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Abstract

A difficulty which arises when implementing structural bond pricing

models is the estimation of the value and risk of the Þrm�s assets � neither

of which is directly observable. We perform a simulation experiment in

order to evaluate a maximum likelihood method applicable to this prob-

lem. The properties of the bond price estimators are examined using four

theoretical bond pricing models: the Black & Scholes (1973) / Merton

(1974) model, the Leland & Toft (1996) model, the Briys & de Varenne

(1997) model, as well as the Ericsson & Reneby (2001) model. We con-

trast the performance of the maximum likelihood estimators to that of

estimators traditionally used in academia and industry. The results are

strongly supportive of the maximum likelihood approach. In fact, the

inefficiency of the traditional estimator may explain the failure of past

attempts to implement structural bond pricing models.
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1 Introduction

Corporate bond markets have more than doubled in size over the last ten

years to reach a size exceeding that of the Treasury markets. The growth of

the corporate debt sector to a dominant source of Þnance for US corpora-

tions underlines, by itself, the importance of accurate bond pricing models.1

In addition, the market for credit derivatives is growing rapidly and accu-

rate risk management and valuation tools will become necessary. Moreover,

banks and regulators have recently taken a marked interest in credit risk

modelling for risk management purposes. An important issue in this con-

text is whether banks should be permitted to use in-house credit risk man-

agement models to determine capital requirements. A number of different

approaches have been suggested, among them KMV Corporation�s Portfo-

lioManager which is based on a structural bond pricing model following

Merton (1974).

The objective of this paper is to perform a simulation study to evaluate

two distinct approaches to estimating structural bond pricing models. The

performance of the currently most popular method is contrasted to a maxi-

mum likelihood approach developed by Duan (1994), which to date has been

largely ignored. We believe that a simulation study is a valuable Þrst step

before bringing a theoretical or empirical model to bear on market data.

The traditional approach to implementing structural models has been

to solve a system of equations that match the observed stock price and

estimated stock volatility with model outputs (see Ronn & Verma (1986)).

However, as pointed out by Duan, in theory one of the equations is redundant

and no unique solution exists � except if, as in practice, the model is mis-

speciÞed. Nevertheless, the approach is simple to implement and may have

merit from a practical perspective if it provides sufficiently precise estimates.

It has been applied in academic studies, adapted for commercial purposes by
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the KMV corporation and is often the only estimation approach considered

in major Þnance textbooks (such as Hull (2000)). However, we demonstrate

that the maximum likelihood approach, which circumvents the theoretical

problem, exhibits markedly superior performance.

Structural bond pricing models value debt as a contingent claim on the

Þrm�s assets. This approach was pioneered by Black & Scholes (1973) and

Merton (1974) and has since drawn considerable attention from practitioners

and academics alike. An important feature of structural bond pricing models

is that since all securities of a Þrm are treated as derivatives on the Þrm�s

assets, it is possible to use price information for one security � typically

equity � to infer the value of another � typically debt.

Perhaps as a result of the failure of initial attempts to implement struc-

tural bond pricing models (see Jones et al. (1984) and Ogden (1987)), little

progress was made in the empirical validation of the contingent claims ap-

proach. During the 90�s, a number of stylized facts were incorporated into

models � among them violations of the absolute priority rule in bankruptcy,

taxes, costly Þnancial distress, debt renegotiation and stochastic interest

rates.2 The more recent models are often better able than their predeces-

sors to generate prices in line with market quotes with reasonable inputs.

However, this alone does not guarantee that they will actually do well on

market data given that the problem of estimating the unobserved asset value

and its volatility remains.

Lately, the interest in empirical validation of structural models has also

been rekindled. From the perspective of the information set used to esti-

mate the models, one can distinguish between two approaches. One is to

implement a model by relying only on stock prices and capital structure

information. The other, more recent, method is to extend the information

set to include bond prices.3 No doubt the motivation for this can, at least
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in part, be attributed to the past poor performance of the traditional esti-

mation technique.4

In this paper, we study the case when debt is priced using stock price and

balance sheet data only.5 This choice was made for the following reasons:

Þrst, it is a natural point of departure which, when evaluated, will serve as

a benchmark for studying an extended information set. Second, many Þrms

do not have traded bonds, or only thinly traded bonds, in which case using

bond price information is not even an alternative. Finally, it is not clear

how one would adjust the traditional estimation technique to include bond

prices and therefore a comparison of the two estimation methods would be

rendered difficult.

The evaluation is based on four theoretical bond pricing frameworks:

the classic Black & Scholes (1973) / Merton (1974) model, the Briys &

de Varenne (1997) model, the Leland & Toft (1996) model and the Ericsson

& Reneby (2001) model.6 The Black & Scholes / Merton model is the Þrst,

simplest and most well known of the structural models. It has also been

implemented recently in the academic literature.7 The Briys & de Varenne

model is similar to the Longstaff & Schwartz (1995) and Nielsen et al. (1993)

models in that it allows for stochastic interest rates and the possibility of

default prior to debt maturity. Leland & Toft retain a constant term struc-

ture but, by incorporating taxes and default costs, are able to study the link

between optimal capital structure and the cost of debt Þnancing. Finally,

while allowing Þrms to increase their leverage over time, the Ericsson &

Reneby (2001) model distinguishes between aggregate debt and individual

bonds, thus allowing salient features of a Þrm�s Þnancial structure to be

captured while retaining the ßexibility to account for the precise cash ßows

of a given corporate bond issue. These models all share a common (and for

our purposes necessary), feature in that they allow a closed form solution for

3



the value of a Þrm�s equity. In contrast, for some structural models such as

Nielsen et al. (1993) and Longstaff & Schwartz (1995), it is not immediately

obvious how to value the Þrm�s equity.

We Þrst examine to which degree estimators for asset risk, Þrm value

and bond prices are unbiased and efficient. Second, we investigate whether

the asymptotic distributions of estimators carry over to small samples. The

maximum likelihood approach is then contrasted to the traditional method

of estimating structural bond pricing models.

