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Abstract

This paper proposes a two-factor hazard-rate model, in closed-form, to price
risky debt. The likelihood of default is captured by the firm’s non-interest
sensitive assets and default-free interest rates. The distinguishing features
of the model are threefold. First, impact of capital structure changes on
credit spreads can be analyzed. Second, the model allows stochastic interest
rates to impact current asset values as well as their evolution. Finally, the
proposed model is in closed form enabling us to undertake comparative statics
analysis, compute parameter deltas of the model, calibrate empirical credit
spreads and determine hedge positions. Credit spreads generated by our
model are consistent with empirical observations.



1 Introduction

This paper proposes a simple closed form credit spread model with realistic
short maturity spreads that are related to the structural characteristics of
the firm’s economic environment and accommodates stochastic interest rates.
The distinguishing feature of the model is that it incorporates the attractive
features of the diffusion based models (Merton (1974) and Longstaff and
Schwartz (1995)) with the hazard rate approach (Jarrow and Turnbull (1995),
Madan and Unal (1998), Duffie and Singleton (1999)).

Diffusion-based models of pricing risky debt define default as occurring
either at maturity (Merton (1974)) or when the firm’s asset value diffuses to
a prespecified default boundary for the first time (Longstaff and Schwartz
(1995)). An attractive feature of these models is that they express the de-
fault time in terms of firm specific structural variables.! These models can
then answer questions about the implications for debt pricing of changes in
firm specific variables such as capital structure reorganizations. However,
this important feature is compromised by their inability to generate realistic
credit spreads in the shorter term although Longstaff and Schwartz (1995)
did succeed in obtaining such spreads in the medium term. In these models,
time needs to pass to allow assets to diffuse for the default probability to ma-
terialize. Equivalently the probability of a positive-equity firm defaulting in
the near term is negligible leading to near zero spreads for short maturities.?

The recent hazard rate approach to pricing risky debt of Jarrow and
Turnbull (1995), Madan and Unal (1998), and Duffie and Singleton (1999),
develops a class of models that allow for the possibility of default in the
immediate future.®> This literature proposes an exogenous model for the
hazard rate, which is the likelthood of the firm defaulting over the next period.

L A non-exhaustive list includes Cooper and Mello (1992), Kim, Ramaswamy and Sun-
deresan (1993), Hull and White (1995), Leland (1994), Longstaff and Schwartz (1995),
Leland and Toft (1996) and Briys and de Varenne (1997).

2This deficiency has long been recognized and diffusion based models are commonly
criticized for this characteristic. For example, the theoretical yield curves reported in Kim,
Ramaswamy and Sundaresan (1993) and Longstaff and Schwartz (1995) report zero credit
spreads for maturities up to 4 years and remain below 50 basis points up to ten years for
high rated firms. The classical reference for low spreads in this literature is Jones, Mason,
and Rosenfeld (1984).

3In recent years an extensive literature developed incorporating the hazard-rate ap-
proach, including Artzner and Delbaen (1995), Lando (1997), Nielsen and Ronn (1995),
Das and Tufano (1996), Jarrow, Lando, and Turnbull (1997), and Duffie and Lando (1997).



A major advantage of this approach is that they generate realistic short
maturity credit spreads. However, these models lack a structural definition
of the default event. As a consequence, the resulting hazard rate model
is a reduced form with parameters that lack a structural interpretation and
hence offers no guidance in the presence of a structural change in firm specific
variables.

This paper seeks to propose a structural hazard rate model in closed form.
The key assumption of the paper is that default is a consequence of a single
jump loss event that drives the equity value to zero and requires cash outlays
that can not be externally financed. A case in point is the near default of
Long Term Capital Management, resulting from an adverse movement in
interest rates. Another case is that of Barings where a large trading loss
forced bankruptcy. Both these examples illustrate the phenomena of default
arising from the arrival of an unforeseen loss. Such a sudden fatal loss can
be caused by numerous surprise events including the outcome of lawsuits,
unexpected devaluations, sudden default of a creditor, supplier or a customer,
and catastrophes in production lines.

The model has a number of attractive features. First, consistent with
the hazard-rate literature, the probability of such sudden loss arriving unex-
pectedly is captured in the pricing equations by “discounting” the promised
payments by the hazard rate.* We endogenously derive the stochastic hazard-
rate as a function of the firm’s non-interest sensitive asset values and stochas-
tic default-free interest rates. To achieve this we use a simple equity valuation
framework and show that the hazard rate can be expressed as a first order
approximation to the probability that a sudden loss exceeds the level of eq-
uity. Hence, we differ from Madan and Unal (1998) in that the parameters
of the hazard process are interpretable and can be linked to firm specific in-
formation such as the firm’s equity value, duration gap, the loss distribution,
and its arrival rate. We also differ from Zhou (1997) and Duffie and Lando
(1997) by not modeling default as occuring on first passage of value to a
default boundary, but rather as a cash shortage caused by a loss arrival.

Second, our treatment of the interest-rate risk differs from the previous
literature that explictly allows for the relationship between credit spreads
and default-free interest rates (Longstaff and Schwartz (1995) and Kim, Ra-

4 Alternatively, one may obtain short maturity credit spreads by modeling the asset
value process as a jump diffusion (see for example Zhou (1997)) but this comes at the cost
of tractability, as one must allow for multiple jump events in the determination of asset
values.



maswamy and Sundaresan, 1993). In this literature because current asset
values are assumed not to be interest sensitive (or they have zero duration)
the firm’s duration gap is implicitly assumed to be negative. Hence, these
models would predict that an increase in interest rates benefits the firm’s eq-
uity and reduces credit spreads. This is an overly simplified assumption and
to the extent that a firm’s assets have durations exceeding that of liabilities
then such predictions will not be correct.® We allow for this possibility by
letting the firm hold interest sensitive assets (such as marketable securities
and growth opportunities).The resulting model can capture the impact of
changes in default free interest rates on negative as well as positive duration
gap balance sheets.

