98 99 0 1 2 3 4 5
AAA 0 0 0 0.0111 0.0309 0.0265 0.0109 0.0348 0 0
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AA 0.4139 0 0 0 0 0 0 0.5266 0 0
A 0.2771 0.2906 0.0135 0 0 0 0 0.2518 0.0129 0
BBB 0 0 0 0 0 0 0 0 0.0156 0
BB 0.2600 0.2614 0.2607 0.2640 0.2701 0.2885 0.0067 0.1982 0.1513 0.0020
B 0 0 0 0 0 0 0 0.5230 1.0000 1.0000
C 0.2876 0.5665 0.9773 1.0000 1.0000 0.0000 1.0000 0.2201 1.0000 1.0000
πB

AAA 0.0371 0.0604 0.2568 0 0.1554 0.2114 0.0299 0.2438 0.0186 0.3651
AA 0.0333 0.0610 0.2761 0 0.1098 0.2451 0 0 0 0.7921
A 0.0510 0.0444 0.2742 0.0295 0.1862 0.1455 0.5496 0 0 0
BBB 0 0.3284 0 0.3350 0 0 0 0.4111 0 0
BB 0 0.4091 0 0.4530 0 0 1.0000 1.0000 1.0000 0
B 0 0.2138 0 0.3097 0 0 1.0000 1.0000 1.0000 0
C 0.6006 0 0 0 0 1.0000 1.0000 0.3708 0.6164 0.1009
c(t) 1.0000 0.9810 0.9704 0.9517 0.9485 0.9177 0.9819 0.9659 0.9477 0.9862
.pg(t) 0.9500 0.0500 0.0500 0.0500 0.0500 0.2495 0.9161 0.4390 0.0500 0.4886
.pb(t) 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.2620
r(0)% 2.9548 3.8136 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1
g= 0.5000 b= 0.5556 f= 0.5072 MSE= 0.000198

Comparing the risk premia in Tables 5,6 and 7 the only noticeable feature in table 5 ,

where all but one of the interest rate parameters were fixed is that the premia suggest the

market is overly optimistic about the survival of C-rated bonds. This over-optimism of the

market is much more marked in Table 6 where the interest rate parameters are those that best

fitted the bond prices. 38 of the 70 possible πG(j,t) are non-zero including the C-rated ones for

all times t while only 8 of the 70 πB(j,t) are non-zero. So on balance the prices reflect a market

that is much more likely to accept there will be no change in bond ratings than one that is

worrying that they will default. The interest rate parameters show the market expects a large

rise in interest rate in the 1999-2001 period. When as in Table 7, one allows both the interest

rates and the risk premium to be moving at the same time to find a best fit to the prices, one

gets a fit where the error decreases by 60%. However what happens is that the risk premium

seek to describe not just the spread between the differently rated bonds but also the term

structure of all bonds. Thus the interest rate parameters in this case suggest an interest rate

structure that is essentially deterministic and flat. All the uncertainty in it has been translated

into a much more complex risk premium structure.

One can recover the model with only one underlying economic state ( which is akin to

the Jarrow model ( Jarrow et al 1997)) by setting g=1 and starting in state E0 = G. The results

of doing this and finding the best fit to the bond prices over f, c(t) and  pg(t), pb(t) are given in
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Table 8. Comparing the results with the comparable 2-state model in Table 4 one finds the

MSE is now 0.001231 whereas the 2-state model has a MSE of 0.000856 which is 30% lower.

TABLE 8: Parameter values for 1-state model with optimal f, c and p

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
c(t) 1 1 1 1 1 0.97 0.99 0.98 0.97 0.99 0.99
.pg(t) 0.95 0.95 0.95 0.57 0.13 0.05 0.05 0.28 0.56 0.59 0.6
.r(0)% 2.95 5.73 4.07 6.36 6.96 1 1 1 1 1 1
g= 1 f= 0.40669 MSE= 0.001231

The improvement the 2-state model makes over the 1-state model is even more marked

in the results with risk premia, where we follow the Jarrow model and only allow the more

optimistic extreme view in the good state. πG is the probability in our model that the market is

taking the no change view in the good state. Table 9 gives the risk premia values and all the

other parameters which best fit the bond prices in the 1-state model obtained by taking g=1. In

this case the mean square error (MSE) of the 1-state model is 0.001003 while that for the 2-

state model is 0.000198 – a cut in the error of 80%.

TABLE 9: Risk premia for 1-state model optimizing over all parameters

Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
AAA 0 0 0 0 0 0 0 0 0 0
AA 0 0 0 0 0 0.0002 0 0 0 0
A 0 0 0 0 0 0 0.2576 0 0 0
BBB 0 0 0 0 0 0 0 0 0 0
BB 0 0 0 0 0 0 0 0 0 0
B 0.4040 0 0 0 0 0 0 0 0 0
C 0 0.0580 0.4239 0.1446 0.2304 0 0 0 0 0
c(t) 1 1 1 1 1 0.9541 0.9891 0.9728 0.9541 0.9880
.pg(t) 0.05 0.05 0.95 0.9497 0.05 0.05 0.05 0.05 0.05 0.05
.r(0)% 2.95 5.73 4.07 6.35 6.96 1.00 1.00 1.00 1.00 1.00
g= 1 F= 0.407538 MSE= 0.001003
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5. Conclusions

The previous sections develop a hidden Markov chain model for the term structure of

credit risk spreads further extending the ideas in Lando (19994), Jarrow and Turnbull (1995)

and Jarrow, Lando and Turnbull (1997). This model allows dependency between the rating

process and the interest rate process through their joint dependency on a state of the economy

process. The paper also provides a reinterpretation of the idea of risk premia introduced

therein as the chance the markets view of the rating changes is more extreme than has been the

case in the past. The paper also uses linear programming to provide a way of stripping the

coupons for bonds in such a way as to minimise the mean absolute errors and at the same time

ensure there is no mis-pricing of the zero-coupon bond prices
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