To evaluate the performance of the two methods we perform a series of

Monte Carlo experiments. We simulate sample paths for the asset value

of Þrms that differ along the dimensions of operating risk and Þnancial

leverage. The corresponding stock price paths are then used to estimate,

using both methods, the prices and credit spreads of different corporate

bonds. A similar set of experiments was carried out by Lo (1986) to study the

performance of maximum likelihood estimators of option prices. However,

in that study, the state variable (the underlying stock price) is directly

observable, whereas in what follows we use stock prices to estimate the level

and parameters of our state variable � the Þrm�s asset value. Many of our

results will be directly related to this added complexity.

We demonstrate that the maximum likelihood approach clearly outper-

forms the traditional method both in terms of unbiasedness and efficiency.

The errors of the latter approach are of a magnitude that can help to ex-

plain the consistent failure of attempts to implement structural bond pricing

models. In contrast, maximum likelihood bond price estimators are unbiased

and efficient, even for very risky bonds. The performance of the tradition-

ally used approach, on the other hand, deteriorates as the spread increases.

Moreover, the asymptotic distributions of the maximum likelihood estima-

tors turn out to provide useful approximations in small samples.
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The structure of the paper is the following. The next section provides

a brief overview of the theoretical models. Section 3 reviews the maxi-

mum likelihood as well as the traditional estimation approach, and section

4 describes the simulation experiment. Section 5 reports and discusses the

results and section 6 concludes.

2 Structural bond pricing models

In this section, we review the four bond pricing models: the Black & Scholes

/ Merton (BSM) model, the Briys & de Varenne (BV) model, the Leland

& Toft (LT) model and the Ericsson & Reneby (ER) model. Since the

focus of this paper is on the performance of an estimation approach rather

than on the theoretical properties of any given model, we provide only brief

descriptions of the models we study.

In all four models, the same fundamental assumptions are made regard-

ing Þnancial markets. Arbitrage opportunities are ruled out and investors

are price takers. Furthermore, for at least some large investors, there are no

restrictions on short selling stocks or risk free bonds and these can be traded

costlessly and continuously in time. In addition, when we analyze the BV

model we consider the special case where the term structure is driven by a

Vasicek-model for the short rate rt under the risk-adjusted pricing measure

drt = a (r − rt)dt+ γ dW r
t

where a denotes the mean reversion speed, r the mean reversion level of

the short rate and γ its standard deviation.8 The variable W r
t is a Wiener

process. The other three models are based on a constant interest rate r.

Furthermore, we assume that at least one class of the Þrm�s securities,

such as common stock, is traded and consequently completes the market; we

do not need to assume that the assets of the Þrm are traded (see Ericsson
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& Reneby (1999) for a discussion of this issue).

The value of assets is denoted ωt and its changes are taken to obey a

geometric Brownian motion. In the LT and ER models, assets generate

revenue which is not reinvested at a rate β. This cash ßow is used to service

debt before being paid out as dividends to shareholders. Thus the evolution

of the asset value can be described by dωt = (rt + λσ − β) ωt dt+ σ ωt dWω
t

ω0 = ω
(1)

The term (rt + λσ) is the expected return from holding the Þrm�s assets �

including accumulating the cash ßow βω. The growth rate of the assets is

(rt + λσ − β). The parameter σ is the volatility of the asset value and λ
can be interpreted as the market price of risk associated with the opera-

tions of the Þrm. Finally, Wω
t is the Wiener process that generates asset

value uncertainty. When interest rates are stochastic, we denote by ρ the

instantaneous correlation between W r
t and W

ω
t .

Next, consider the Þrm�s securities. In particular, we need a formula for

the stock price in order to estimate the asset value and volatility, as well as

a formula for the bond which we ultimately want to price. We distinguish

between two �layers� of debt: the Þrm�s total debt (the sum of bank loans,

bonds, accounts payable, salaries due, accrued taxes etc.) and the speciÞc

bond we are interested in. We will simply refer to the former as debt (D)
and the latter as the bond (B). For future reference, denote the value of the
corresponding riskfree debt with D. The value of the Þrm (F) is the sum of

the value of debt and equity (E).
The four models differ in how the capital structure is set up. In the BSM

and BV models, the Þrm issues a single discount bond which therefore also

constitutes the Þrm�s total debt.

In the LT model, the Þrm continuously issues and redeems bonds of a
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given maturity. The bonds are serviced by a continuous coupon stream until

the principal repayment. The Þrm�s debt is made up of all previously issued

but unredeemed bonds, and total debt service is consequently the sum of

payments to all those bonds. The coupon and the principal of the bonds are

designed to establish a constant aggregate debt service ßow which provides

the basis for a closed form solution for equity. Thus, the model elegantly

combines Þnite maturity debt with a tractable pricing function for the Þrm�s

stock.

In the ER model, the ßexibility to model bonds� actual discrete coupon

payments and other contractual features is retained. By assuming that, as

an approximation, the overall debt service is unaffected by the particular

structure of the single bond issue, a closed form solution for the value of

equity can be derived. The Þrm is allowed to issue additional debt in the

future, which prevents the Þrm�s expected leverage ratio and associated

default probability from converging to zero at long horizons.

Furthermore, there are differences across models in the way that Þnancial

distress is triggered. In the BSM model, default occurs at the maturity of

the single bond issue if the value of the assets is insufficient to repay the

principal amount. In such a case, the creditors take over the Þrm and recover

the value of the assets.

In the other three models, default can occur at any time. In the LT and

ER models, Þnancial distress is triggered when shareholders no longer Þnd

it proÞtable, given the revenue produced by the assets, to continue servicing

debt. Finally, in the BV model, default occurs when the asset value crosses

an exogenous lower threshold.