Finally, the proposed model, by virtue of its closed form, enables the
researcher to undertake comparative statics analysis and enhances the em-
pirical applicability of the model. Because the parameters have economic
meanings, impact of policy changes and structural shifts can also be readily
identified with a closed form model. In addition, hedge ratios and parameter
sensitivity of credit spreads are easily computable.

The flexibility of the model is demonstrated by calibrating the model to
data on the term structure of credit spreads. We observe that sufficiently rich
term-structure of credit spread shapes can be fitted to data and large term
premiums of up to 200 basis points can be obtained. We also undertake factor
and parameter sensitivity analysis. They show that the proposed model is
quite promising in its applications to explain short term credit spreads. We
demonstrate the application of the model in constructing hedge ratios to
manage credit risk.

The paper is organized as follows: Section 2 provides the framework we
adopt to pricing risky-debt. Section 3 defines the default event in a hazard
rate context. Section 4 develops the risky-debt equation and presents an
analysis of the resulting credit spreads. Strategies for hedging the model’s
factor risks are demonstrated in section 5. Section 6 concludes.

5The empirical evidence on the relationship between credit spreads and interest rates
is mixed. Duffee (1998) reports a negative relationship, Morris, Neal and Rolph (1998)
present evidence of a positive long run relationship. However, these empirical tests do not
control for equity duration gaps.



2 The Framework

Consider a frictionless economy with the time horizon [0,Y]. Traded in
this economy are two classes of zero-coupon bonds: default-free and risky.
Default-free bonds pay a sure dollar at time 7', for 0 < T < T, with time
t prices for maturity (7 = T —t) given by p(¢,7). A money-market account

t
also exists and its time ¢ unit account value is given by B(t) = exp( [ r(u)du),
0

where 7(t) is the default-free instantaneous spot interest rate. Let v(t,7) be
the time ¢ price of a zero-coupon bond subject to default risk, promising
to pay a dollar at time 7. Default occurs at a random time z, z < T, and
a percentage write-down w is applied to the security. The write-down is
measured in terms of equivalent time 7T dollars lost per unit of promised
face, F. In other words, bondholders receive reduced face of wF at T'. This
is the formulation referred to in Duffie and Singleton (1999) as “Recovery of
Face Value.” The alternative definition “Recovery of Market Value” leads to
a model in which recovery rates can not be identified from data on the prices
of pure discount bonds alone as shown in Duffie and Singleton (1999).

We suppose that asset prices discounted by the money market account
are martingales under a probability measure (). It follows that the value of
risky debt, v(t,7), is defined by the following martingale representation:

v(t, T 1

% = E/ w(l —wl.<r)|, (1)
where, 1,<7 is the default indicator operator. This representation has the
intuitive structure that the value of risky debt can be viewed as the differ-
ence between the value of the default-free promise and the discount for the
default risk of the bond. Jarrow and Turnbull (1995) and Madan and Unal
(1998) evaluate this expectation under ) assuming independence between
the default-free interest-rate process, r(t), and the default process as repre-
sented by z and w. Note that this crucial assumption eliminates the need to
evaluate the covariance term in the expectation of equation (1).

To allow for dependence between these two processes we follow Jamshid-
ian (1989) and Geman, El Karoui and Rochet (1995) and use the price of
the risk-free bond, p(¢, 7), as the numeriare (rather than the money market
account B(t)) to develop an expression for the value of risky debt. Hence,
we let Q7 be the unique equivalent martingale measure (called the forward
measure), under which traded asset prices discounted by the price of the

4



default-free bond, p(t, 7), are martingales. It follows that,

v(t, T) _ QT 1
p(t, 7) ' p(T,0)

Given p(T,0) = 1, and denoting G(¢,7) to be the survival probability under
Q7 conditional on no default prior to T,

(1 — W]-ng) . (2)

G(t,7) = Q% (2> T) = E? [L.-1], (3)

and y is the constant recovery rate defined as the proportion of the promised
unit face paid to bondholders (w = 1 — y), the risky debt valuation equation
can be simply expressed as:

v(t, T)
p(t,7)

Note that the write-down amount and the time at which default occurs are
assumed to be independent in moving from equation (2) to (4).5 Within this
framework, it is clear that the spot price of the risky bond has two distinct
components that need to be evaluated: the survival probability of the firm
over the life of the risky debt, G(t,7), and the price of the default-free bond,
p(t, 7).

The hazard-rate models of Jarrow and Turnbull (1995), Duffie and Sin-
gleton (1999) and Madan and Unal (1998) view G(t,7) as the likelihood of
survival over the life of the risky debt. The equation relating the survival
probability, G(t,7), to the process for the hazard rate of default, ¢(t), is
established in Madan and Unal (1998). They show that:”

exp (—/Tqﬁ(u)du)} : (5)

The intuition behind this equation is straightforward and ¢(¢) can be com-
pared with the default-free interest-rate risk process, r(t). The spot-price of

=G, 7)+ (1= G, 1))y, (4)

G(t,r) = B

6This crucial assumption is commonly invoked in the default literature. One exception
is Das and Tufano (1996) where w and 7 are both expressed as functions of the same state
variables.