We now turn to a more detailed description of the valuation formulae

implied by the models (a list of notation is provided in table 1).
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2.1 The Black & Scholes / Merton (BSM) Model

The value of equity in the Black & Scholes (1973) / Merton (1974) model

is computed using the standard call option formula, with the exercise price

set equal to the nominal amount (N) of the discount bond with maturity T :

E (ωt, t) = ωt · φ (d1)− e−r(T−t)N · φ (d2) (2)

where φ [·] represents the standard normal distribution function with d1 and
d2 given in the appendix. All revenue generated by the assets is reinvested

and thus β = 0 in (1). The value of the bond is, of course, equal to the value

of the assets less the value of equity:

B (ωt, t) = ωt − E (ωt, t) (3)

Since there are no taxes nor bankruptcy costs in this model, the value of

the assets equals the value of the Þrm. Note that (1− φ (d2)) represents the
risk-adjusted probability of default up to date T .

2.2 The Briys & de Varenne (BV) Model

The Briys & de Varenne (1997) model differs from the Black & Scholes /

Merton model in two respects: default can occur prior to the maturity of the

single bond issue and interest rates are stochastic. More precisely, default

occurs if the value of the Þrm�s assets at any time falls below

Lt = δ ·N · P (t, T )

where 0 < δ < 1 and P (t, T ) is the value at t of a unit riskfree bond

maturing at T . The value of the unit bond was derived by Vasicek (1977)

and is reported in the appendix.

In case of default prior to maturity, bondholders receive f1 ·Lt and equity
holders (1− f1) · Lt; in case of default at maturity, they receive f2 · ωT and
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(1− f2) · ωT , respectively. The value of the bond is

B (ωt, t) = N · P (t, T ) ·



1− PE (l0, 1) + PE
³
q0,

l0
q0

´
− (1− f1) l0

h
φ (−d3) + φ(−d4)

q0

i
− (1− f2) l0

h
φ (d3)− φ (d1) + φ(d4)−φ(d6)

q0

i


(4)

where the PE , d1 − d6, l0 and q0 are given in the appendix. The bond
expression consists of Þve terms. The Þrst captures the value of an otherwise

identical credit riskfree bond. The second reßects the loss in value at the

maturity of the bond, corresponding to the short put present in the BSM

model. The third captures the recovery in case of a default prior to maturity

and the last two capture the fact that sharing of any surplus in Þnancial

distress is assumed to deviate from the absolute priority rule (f1 = f2 = 1

would correspond to the case of no such deviations).

Given the assumed absence of bankruptcy costs or taxes, equity is, as in

the BSM model, simply the residual claim to the Þrm�s assets:

E (ωt, t) = ωt − B (ωt, t) (5)

The model is a direct extension of Nielsen et al. (1993) which differs from

the model of Longstaff & Schwartz (1995) only by assuming that the default

threshold, rather than being a constant, is linked to the value of a riskfree

bond. In contrast to these two models, the BV model readily allows the

derivation of an equity formula for a Þrm with discount debt.

2.3 The Leland & Toft (LT) Model

Leland & Toft (1996) allow for taxes and bankruptcy costs, and thus the

value of the Þrm differs from the value of the assets (the unlevered Þrm).
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The continuously paid coupons C are tax deductible at a rate τ and the

realized costs of Þnancial distress amount to a fraction k of the value of the

assets in default. In this setting, the value of the Þrm is equal to the value

of assets plus the tax shield less the costs of Þnancial distress:

F (ωt) = ωt + τC
r

·
1−

³ωt
L

´−x¸− kL · ³ωt
L

´−x
We let L denote the default barrier, i.e. the critical asset value at which

the equity holders voluntarily declare bankruptcy. The formulae for L and

x are given in the appendix.

Shareholders are residual claimants to the value of the Þrm and so

E (ωt) = F (ωt)−D (ωt) (6)

where the value of debt is given by

D (ωt) = C

r
+

µ
N − C

r

¶µ
1− e−rT
rT

− I (ωt)
¶
+

µ
(1− k)L− C

r

¶
J (ωt)

The formulae for the functions I (ωt) and J (ωt), as well as for i (ωt) and

j (ωt) used below, are given in the appendix. Note that the value of equity,

the Þrm and debt are independent of time.

The value of a bond with maturity T, principal P = N
T and coupon

c = C
T is:

B (ω, t) = c

r
+ e−r(T−t)

h
P − c

r

i
[1− i (ωt)] +

h
(1− k)L− c

r

i
j (ωt) (7)

This particular choice of bond principal and coupon is required to derive the

tractable equity formula (6) above.

2.4 The Ericsson & Reneby (ER) Model

In this model, the capital structure of the Þrm is modelled in the spirit of

Black & Cox (1976) and Leland (1994). However, unlike in those models, the
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Þrm is allowed to increase its total debt over time.9 Although the increase

in total debt is the result of many small debt issues, each ßoated at a fair

price, it is assumed that this growth can be approximated by a continuous

increase at a rate α

dNt = αNt dt

Shareholders service debt continuously. Total debt service at time t is

denoted Ct which also increases at rate α so that Ct = C0eαt. The coupon

increases because new loans are taken up and need to be serviced, and

not because the coupon to a single loan increases. The coupons are tax-

deductible.

The distress barrier is determined by equity holders as in the LT model,

i.e. as the level of asset value L at which shareholders voluntarily declare

bankruptcy. In contrast to their model, the barrier grows (exponentially)

with time along with the total nominal amount. Financial distress is costly

and deviations from the absolute priority rule may take place. Shareholders

receive a fraction ε of the assets, leaving creditors with (1− ε− k) ·L, where
k denotes the fractional default cost.

In this setup, the value of equity is given by

E (ωt, t; ·) = ωt − Lt ·Gα (ωt) (8)

−Nt · (1−G (ωt))
+τ

Ct
r − α · (1−G

α (ωt))

+ (1− ε− k) · Lt · (Gα (ωt)−G (ωt))
+ε · Lt ·Gα (ωt)

where the formulae for {G,Gα, Lt} are given in appendix.10 G is the value
of a contingent claim that pays off one dollar when default occurs, whereas

Gα is the value of receiving one dollar compounded at a rate α until the
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date of default. The interpretations of the Þve components of the equity

price are respectively: (i) the value of the Þrm�s earnings, (ii) the cost of

debt service to current creditors, (iii) the value of the tax shield, (iv) the

value of future borrowing using the assets as collateral, and Þnally (v) the

value of payouts to shareholders in reorganization.

Next, consider a bond issued by this Þrm. We denote the size of the

coupon with c and the principal with P . The coupons are due at times

{ti : i = 1...M} where T = tM represents maturity. Furthermore, in case of

default a fraction ψ of the principal is recovered. The value of such a bond

is

B (ωt, t; ·) =
M−1X
i=1

c ·H (ωt, t; ti) (9)

+(c+ P ) ·H (ωt, t;T )
+ψ · P ·G (ωt, t;T )

where H (ωt, t; ti) is a contingent claim that pays off one dollar at maturity

unless the Þrm has defaulted prior to that date. The claim G (ωt, t;T ) pays

off one dollar if (and when) the Þrm defaults prior to T . The formulae for

these claims are given in the appendix.

3 Estimation

In this section we turn to a description of the two empirical approaches we

wish to evaluate: Þrst, the maximum likelihood approach developed by Duan

(1994), and then the traditional method used by Ronn & Verma (1986) and

others.

We do not consider estimation of the parameters of the short rate process

in the Briys & de Varenne model; these are assumed to be known. When

implementing a structural bond pricing model with stochastic interest rates,
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one generally calibrates the model of the riskfree term structure Þrst using

treasuries, before turning to the credit risk model itself (see e.g. Eom et al.

(2000)). Moreover, it is not clear how to adjust the traditional method to

estimate the parameters of an interest rate model.

3.1 Maximum Likelihood Estimation

The problem at hand is thus maximum likelihood estimation of the unob-

served asset value process (1). This problem was Þrst studied by Duan

(1994) in the context of deposit insurance. The estimation is carried out us-

ing a time series of stock prices, Eobs = ©Eobsi : i = 1...n
ª
. We use subscript

�i� to index daily observations, in contrast to subscript �t�, which refers to a

point in time in years. For example, Eobsn is the current stock price and Eobs1
is the stock price (n− 1) days ago.

We need the likelihood function of the observed price variable. DeÞning

f (·) as the conditional density for Eobsi gives us the following log-likelihood

function for the observed equity vector Eobs

LE
³
Eobs; θ

´
=

nX
i=2

ln f
³
Eobsi

¯̄̄
Eobsi−1 ; θ

´
(10)

where θ is a vector of parameters to be estimated. The choice of individual

parameters to include in θ will depend on the model and the data set.

To derive the density function for equity, a change of variables is made.

This allows us to work with the well known density function g for a normally

distributed variable � the log of the asset value:

g (lnωi |lnωi−1 ; θ) = 1q
2πs2i

exp

(
−(lnωi −mi)

2

2s2i

)
(11)

The (one-period) conditional moments of the asset value distribution, mi

and si, are, for each model, given in the appendix.
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The change of variables results in

f
³
Eobsi

¯̄̄
Eobsi−1 ; θ

´
= g (lnωi |lnωi−1 ; θ)|ωi=w(Eobsi ,ti;θ) (12)

×
Ã

∂ Ei
∂ lnωi

¯̄̄̄
ωi=w(Eobsi ,ti;θ)

!−1
where θ ⊂ θ is the subset of the parameter vector necessary to price equity.
Note that Ei = Ei (ωi, ti; ·) refers to the equity formula, whereas Eobsi denotes

an observed market value. The function transforming equity to asset value

is deÞned as w
¡Eobsi , ti; θ

¢ ≡ E−1 ¡Eobsi , ti; θ
¢
, the inverse of the equity value

function. Hence, there is a one-to-one correspondence between the stock

price Eobsi and the asset value ωi (given θ). By inserting (12) into (10) we

obtain the log-likelihood of the vector Eobs for a given choice of θ as

LE
³
Eobs; θ

´
=

nX
i=2

ln g (lnωi |lnωi−1 ; θ)|ωi=w(Eobsi ,ti;θ) (13)

−
nX
i=2

ln
dE (ωi, ti; θ)
d lnωi

¯̄̄̄
ωi=w(Eobsi ,ti;θ)

Differentiating the equity formulae (2), (5), (6) or (8) with respect to the

(log-) asset value yields the desired results. The parameter vector, bθ, is
estimated by maximizing equation (13) with respect to θ. The market price

of risk is estimated as a consequence of the chosen estimation method, even

though it is not relevant for pricing. Finally, an estimate of the value of assets

is simply obtained using the inverse equity function: : �ωt = w
³
Eobsn , tn;bθ´.

Once we have obtained the pair
³bωt,bθ´, we can compute the correspond-

ing bond prices and credit spreads, (B, S). Following Lo (1986), we can
calculate the asymptotic distributions of these estimators. For any function

of a variable, it holds that the ML estimator of that function is the function

evaluated at the ML estimator of the variable. In this case it also holds that
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the estimators are asymptotically normally distributed:

√
n
³
w
³
Eobsn , t;bθ´− ωt´ L→ N

µ
0,Σbθ dwdθ

¶
(14)

√
n
³
B
³bωt, t;bθ´− B (ωt, t; θ)´ L→ N

µ
0,Σbθ dBdθ

¶
√
n
³
S
³bωt, t;bθ´− S (ωt, t; θ)´ L→ N

µ
0,Σbθ dSdθ

¶
where Σbθ is the asymptotic standard deviation of bθ. It is estimated using a
Taylor-series expansion of the likelihood function (see appendix).

3.2 The Volatility Restriction Method

We will now review the traditional method of estimating the model�s pa-

rameters from stock prices (see for example Jones et al. (1984) and Ronn &

Verma (1986), Ogden (1987), Delianedis & Geske (1999), Eom et al. (2000)

and Hull (2000)). For reasons that will become clear below we will refer to

this as the volatility restriction (VR) method. Only two parameters can be

estimated - the current asset value, ωn, and its volatility σ. The following

steps are typically carried out:

1. The stock price volatility σE is estimated using historical data. Denote

this estimate by bσV RE .