"Madan and Unal (1998) establish the relation between the hazard-rate and the survival
probability under the measure ). However, the hazard-rate of the default-time process
under Q7' is the same as that under Q by virtue of the continuity of dQ* /dQ = p(t,T)/B(t)
(see, Bjork, 1997)



a default-free discount bond discounts the promised payoff by the default-
free interest-rate risk process, r(t), for reasons related to the time value of
money. In contrast, equation (5) “discounts” the promised payoff on a risky
debt by the process for the hazard-rate of default, ¢(t), for reasons related
to the hazard of default. Hence, (1 — G(t,7)) can be viewed as the “price-of-
default,” for a given loss level (1 —y). This value is then discounted by r(t),
to obtain the price of the risky debt given in equation (4).

In this framework the default event is not defined and one employs a
reduced form for the evolution of the hazard rate, ¢(t). For example, Duffie
and Singleton (1997 and 1999) specify equation (1) in terms of the risky-
discount rate, R(t) = r +(1—¢)(1—y) and apply the Cox, Ingersoll and Ross
(1985) solution and Heath, Jarrow, and Morton (1992) framework to equation
(5), respectively. Jarrow and Turnbull (1995), use the Heath-Jarrow-Morton
for v(t,7) and p(¢,7) and then derive the relation in an example based on
¢(t) being a constant. Though plausible, such reduced form specifications do
not offer any guidance on the implications for credit spreads of changes in
economic conditions, for example, the impact of the firm’s financing decisions
on its credit spreads.

These considerations suggest that one should consider the possibility of
both introducing jumps in the default occurrence and defining the default
event. The next section achieves this by deriving ¢(t) from an explicit default
condition as a first order approximation to the probability that a sudden loss
level exceeds equity.

3 Modeling The Hazard Rate of Default

Utilizing the framework described in the previous section we model the oc-
currence of default in the context of a firm with a simple capital structure
that has a single zero coupon risky debt instrument outstanding. In this sec-
tion the default event is first defined. This leads to a closed form expression
for a two-factor hazard rate of default. The model is completed by specifying
the risk neutral dynamics of the two factors.

3.1 Defining the Default Event

We suppose that at a random time z the firm faces the payment of a random
loss amount L. Default occurs if this loss is larger than the equity (E) in



place. The equity value of the firm equals value of its assets less its liabilities.
On the asset side, the firm holds cash assets with a current market value,
V', that is insensitive to the current level of interest rates, and other assets
with an interest-sensitive current market value of, g(t,7). The literature has
by and large assumed that all of the firm’s assets are cash assets, ignoring
g(t,r). Examples of interest sensitive assets are marketable securities where
the current value of such assets vary with the interest rate. More impor-
tantly, the firm’s growth opportunities are real options with current values
functionally dependent on the current interest rate. Liabilities, T(t,r), are
the present value of promised payments, discounted at risk free Treasury
rates, and hence are interest sensitive by definition.

Hence, the equity value of a firm can be viewed as a function of V' and
the level of default free interest rates r as follows:

E=V+g(tr)—ot,r), (6)

Note that duration gap arises when the firm’s interest sensitive assets g(t,r)

and T(t,r) have different sensitivities to . For example, firms with large

amounts of short term receivables outstanding that are financed by long

term debt (negative duration gap) benefit from interest rate increases and

vice versa for firms holding the opposite position (a positive duration gap).

Hence, sensitivity of equity to interest rates can be positive or negative.®
Default arises when

L>E=V+g(tr)—uv(tr) (7)

and a payment in the amount of L is due. Cash asset values and interest
rates therefore directly affect the probability of default. Note that this direct
impact of interest rates on default probabilities has so far not been recognized
in the literature that defines the default event (for example Longstaff and
Schwartz (1995) and Leland and Toft (1996)). In this literature the firm’s
asset value is viewed as consisting only of cash assets V. Interest rates have
a secondary impact only, arising from correlations in the evolution of V. This
ignores the impact of the presence of interest-sensitive assets (g(t,r)) on
default probabilities. Hence, these models predict that an increase in interest
rates lowers credit spreads because liability values decline.

8The impact of other variables on the firm’s equity value, such as firm’s earnings process,
foreign exchange rates and macro-economic variables can also be incorporated by adopting
a more general equity valuation model.



Additionally, the size of these secondary impacts can be small. Indeed, Le-
land and Toft (1996) abstract their analysis from the complexities of stochas-
tic interest rates upon observing that Kim, Ramaswamy and Sundaresan
(1993) and Longstaff and Schwartz (1995) predict credit spreads to be about
5 to 7 basis points less than when the default-free interest rate is nonstochas-
tic. However, as shown below when we incorporate the existence of interest
sensitive assets in modeling the price of risky debt we can obtain opposite
predictions and results.

3.2 The Hazard Rate of Default

Formally, the hazard rate ¢(t)dt is the probability of default in the interval
(t,t + dt):

o(t)dt = Prob [z € (t,t +dt) and L > E| = h(V,r)dt, (8)

which is the probability of the arrival of loss times the conditional probability
that this loss is large enough to drive the firm into default. The intuition
behind equation (8) is as follows. There exists only one sudden loss size ar-
rival that can cause instant default. However, as the equity level increases
a larger-size sudden loss is needed to cause the firm to default and because
the likelihood of such a larger-size jump is small the default probability cor-
respondingly becomes small.

The specific determination of h(V,r) is based on the distribution of loss
sizes contingent on loss arrival and the process for the arrival rate of the loss
event. Suppose, that the loss event has, prior to arrival, a constant Poisson
arrival rate of A per unit time. On the arrival of the loss event, further
suppose that the distribution of the size of the loss has density m(L) with
cumulative distribution function M (L). In this case, the function h is given
by

h(V,r)=X(1—M((V +g(t,r) —v(t,r))). 9)

A first order approximation of this function around reference levels of the
logarithm of cash assets, log(V}), and interest rates, rq, yields

h(V(t),r(t)) ~ h(Vo,10) —Am (Ep) Vo(AIn V) — Am (Ey) (g- — 7, )(Ar). (10)

where AlnV =InV(t) —InVy and Ar = r(t) — ro. We may then write on
combining equations (8) and (10) that

o(t) = a—binV(t) + cr(t) (11)

8



where,

h(Vo, 7o) + bIn(Vy) — cro (12)

b = Im(Ey) EXV, (13)
b _

c = “E, (9r — ) (14)

and FEY is the partial of equity with respect to cash assets evaluated at the
reference point.

Equation (11) provides us with a simple two factor structural hazard rate
model. The two factors are the value of the firms’ cash assets and the level
of default free interest rates. Furthermore, its parameters may be interpreted
in terms of firm specific information such as the equity level, its sensitivity
to cash assets and the duration gap. The model is completed by choosing an
appropriate loss distribution.

The linear model for the hazard rate of equation (11) has the potential
of yielding negative credit spreads as hazard rates can go negative. However,
this problem can be mitigated in practice by calibrating the resulting model
to positive credit spread data over a finite horizon of debt maturities.

3.3 An example of a fully specified hazard rate model

We consider the simple case of a one parameter exponentially distributed
loss level with a mean loss level of p;. This distribution has the feature that
larger losses have a lower probability. The cumulative distribution function
is given by

F(L)=1—exp(—L/up). (15)

For this case the reference point loss probability is

h(Vo,r0) = A(1 = F (Vo + g(0,m0) —5(0,70))) - (16)
The hazard rate for an exponentially distributed loss level is given by
E A Ey

h(V (t),r(t)) ~ A(l—F(EO))—% eXp(—M—LO)VO(Aln V)—l—E eXp(—E)D(Ar).
(17)



The coefficients a, b, and ¢ of equation (11) are

a = MN1—F(Ey))+bIn(Vp) —cro (18)
A Eo. o
b = —exp(—)EVV 19
. ( ML) vVo (19)
b
= 2
c ESVOD (20)

For given levels of the firm’s cash asset holdings 1, the market value of
equity Ej, the sensitivity of equity to cash assets at the reference point EY
and the level of interest rates rq,the hazard rate model of equation (11) is
completely specified from estimates of the mean loss level y;, its arrival rate
A, and the duration gap D. Alternatively, one may also invert these relations
to ascertain the levels of i, , A\, and D implied by any estimates of a, b, and c.
Other choices of loss distributions would lead to other similar formulations.

3.4 The Hazard Rate Factors

Consistent with the literature, we suppose that the value of cash assets is
risk neutrally a geometric Brownian motion:

dVV = rdt + odW,, (21)

where, o is the return volatility and, W, is a standard Brownian motion. °

The risk-neutral process for the default-free interest-rates draws from the
term structure model of Vasicek (1977):

dr = (0 — kr)dt +ndW,, (22)

where % is the long-term mean rate of interest, « is the speed at which the
interest-rate r approaches to its long-term mean, n is the volatility of changes
in the instantaneous default free interest rate and W, is a standard Brownian
motion. The correlation between dW, and dW, is pdt. Equation (22) also
establishes the basis to derive the pricing equation for the default-free bond,

9The jump nature of default can also be modeled by specifying a jump-diffusion process
for asset values. In such a case default can either occur on asset values diffusing to a
threshold or a firm can face more than one negative jump in equity cumulating to default.
For reasons of tractability we focus on the single jump case.

10



p(t, 7) needed in equation (4). Vasicek (1977) provides the default-free bond-
price expression and it is given in the Appendix for completeness.

Note that the asset value and interest-rate processes given in equations
(21) and (22) are risk-neutral processes under the martingale measure Q.
Under the forward measure Q7 the dynamics of V' (¢) and r(t) are shown in
the Appendix to be given by

dinV = (r—0%/2 — ponN(7))dt + cdW,, (23)

dr = (0 —kr —n>N(7))dt + ndW,, (24)

where WU and WT are QT Brownian motions with correlation p per unit time
and N(7) = (1 — exp(—k7)) /K.

4 Risky Debt Price and the Analysis of Credit
Spreads

The closed form expression for the price of risky debt, v(t,7), is derived
by first obtaining a solution for the survival probability, G(t,7), as given in
equation (5) then substituting this solution into equation (4).!° The following
proposition achieves this.

Proposition 1 The value of a risky discount bond, v(t,T), for maturity T =
T —t, with constant recovery y, is given by

v(r) = yp(t, 7) +p(t, 7)(1 —y)G(t,7), (25)

where

G(t,7) = exp (Hm —ar+brinV(t) — ((b +e)N(r) — 97> r(t)) . (26)

K
and the default-free debt price is given by the Vasicek formula
p(t,7) = exp (A(T) — N(7)r). (27)

Proof in the Appendiz.

10Note that the present value of fully paid liabilities is T(¢,7) while the market value of
a particular defaultable liability of maturity 7 that we price is v(t, 7).
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The functions H(7), and A(7) are defined in the Appendix. Equation
(26) gives the explicit solution for the survival probability. This closed form
expression for v(7) has eight parameters: (a, b, and ¢ or their equivalents
in the case of an exponential loss distribution, u;, A, and D as given by
equations (18), (19), and 20)) that come from the hazard-rate process; o the
cash asset volatility; (0, x, and n) the parameters of the Vasicek interest rate
process and p the cash asset interest rate correlation.

The price of risky debt in equation (25) synthesizes many influences im-
pacting this price. There are the effects of the diffusions in the value of cash
assets and interest rates, as well as the probabilities of large losses dominat-
ing the equity at hand. To better appreciate these impacts, we conduct an
analysis, separately, of short maturity spreads, the term structure of credit
spreads and the factor and parameter sensitivities of these spreads.