2. The asset value and volatility are estimated by solving the following

system of equations

σ · ∂E(ωn,tn;σ)∂ω · ωn = bσV RE · Eobsn

E (ωn, tn;σ) = Eobsn

→
³bωV Rn , bσV R´

15



The Þrst equality is implied by the application of Itô�s lemma to equity as

a function of ω and t and the second from matching the theoretical equity

price with the observed market price.

There are several theoretical problems with this method, as pointed out

by Duan (1994). The stock price volatility σV RE is typically estimated as-

suming that it is constant11 � even though it is a known function of ω and

t. Furthermore, the Þrst equation is redundant since it was used to derive

the equity price formula in the second equation.12 Another disadvantage of

this approach is that it does not allow the straightforward calculation of the

distributions of the estimators for ω and σ.

4 The Simulation Experiment

As noted above, one major drawback of the volatility restriction approach

is that it does not allow estimation of parameters such as the debt growth

rate, α, and the earnings rate, β. To allow us to compare the maximum

likelihood approach to the volatility restriction approach, we estimate only

asset value and risk and thus set θ = σ (and θ = (λ,σ)).

4.1 Experiment Design

To measure the performance of the two estimation approaches, we imple-

ment them for various Þrm scenarios. Firms are deÞned along two dimen-

sions, Þnancial risk and business risk. Following Merton (1974), we measure

Þnancial risk with the quasi-debt ratio, D(N)ωn
, the ratio of riskfree debt to

asset value. Scenarios are constructed keeping ωn constant and changing N ,

the nominal amount of debt. Business risk is measured by the riskiness of

the Þrm as captured by the instantaneous volatility of the asset value, σ.

Four base case scenarios are created by setting Þnancial and business
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risk to be either �high� or �low�. A Þrm is considered to have high Þnancial

risk if its quasi-debt ratio of 1, and low if it is 0.75. Business risk is deemed

high if σ = 40% and low if σ = 20%. A complete list of the parameters used

to construct the base scenarios in the four models can be found in table 1.

The values are chosen so as to be representative of values used in previous

studies and reported empirical evidence.13

The four base case scenarios are characterized in terms of leverage, eq-

uity volatility and spreads in table 2. Leverage is calculated using the book

value of debt, and volatility is the instantaneous volatility of the stock price

process. Leverage and equity volatility are the observable market equiva-

lents of the more fundamental characteristics we use to deÞne the scenarios

in the Þrst place (D(N)ωn
and σ). For example, a Þrm with high Þnancial but

low business risk in the ER-model displays a leverage of 69% and a current

equity volatility of 42%, whereas a low Þnancial but high business risk Þrm

has a leverage of 54% and an equity volatility of 58%. The resulting spreads

are 194 and 292 basis points, respectively. In table 2, spreads range from 80

to over 600 basis points � a bond issued by a Þrm with high risk along both

dimensions. This ensures that our study covers a wide array of bonds rang-

ing from investment grade to speculative grade. We have chosen relatively

high levels of Þnancial and business risk. We expect estimation to be more

difficult in such conditions and thus an evaluation of estimator performance

to be more informative. Intuitively, the higher the uncertainty, the more

difficult it should be to indirectly �observe� asset value using equity values.

To evaluate the performance of estimators in a given scenario, we place

ourselves at time tn and price the bond using historical stock prices. Clearly,

numerous stock price histories may have led to the current leverage and

equity volatility. In the Monte Carlo experiment, we take this into account

by simulating 1000 historical asset value (and interest rate) paths consistent
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with the chosen scenario at time tn. A similar procedure is used by Lo (1986)

in order to assess the small sample properties of the maximum likelihood

estimators of stock price volatility and option prices. A detailed description

of the generation of sample paths is provided in the appendix.

For each asset value path, we Þrst compute the corresponding stock price

path using the relevant equity value formula. Second, we use this equity path

to estimate the current asset value and the parameter vector θ. Finally, we

use the estimates (bσ, bωn) to price the bond (using equations (2), (4), (7) or
(9)), compute the standard error of the estimates (using equation (14)) and

construct the corresponding conÞdence intervals. These steps are repeated

for each sample path in order to assess the sampling distribution for a given

model and scenario.

4.2 Output

In this section, we discuss the outputs produced and the tests performed.

Since the ultimate use of an implemented model is to price bonds, the Þrst

question to address is whether the price and spread estimators are unbiased

in small samples. The metric reported in the tables is the mean error of

an estimator. Second, to measure how efficient they are, we report the

standard deviation of the estimators as well as the corresponding average

absolute error.

A third issue is whether the asymptotic distributions are useful approx-

imations in small samples. We measure the skewness (Sk.) and kurtosis

(Ku.) of the sampled distributions and perform Jarque-Bera (JB) tests for

normality.14 Even if the normality of a particular estimator can be rejected,

its estimated standard deviation might be useful for hypothesis testing and

to compute conÞdence intervals in small samples. Therefore, we report the

mean estimated standard deviation (mean estimated std.) and as a measure
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of its efficiency we used its standard deviation (std. of estimated std.).15

To further pursue this issue we carry out size tests � i.e., we count

how often the true value of an estimated price parameter falls outside the

conÞdence interval calculated using the estimated standard deviation, i.e.

the population size. If its size is close to the chosen nominal size (we use 1%,

5% and 10%), one may conclude that the asymptotic distribution is useful

for purposes of calculating conÞdence intervals and conducting t-tests. An

asterisk indicates that we can reject the null hypothesis of the population

size equalling the nominal size.16

The price estimates ultimately depend on the estimates of the volatility

and value of the assets. To help understand the results, we therefore report

output for (bσ, bωn) as well.17
No asymptotic distribution has been suggested for the volatility restric-

tion method. Therefore, only bias and efficiency are reported for this ap-

proach.

5 Results

Tables 3-6 display the results of the Monte Carlo simulations for the base

case scenarios. Note that each table is the result of a different experiment

with distinct set of asset value and, if applicable, interest rate paths.