4.1 The Short Term Credit Spread

To evaluate the impact of cash asset values and default-free interest rates
on credit spreads (defined as the difference between the yields of a risky
and a default-free bond with identical maturity), we consider the limiting
expression for short maturity spreads. It is shown in the appendix that
equation (25) yields the following instantaneous credit spread:

CSy = a—blnV +ecr (28)
+%(60 +nbpe(1 — @) + 11%¢)
+%(77b210 — 0’6 —’b — n’be(1 — p))
+%(n262)

In contrast to the extant literature, equation (28) shows that default-free
interest rates have a direct impact on the short-term credit spreads. For ex-
ample, short term credit spreads are insensitive to interest rates in Longstaft
and Schwartz (1995) and independent of them in Duffie and Singleton (1999).
However there exist empirical evidence that short-term credit spreads are in-
deed sensitive to changes in interest rates. For example, Duffee (1998) doc-
uments a negative relation between interest rates and short maturity credit

12



spreads. Hence, equation (28) is the first model consistent with the empiri-
cal literature on sensitivity of short-term credit spreads to movements in the
interest rates. The direction of this relation is, however, as we have noted
earlier, dependent on the duration gap between the firms’ interest-sensitive
assets and liabilities. Empirical studies of this relation that do not control
for the duration gap are misspecified. Furthermore, in empirical studies one
also needs to differentiate between short term responses of credit spreads to
interest rate changes and the long term equilibrium adjustment that is the
content of equation (28) as well. In addition, we observe that long-term in-
terest rates (as proxied by ) also can impact positively short term credit
spreads. However, this impact is mitigated when mean reversion (k) is high.

4.2 The Term Structure of Credit Spreads

We next consider the shapes of the credit spread term structures that are
consistent with the model. For this exercise we assume a typical upward
sloping yield curve with Vasicek parameters of # = .10, k = 1, and n = .0333
and an initial interest rate of 4 percent. The other inputs of the model are
the value of cash assets V, the level of equity F, the mean loss level p;, the
loss arrival rate A, the duration gap D, the asset volatility oy, its correlation
with interest rates p, and the recovery level y. To determine reasonable values
for these parameters we calibrated the model to data on the term structure
of credit spreads obtained from Bloomberg for April 29, 1999.

The term structure data include credit spreads for 14 bond ratings at
11 maturities. We consider the hypothetical case of a firm with a unit face
value of debt, an equity level of .5, the level of cash assets at 2, and equity
sensitivity to cash assets at the expansion point EY, to be unity. Placing
this capital structure in each rating class we estimated the determinants of
the hazard rate structure (p;, A, D) the cash asset volatility oy and the level
of recovery w. We assume that p is equal to zero. This calibration exercise
is conducted for two rating categories, AA1— AA2, and B3.!! The purpose
of the calibration exercise is to infer reasonable parameter estimates and
demonstrate the flexibility of the proposed model.

We observe from figures 1 and 2 that the model can fit a double humped
credit spread curve reasonably well, and it is also capable of generating a

1 Bloomberg reports yields for 14 rating categories of Industrial Firms. The category
AA1-AA2 is the second rating category while B3 is the fourteenth category. We thank
Sanjiv Das for suggesting the use of this data.
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sizable term premium of up to 200 basis points. The estimated parameter
values are very intuitive as well. For the high rated bond the loss distribution
has a mean (u;) of .2455. Such a loss is expected to arrive () at a rate of
.0315 or once in 32 years. The expected recovery at time of default (y) is
40.66 percent. The duration gap (D) is negative at 3.1 and the volatility of
cash asset value (o) is about 90 percent.

For the low rated bond, as expected, the loss distribution has a much
higher mean p; = 10.1449, an arrival rate, A = .0419 (or once in 24 years)
and lower conditional recovery of y = 30.14 percent. Also, the estimate of the
duration gap is a large positive of 19.71 which is consistent with the option
value that such low rated firms may be holding. Cash asset volatility is also
much higher than the high rated bond at o = 1.5463.

4.3 Factor Deltas and Parameter Sensitivity of Credit
Spreads

For the analysis of the sensitivity of credit spreads to changes in cash asset
value and interest rates we compute numerical deltas using the valuation
expression in equation (25). The delta computations are conducted for the
fitted curve of the AA1-AA2 rating category.

Figure 3 displays the results for cash asset values. We observe that an in-
crease (decrease) in cash assets yields a decrease (increase) in credit spreads.
In addition, the sensitivity of the credit spreads is of a comparable order for
the entire term structure. Equivalently, the exposure to firm value risk must
be hedged for all maturities.

Figure 4 shows the sensitivity of credit spreads to interest rate movements.
An increase in interest rates reduces the credit spreads. This is a consequence
of the negative duration gap implied by the term-structure. As interest rates
rise the hazard rate decreases, decreasing the likelihood of default. Note
that this effect is diminished and even reversed if the firm has more interest
sensitive assets and the duration gap is positive, as in the case of the B3
rating curve.

We next assess the impact of the model parameter choices on the level
and shape of the credit spread curve. Figure 5 presents the derivative of the
credit spreads of the curve in figure 1, to changes in the arrival rate A, the
mean loss level p; ,the duration gap D, the cash asset volatility o, and the
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recovery rate .12 We observe that the effects are quite varied. The ability
of the model to explain a wide variety of credit spread term structures is a
consequence of the diversity of term structure sensitivities reflected in Figure
5. The impact of changes in the parameters A and p; affect short term credit
spreads more than the long term spreads. On the contrary, the changes in
duration gap and cash asset volatility affect the longer maturity spreads.
Such an impact is expected because these are diffusion parameters and o
and D require passage of time before they have an impact. Tlge effect of o
ag

can also be explained by noting that the drift in InV" is (r — %) and hence

higher values of ¢ impact credit spreads positively at longer maturities.

5 Hedging Credit Risk

An advantage of closed form expressions for the price of risky debt, as given in
(25), is that they may be easily employed to hedge the factor risks embedded
in credit sensitive instruments. For the holders of risky debt, the exposure
to the firms’ cash asset value risk and the risk of movements in interest rates
can be hedged by positions in the firms’ equity and default-free instruments.
Consider the perspective of a holder of the firms’ risky debt within the
context of Proposition 1. The value of this debt is then sensitive to the two
factors V and the default-free interest rate r and has a value given by

v(t,T) =d(V,r,T1). (29)

The exposure to V may be hedged by holding the firms’ equity with value
E, while the interest rate uncertainty may be hedged by holding default free
bonds with a price p(t,T7) = ¥(r,7). With a position of a shares and
Treasury bills, the hedged portfolio has a value, Y, given by

Y(V,r,7)=®(V,r,7) +aE + BY(r, 7). (30)
From equation (6) we have that
E=V+g(r)—oV,r1) (31)
and hence

Y(V,r,7)=(1—a)®(V,r,7)+aV 4+ ag(r) + BY(r, 1) (32)

12The derivative is numerically obtained using perturbation of the initial value. Fur-
thermore, the curves graphed have been relativized to a unit value at the five year point.
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For delta neutrality with respect to cash asset value and interest rate risk,
one may determine equity and Treasury bill positions as

_(I)V

a = - (33)
_(pr —P r (I)r

B = v_J . (34)

U, 1-3, U,

The position in equity («) is negative and one shorts the equity, essen-
tially creating a synthetic put to protect against declining cash asset val-
ues. One also shorts Treasury bonds such that the dollar Treasury interest
rate exposure (—FV,) offsets the interest rate sensitivity of the defaultable
bond adjusted for the duration gap inherited by the short equity position
(q)r + a<gr - (I)r))

6 Conclusion

In this paper we show how hazard rate models can be structurally enriched
by defining the default event in the short term as arising from the occurrence
of a sudden loss event. The hazard rates are then derived endogenously as
the probability of losses exceeding the firm’s equity. Equity itself is modeled
as composed of both cash (non-interest sensitive) assets and interest sensitive
assets (such as growth opportunities) less liabilities. Hence, the two factor
risks driving credit spreads are the value of cash assets and the level of
stochastic default free interest rates. In addition to the parameters of the
default free interest rate process, the structural determinants of default are
seen to be the rate of loss arrival, its expected magnitude, the duration gap of
equity, the volatility of cash asset values and the rate of recovery in default.
It is shown that the factor risks can be hedged by appropriate positions in
the firm’s equity and Treasury bonds.

The resulting model for credit spreads is tractable and can be readily
implemented. This is demonstrated by calibrating the model to data on
credit spreads. We observe that a wide variety of realistic credit spread
shapes can be generated by the model. However, going beyond the mere
generation of term structure shapes, the model provides a deeper and richer
understanding of the differences in these shapes in terms of the structural
determinants of default.
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A full scale empirical study of corporate bond yields using the proposed
model of this paper requires attention to four major points. First, as most of
the data are for coupon bonds, the model must be extended to pricing these
securities. Second, as it is desirable to work with a panel of data for bond
yields across time for a number of firms one needs to account of variations in
duration. Third, one must differentiate between partial and full adjustment
of credit spreads to movements in default free interest rates. Finally, one
needs to model the effects of differences in the liquidity of traded bonds on
credit spreads.
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7 Appendix

Vasicek (1977) solution for p(t,7): The price of default-free bonds,
p(t,7), is:

p(t,7) = exp (A(T) = N(r)r) (3)
where
a) = (=) (5 %) eonm -
- (4"—) (exp(—2n7) — 1),
Nir) — Lo em(enr)
and 7 =T —t. )

Dynamics of V(t) and r(t) under QT
The change of measure density process from @ to Q7 is given by the Q
martingale
dQ”  p(t,T)
dQ — B(t)’
This follows on noting that for traded asset prices on non-dividend paying
claims S(t), one must have that S(t)/p(t,7) is a QT martingale by definition
of Q7. We also have that X is a Q7 martingale if and only if X % is a Q
martingale (see Elliott). The above choice for the measure change suffices
as S(t)/B(t) is a Q martingale by construction of @) (for further details see
Baxter and Rennie page 191).
By Girsanov’s theorem the original Brownian motions under @) are trans-
formed into Brownian motions with drift under @7, whereby under Q7

(36)

= dp(t, )
AW, (t) = dW,(t) + o) AW, (t) (37)
AW, (t) = dWT(t)erp(t’T)dWr(t) (38)

p(t,7)

for new QT Brownian motions W,(t), W,(t). Noting the definition of
p(t,7) in equation (35) and the dynamics of r in equation (22) we have
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that

dp(t,7) _
dp(t, 7) — _oN(r
(. 7) dW,.(t) = —nN(r)dt (40)

The @ dynamics for In V' (¢) and r(t) are given by

2

dinV(t) = (r— %)dt + odW, () (41)
dr(r) = (0 — kr)dt+ ndW,(t) (42)

Substituting (39) into (37) and the resulting expressions for dW,,,dW,
into (41) yields

dinV = (r—0%/2— ponN(7))dt + ocdW,, (43)
dr = (0 —kr —n®N(7))dt + ndW,. (44)

Proof of Proposition 1: Note that equation (4) can be written as
v(t,m) = p(t, )y + (1 = y)p(t, T)G(¢,7), (45)

Substituting equation (35) in equation (45) we obtain,

v(t,7) = yexp[A() = N(7)r] + (1 —y) exp[A(r) — N(7)r] G(t,7)  (46)

The solution for G(t,T) is obtained as follows. Recall that the survival

probability G(t, 7) is
exp (—/qﬁ(u)du)} , (47)

An immediate consequence of the assumptions that asset value process
is log-normal (as in equation (23)) and the interest-rate process is normal
(as in 24) is that the integral of the hazard-rates in equation (47), ¢(t,7), is
normally distributed, N(u, s*). Hence, it follows that,

G(t,r) = EL

GV,r,t,T;u,s) = {e_’”%SQ] ) (48)
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The solution for the survival probability, G(t,7), follows by integrating
the dynamics for In V (¢, 7) and r(¢) under Q7 substituting them in equation
(11) and evaluating equation (48).