Table 7 summarizes tables 3-6: tables 7a-7b show results organized by

scenario, averaged over models, and table 7c reports average results across

models and scenarios. Although the economic interpretation of these av-

erages may be somewhat ambiguous, table 7 nevertheless provides an ac-

cessible overview of the overall performance of the volatility restriction and

maximum likelihood methods. We do not, however, test the size for the

summary tables.

Table 8 provides results for some alternative scenarios, and tables 9-
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10, Þnally, show the effect on estimators of varying sample size and bond

maturity.

5.1 Result Overview

First, we note in table 7 that the bias of the maximum likelihood approach

is negligible for practical purposes. This result holds for all models and

scenarios. In contrast, the volatility restriction approach exhibits an average

pricing error of -4.5% (table 7c). However, the bias varies across models and

scenarios which will be discussed in detail below.

It is also evident from table 7 that the ML approach is much more

efficient than the VR approach; the standard deviation and mean absolute

error of the latter estimators are multiple times higher (e.g. the standard

deviation of the ML estimator of the spread is 35 b.p., whereas the VR

estimator is 486 b.p.). Again, this is true for all models and scenarios.

Figure 1 provides a visual summary of the relative efficiency of the two

empirical approaches.

The explanation for the failure of the VR approach is intuitive. A highly

volatile historical stock price series translates into a high estimated asset

volatility and vice versa. This is a direct effect of solving the system of

equations, as illustrated by the straight line in Þgure 2 which plots the

estimated asset risk as a function of historical stock volatility. However,

high stock volatility is not necessarily the result of high asset volatility � it

could be the result of a historically high leverage. Typically, the higher the

leverage, the higher the stock volatility. Thus, in a situation where asset

value and hence stock prices have risen over the sample period, leverage

and stock volatility have fallen. Historical stock volatility, computed as

the average of realized volatilities, will therefore be higher than the current

level. This translates into an excessive asset volatility estimate and, thus,
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a too low bond price estimate (Þgure 3). In sum, the described volatility

restriction effect implies that increasing stock prices result in underpriced

bonds, whereas decreasing stock prices produce overpriced bonds.

The reason the VR approach systematically underprices is straightfor-

ward: Þrst, because stock prices increase on average in our simulations, and

second, because the positive impact of leverage on stock volatility is more

pronounced at high leverages. Both effects are visible in Þgure 4 which plots

the value of the assets at the start of the sample period against historical

stock volatility. To interpret the diagram, remember that the current value

of assets is 1000 and that the current stock volatility is 65% in this scenario.

The positive average growth in asset values (and thus equity values) is illus-

trated by the concentration of initial starting values below 1000 in the plot.

A low initial stock price implies a high initial leverage, and the impact of

leverage on stock volatility is visible from the negative correlation between

asset values and stock volatility. In addition, the effect is stronger at high

leverages, which is conÞrmed by the steeper slope to the left in the diagram.

This effect can also explain why estimation is less successful when the

Þnancial risk is high (tables 7a-7b). The higher the leverage, the more pro-

nounced the effect on stock volatility. In a low leverage Þrm, the assumption

of constant equity volatility is less severe.

The problem just described is not present when applying the maximum

likelihood approach. As illustrated by Þgures 2 and 3, the ML estimators are

able to disentangle the effect of leverage on stock volatility from the impact

of business risk.

We now turn to the small sample distributions of the maximum likelihood-

estimators. As is evident from a comparison of columns Standard deviation

and Mean estimated std. in any scenario or model, the standard deviation

estimator is unbiased and quite efficient: its own standard deviation (Std.
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of estimated std.) is on average six times lower than the mean estimate

(see table 7c). This means that the estimated standard deviation can be

trusted upon to provide an accurate apprehension of the precision of a price

or spread estimate.

However, by the Jarque-Bera test, we often reject the hypothesis of nor-

mally distributed estimators. Yet the size tests are quite successful, in the

sense that the population size is close to the nominal size. This indicates

that one can still use the estimated standard deviations to construct reliable

conÞdence intervals and t-tests. In this sense, then, the estimators appear

to be �sufficiently normal�.

5.2 Sample Size

In this section, we examine how the distributions of the maximum likelihood

estimators depend on the length of the equity price sample (n). We investi-

gate four sample sizes : 90, 250, 500 and 750 days. Results are displayed in

table 9: in panels a-b for the Black & Scholes/Merton model and in panels

c-d for the Ericsson & Reneby model.

Using a three-month sample size, the ML estimators are quite inefficient;

a slight bias is even introduced in the estimation of the Black & Scholes

model. Increasing the sample size to 250 days leads to improved efficiency

and normality. As noted above, estimators are unbiased, and efficiency is

improved by roughly one third. Moreover, the Jarque-Bera test statistic

has decreased; we can not reject the hypothesis that the estimators of the

Ericsson & Reneby model are normally distributed, and we are less conÞdent

in rejecting normality for the Black & Scholes/Merton estimators. The size

tests leave a mixed impression; most population sizes approach the nominal

ones, but in some cases the convergence does not appear to be monotonic

(e.g. the 10% size in the Ericsson & Reneby model seems to oscillate).
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Nevertheless we cannot detect any statistically signiÞcant deviation from

the nominal sizes.

Turning to longer samples still, the same pattern can be observed. Effi-

ciency (and the efficiency of the efficiency estimate � the Std. of estimated

std.) improves monotonically, whereas the effect of the measures of normal-

ity is less clear cut.18 However, overall, the small sample distributions of

estimators become more normal as the sample size increases.

5.3 Maturity

Table 10 presents results on the signiÞcance of bond maturity T in the

Black & Scholes/Merton model. It is constructed keeping the quasi-debt

ratio constant for maturities 5, 10, 20 and 30 years. The general result

is that performance of estimators is worse for shorter maturities, but that

the deterioration is more signiÞcant for VR than ML estimators. Increasing

maturity beyond 10 years does not seem to have a very large effect for either

estimator. Again, the explanation is tied to stock volatility: the shorter the

maturity the more unstable the stock volatility.19 As noted above, this

is detrimental for the VR approach. The effect of changing the maturity

is similar in the Briys & de Varenne model, since the capital structure is

identical.