Integrating the dynamics for r from time zero to time t gives the explicit
solution for r(t) as

r(t) = r(O)exp(—mf)—l—(%—Z—) (1 — exp(—#t))

+77_2 exp (—kT) (exp(kt) — exp(—~t))

2K?
t
+n exp(—kt) /exp(ns)dWr(s). (49)
0
The explicit solution for V() is obtained by observing first that

IV (t) = In V(0 +/< ———panw> du+ oW, (t). (50)

Substituting equation (49) in equation (50) yields

InV(t) = an<0)+7“<0)<1_5%>

2 —Kkt __ —"i(t 5)
n _.p[e+e =
—|—2K2€ ( ) +77/ dWT(s)
ot t e_”T(e —1) —
5 = pon (; B — + oW, (t). (51)

Now we can substitute equation (51) and equation (49) in equation (11) and
collecting terms we obtain

o(t) = a—blnV(0)+ (ce_”t — M) r(0)

K

n (9 - ’7_> (c(l I (t_ a _S_m)»
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2 Kt —Kkt __ 2
+77_ (Ce—nt<ent _ e—nt) _ be—nt (6 +e ))
K

2K?
¢ b _
—l—/ (cne_”t - —n(e_’“ - e"“)) e dW,(s)
0 K
bo?t t e (et —1) —

Evaluating [, ¢(u)du for t < u we obtain the expressions for mean p and

variance s? as:

p = ar—brinV(t)
1 — e~ KT 1 — e~ KT
(e (LEE) (- 0=
K K K

9 n? 1—e™ " br?2 b
+{—-——= | |c|lT——— | ———+—|T

Kk K2 K 2 K

2 _ _

/r] e eﬁ}’r + e KT __ 2 r eﬁ}’r _ e KT 2,7_

g o () e (-5

bo?1t?  bpont?  bpone " [ (e —1)
+ 1 + S 2 - —7]. (53)

The variance is:

T —k(s—t) __ ,—kKT b b 2
a— / lcn (e ¢ ) — —n(T —s)+ —Z(l — e_”(T_S))] ds
¢

K K K

T
—1—620’2/ (T — s)%ds
t

b
+ /<;_2<1 - e_”(T_S))] ds

Integrating and collecting terms, we obtain

s = [T+ for? + for?
+g17e " 4 gor2e T + gTe”
+h1<1 — G_HT) + hg(l — G_HT)
+hze (1 —e ") (55)

2KT
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where,

b*n?  2bpen?  2bpcon

fio= K2 K3 K2
b2772 b2,00'77
o=
K K
1 [(v*n®  2b%po
f3 = g(lg + :77—1—6202)
_ Aben? 20*n* 20%pon
e R K3
ben?  bpocen
92 = —5
K K
2
5=
B 2ben®  20%p? N 2ben? N 20%n? N 2bcpon N 20% pon
bR K3 K4 K4 K3 K3
EICR
e = Tt
2bcn?  2c*n?
hy = 4 T3
K K

Substituting equation (53) and equation (55) in equation (48) and col-
lecting terms we obtain

G = exp (—m + H(r)+brinV — (M b = e) e_m)> 7,)

h K K K d
Hr) = - (% - Z-i) (m' — eN(7) — ? + % (r — N(T))> (57)

772 e erT + e R 2 N b e erfT — e KT 2,7_
———=cCe —o0e _—
2kK2 K K2 K

bo?r? b,00m'2+ bpone "7 refT — 1
1 o P2 < T)

K
—KT

2
—KT hQ —2KT
<h1+h3€ )—F?(l—e )

‘i‘% (fl + for + f37'2> + =
KN (T)
2

(91 + GoT + g;;e"”)
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Hence, substituting equation (56) into equation (46) we obtain,
v(r) = yexp(A(r) — N(7)r) (58)
b
+(1 —y)exp (A(T) +H(1)+brInV — ((1 +b+c)N(T)— ;T) 7“)
Q.E.D.

Derivation of the short maturity spread.
We re-write proposition 1 as

u(
(t,7)

The credit spread, C'S(t, ), can be expressed as

=y+(1-y)G (59)

s

L o 1—y)G
T T

For low levels of y we may write

—1
cst,r) — —n& (61)
T
po
-

Hence, subtracting equation (55) from equation (53) gives the expression
for credit spread for short maturities (deleting higher order terms in (7)) as:

CSy = a—blnV +er (62)
1
—l—;(b@ +nbpc(l — o) + 7720)
1
+5 (0% = n*6* =0 = n’be(1— p))
1
+F(77252)

23



8 References

Artzner, P. and F. Delbaen. “Default Risk Insurance and Incomplete
Markets.” Mathematical Finance, 5 (July 1995), 187-195.

Bjork, T. “Interest Rate Theory.” Lecture Notes in Mathematics, Springer-
Verlag, Berlin (1997).

Briys, E. and F. de Varenne. “Valuing Risky Fixed Debt: An Extension.”
Journal of Financial and Quantitative Analysis, 32 (June 1997), 239-248.

Cox, J.C., J.E. Ingersoll, Jr., and S.A. Ross. “A Theory of TheTerm
Structure of Interest Rates.” Econometrica, 53 (March 1985), 385-407.

Cooper, I. A. and A. S. Mello. “The Default Risk of Swaps.” Journal of
Finance, 47 (June 1992), 597-620.

Das, S. R. and P. Tufano. “Pricing Credit-sensitive Debt when Inter-
est Rates, Credit Ratings and Credit Spreads are Stochastic.” Journal of
Financial Engineering 5 (June 1996), 161-198.

Duffee, G.R. “Treasury Yields and Corporate Bond Yield Spreads: An
Empirical Analysis.” Journal of Finance, 53 (December 1998), 2225-2242.

Duffie, D. and D. Lando. “Term Structure of Credit Spreads with Incom-
plete Accounting Information.” Working Paper, Stanford University, (1997).

Duffie, D. and K. J. Singleton. “An Econometric Model of The Term
Structure of Interest Rate Swap Yields.” Journal of Finance, 52 (September
1997), 1287-1323.

Duffie, D. and K. J. Singleton. “Modelling Term Structures of Defaultable
Bonds.” Review of Financial Studies, 12 (1999), 687-720.

Geman, H., N. El Karoui, and J.C. Rochet. “Change of Numeriare,
Changes of Probability Measures and Pricing of Options.” Journal of Applied
Probability, 32 (1995), 443-458.

Heath, D., R. Jarrow, and A. Morton. “Bond Pricing and The Term
Structure of Interest Rates: A New Methodology for Contingent Claims Val-
uation.” Econometrica, 60 (January 1992), 77-106.

Hull J. and A. White. “The Impact of Default Risk on The Prices of
Options and Other Derivative Securities.” Journal of Banking and Finance,
19 (May 1995), 299-322.

24



Jamshidian, F. “An Exact Bond Option Formula.” Journal of Finance,
44, 205-209.

Jarrow, R. A. and S. M. Turnbull. “Pricing Derivatives on Financial
Securities Subject to Credit Risk.” Journal of Finance, 50 (March 1995),
53-85.

Jarrow, R. A, D. Lando and S. M. Turnbull. “A Markov Model for The
Term Structure of Credit Risk Spreads.” Review of Financial Studies, 10
(1997), 481-523.

Jones, E., S. Mason, and E. Rosenfeld. “Contingent Claims Analysis
of Corporate Capital Structures: An Empirical Investigation.” Journal of
Finance, 39 (July 1984), 611-627.

Kim, J., K. Ramaswamy, and S. Sundaresan. “Does Default Risk in
Coupons Affect The Valuation of Corporate Bonds?: A Contingent Claims
Model.” Financial Management, 22 (Autumn 1993), 117-131.

Lando, D. “Modelling Bonds and Derivatives with Default Risk.” in
Mathematics of Derivative Securities, M. Dempster and S. Pliska (eds.) pp.
369-393, Cambridge University Press (1997).

Leland, H. “Corporate Debt Value, Bond Covenants, and Optimal Capital
Structure.” Journal of Finance, 49 (September 1994), 1213-1252.

Leland, H. E. and K. B. Toft. “Optimal Capital Structure, Endogenous

Bankruptcy, and The Term Structure of Credit Spreads.” Journal of Fi-
nance, 51 (July 1996), 987-1019.

Longstaff, F. and E. Schwartz. “A Simple Approach to Valuing Risky
Fixed and Floating Rate Debt.” Journal of Finance, 50 (September 1995),
789-819.

Madan, D. and H. Unal. “Pricing The Risks of Default.” Review of
Derivatives Research, 2 (1998), 121-160.

Merton, R. C. “On The Pricing of Corporate Debt: The Risk Structure
of Interest Rates.” Journal of Finance, 29 (May 1974), 449-470.

Morris, C., R. Neal and D. Rolph. “Credit Spreads in Interest Rates: A
Cointegration Approach.” Working Paper, Indiana University (1998).

Nielsen, S. and E. Ronn. “The Valuation of Default Risk in Corporate
Bonds and Interest Rate Swaps.” Working Paper, University of Texas at
Austin (1995).

25



Vasicek, O. “An Equilibrium Characterization of The Term Structure.”
Journal of Financial Economics, 5 (1997), 177-188.

Zhou, Chunsheng. “A Jump-Diffusion Approach to Modeling Credit Risk
and Valuing Defaultable Securities.” Working Paper, Federal Reserve Board,
(1997).

26



30'

Figure 1: Model Calibration on Rating Category AA1 and AA2 for
April 29, 1999. The data points are represented by circles and the solid
line is the model fit. The estimated parameters are p; = .2455, A = .0315,
D = —3.1061, o = .8907 and w = .4066.
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Figure 2: Model Calibration on Rating Category B3 for April 29,
1999. The data points are represented by circles and the solid line is the
model fit. The estimated parameters are p; = 10.1449, A = .0419, D =
19.7089, oy = 1.5463 and w = .3014.
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Credit Spread in Basis Points
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Figure 3: Credit Spread Sensitivity to Cash Asset Value The solid
line represents the base case depicted in Figure 1. The impact of changes in
the cash asset value are given by the dashed curves.

Credit Spread in Basis Points
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Figure 4: Credit Spread Sensitivity to Interest Rates The solid line
represents the base case depicted in Figure 1. The impact of changes in the
interest rate are given by the dashed curves.
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Figure 5: Parameter Sensitivity of Credit Spreads. The graphs show
the derivative of credit spreads with respect to the parameters normalized
to a value of unity at the five year point. Curve (a) through Curve (e)
represent the sensitivity with respect to the arrival rate, the mean loss level,
the recovery rate, duration and cash asset volatility, respectively.
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