The effect of shifting bond maturity in the Leland & Toft model is not

straightforward, since the technical conditions C = c · T and N = P · T tie
the bond�s coupon (c) and principal (P ) to the Þrm�s aggregate debt coupon

(C) and nominal amount (N). A change in the amount of debt the equity

holders have to service shifts the endogenous default barrier, the level of

which has a strong impact on estimators � however, this �maturity� effect

is due to the conditions above and is therefore perhaps more appropriately

thought of as a barrier effect, which we will discuss in the next section.
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In the Ericsson & Reneby model, as opposed to in the other models, the

maturity of the bond does not enter the equity formula (eq. (8)). Conse-

quently, the empirical performance of the ER model will not be inßuenced

by the maturity of the bond one attempts to price.

5.4 Further Results

As noted above, the bias of the volatility restriction approach varies across

models and scenarios. A closer look at tables 3-6 reveals that though never

unbiased, it is mainly the implementation of the risky scenarios for the

Leland & Toft model that accounts for the bias. For example, pricing a

bond in the �Low Business Risk & High Financial Risk� scenario results in

an average bias of -17.6% (the spread is overestimated by 892 basis points).

The reason is that the (instantaneous) stock volatility in this model becomes

extreme as asset values approach the barrier. This accentuates the volatility

restriction effect. In this scenario, the distress barrier is 687 which, when

assets are worth 1000, leads to a stock volatility of 95% (table 2). When

assets are down to 800, volatility is 246%, at 750, it is 439% and at 700

stock volatility reaches a staggering 2046%. Thus, asset value paths that at

some point during the sample period were near the barrier, lead to a severe

overestimation of the current stock volatility and thus underpriced bonds.

In a scenario with a very low barrier, on the other hand, no or very few paths

would be likely to pass close to the barrier, few extreme stock volatilities

would be observed and the effect just described would be mitigated. This

is shown in table 8d, which reports results from the LT model in a scenario

with a distress barrier equal to 303.

This particular problem for the VR approach does not arise when esti-

mating the Ericsson & Reneby model since that model incorporates devi-

ations from the absolute priority rule in Þnancial distress. A lower bound
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on the payoff reduces volatility in general; in particular, at the brink of

bankruptcy, shareholders do not face an all-or-nothing situation which, in

turn, prevents stock volatility from attaining extreme values. Consider a

scenario in the ER model, which is comparable to the scenario in the LT

model studied above; setting the nominal amount of debt to 1710 we arrive

at the same default barrier.20 Table 8c displays Monte Carlo results from

this scenario. It is evident that even with a very high barrier, and conse-

quently with as many asset paths close to the barrier as in the LT scenario,

the volatility restriction approach does not fail to the same extent for the

ER model.

Of the four theoretical models, the implementation of the Briys & de

Varenne model seems to be the most successful for the maximum likelihood

as well as the volatility restriction approach. This can e.g. be seen by com-

paring the performance of either approach using this model (table 4) to the

performance using the similar but simpler Black & Scholes/Merton model

(table 3). The VR approach is approximately twice as efficient for the for-

mer model. Recall that the two models have the same capital structure,

but that in addition, the BV model allows for stochastic interest rates and

the possibility of early default. The explanation for estimator performance

in this model is again related to the default barrier, although not through

its effect in stock volatility.21 In the BV model, the barrier L is an exoge-

nous fraction (δ) of riskfree debt. The recovery to bondholders in Þnancial

distress is therefore also exogenous: (1− f1) · L. This implies that one cru-
cial component of the bond price � the payoff in Þnancial distress � is Þxed

and independent of the estimated value and risk of assets. Naturally, this

beneÞts both estimation approaches, as evidenced by the low standard de-

viations, and in particular the VR approach which otherwise would produce

biased estimates. For example in table 4a, the VR approach overestimates
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business risk by more than 5%; yet prices are essentially unbiased.22

An effect particular to the BV model is that the performance of some

estimators actually improves as the risk and hence the spread increases: this

can be observed in table 4a by comparing the efficiency of spreads and prices

in scenarios with low and high business risk. The explanation is that the

riskier the scenario, the more important the (exogenously speciÞed) distress

component of the bond price. Finally, note that a small (and arguably

economically insigniÞcant) bias in prices and spreads, combined with a very

low standard error, explains the failed size tests for the BV model.

Turning to the errors of the maximum likelihood approach, we have al-

ready noted in Þgures 2 and 3 that they appear independent of historical

leverage. Errors do, however, depend on the realized volatility of the asset

value path; an unusually high asset volatility results in an unusually high

stock volatility which, in turn, translates into an excessive asset volatility

estimate. However, after controlling for realized asset volatility, no fur-

ther variables describing the realized stock value path have any explanatory

power on the errors.23

The maximum likelihood approach works well also for very risky Þrms.

As an example, table 8b displays the results from estimating the price of a

bond issued by a �start-up� Þrm with low Þnancial risk but extreme business

risk. Even though the bond spread exceeds 1300 basis points, ML estimators

are unbiased and efficient: the mean absolute spread error is 106. The VR

approach, on the other hand, overestimates the spread by 178 basis points

and has an absolute error of 366.

6 Concluding remarks

We have evaluated a maximum likelihood approach, originally developed by

Duan (1994), for implementing structural bond pricing models. We have
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run Monte Carlo simulations for four different models (the classical Black

& Scholes / Merton model, the Briys & de Varenne model, the Leland &

Toft model and the Ericsson & Reneby model) to gauge the small sample

properties of the estimators and contrasted the method to the traditional

�volatility restriction� approach.

The studied maximum likelihood approach has several advantages over

the volatility restriction approach beyond avoiding theoretical inconsisten-

cies. First, it allows the straightforward derivation of the distributions of

estimators and thus also bounds around estimates of bond prices, spreads

and potentially any other metric that can be inferred from the model. No-

tably, it would allow the computation of conÞdence intervals for default

probabilities, which would clearly be useful in credit risk management ap-

plications. Second, it readily allows several model parameters, as opposed

to just the asset volatility, to be estimated.

We demonstrate that the maximum likelihood approach clearly dom-

inates the traditionally used alternative. In fact, the latter performs so

poorly that it may explain the failure of attempts to implement structural

bond pricing models in the past. No matter how satisfactory the theoretical

features of a model, its empirical use may have been limited by the chosen

implementation method. The maximum likelihood approach analyzed in

this paper, on the other hand, appears well suited for model testing.

The maximum likelihood bond price and spread estimators are unbiased

and relatively efficient � absolute price errors lie in the range 1%-5%. In

many instances we can reject the hypothesis that the asymptotic (normal)

distributions of estimators are carried over to small (250 day) samples. Nev-

ertheless, we show that standard deviations of estimators are often useful for

calculating conÞdence bounds and conducting hypothesis tests. Thus even

if the estimators are generally non-normal, they are �sufficiently normal� to
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be useful in applied work.
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Notes

1During the period 1997-2000, about 70% of new capital raised by US

corporations was in the form of debt. There are now approximately 3.5

trillion dollars worth of corporate debt outstanding.

2Models of corporate debt along these lines include Kim et al. (1993),

Nielsen et al. (1993), Leland (1994), Longstaff & Schwartz (1995), An-

derson & Sundaresan (1996), Leland & Toft (1996), Briys & de Varenne

(1997), Mella-Barral & Perraudin (1997), Ericsson & Reneby (1998), Mella-

Barral (1999), Fan & Sundaresan (2000), Duffie & Lando (2000) and Collin-

Dufresne et al. (2001).

3Wei & Guo (1997) and Anderson & Sundaresan (2000) use this extended

information set, whereas Jones et al. (1984), Ronn & Verma (1986), Ogden

(1987) and Delianedis & Geske (1999) base their analysis on stock prices

and balance sheets only. Eom et al. (2000) use both approaches.

4This is also likely to have been a driving force behind the development

of reduced form credit risk models, where the explicit link between the Þrm�s

securities, asset value and capital structure is foregone. The information set

typically used to estimate these models does not include equity values but

consists only of bond prices. See for example Duffee (1999).

5However, the maximum likelihood approach can readily be applied with

the extended information set � see Ericsson & Reneby (2001).

6Our choice of models is similar to that of Eom et al. (2000) who im-

plement the models of Merton (1974), Geske (1977), Longstaff & Schwartz

(1995) and Leland & Toft (1996).

7For example in Delianedis & Geske (1999) and Eom et al. (2000).
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8The model in Briys & de Varenne (1997) allows for time dependent

parameters but retains the Gaussian framework.

9Other papers that consider time varying leverage levels include Fischer

et al. (1989), Collin-Dufresne & Goldstein (2001) and Taurén (1999).

10When α = r the third line is given by its limit value: τCt ln
³
ωt
Lt

´ 1
β+0.5σ2

.

11The method used in the cited studies is identical to the estimation of

the instantaneous (and constant) stock return volatility assuming the stock

obeys a geometric Brownian motion. We will follow this approach when we

implement this method in our Monte Carlo study.

12It is interesting to note that this implies that if the estimation of σE
would produce the correct estimate (bσV RE = σE (ωn, t;σ)), one of the equa-

tions would be redundant. Thus, the Þrst theoretical inconsistency (assum-

ing constant stock price volatility) is necessary to Þnd a unique solution to

a system of equations which, otherwise, would have an inÞnite number of

solutions.

13For example we use 20% as an approximation of the effective tax rate

faced by US corporations (see Leland & Toft (1996)), and a 31% recovery

rate for corporate debt (see Altman & Kishore (1996)).

14The null hypothesis of a normally distributed estimator can be rejected

with 5% signiÞcance if the JB-statistic exceeds 6.

15When using the term �estimate�, we refer to the estimate for a particular

sample path. The expected value of an estimate is calculated as the mean

of estimates across generated sample paths.

16The standard error of the population size p, given 1000 replications, is
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q
p(1−p)
1000 . This yields relatively wide conÞdence bounds. Suppose that the

population sizes are 1%, 5% and 10% respectively, then standard errors are

approximately 0.3%, 0.7% and 0.9%.

17For brevity, we do not report results for the estimation of the market

price of risk, λ, since the estimates are too weak to make them at all useful;

this is related to the result that it is next to impossible to estimate the

expected return of an asset whose dynamics can be described by an Itô

process (see Merton (1980)). Fortunately, we don�t need the market price

of risk to price bonds.

18Lo (1986) reports similar results.

19The formula for the equity volatility contains the Þrst derivative of eq-

uity with respect to asset value. When maturity is short this derivative is

more sensitive to changes in the state variable. An analogous observation

is that the gamma of stock options that are close to the money tends to be

higher the shorter the remaining time to expiration.

20In the ER model, the stock volatility at asset value ω = 1000 is 80%,

which is a bit lower than in the LT model, but the striking difference is

noticable as asset values decline: at asset value 800, volatility is 98%, at 750,

84%, and at 700 only 38%. In the limit, as the value of assets approaches

the barrier, stock volatility converges to the volatility of the payoff ε ·ω (i.e.
the asset volatility σ).

21That the perfomance is not linked to the presence of stochastic interest

rates is evident from table 8a, which presents results from the BV model

with constant interest rates. The performance of the empirical approaches is

in line with the previously presented results using stochastic interest rates.
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22The reason for the VR approach overestimating business risk in the BV,

but not in the BSM, model is the presence of the barrier which strengthens

the previously discussed volatility restriction effect.

23Regression results available upon request.
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7 Appendix

For notational convenience, we assume all pricing takes place at t = 0 and

drop related subscripts (e.g., we use N to denote N0).

7.1 The Black & Scholes Model

The integration limits are standard: d1 =
ln ω

N
+(r+ 1

2
σ2)T

σ
√
T

d2 = d1 − σ
√
T

7.2 The Briys & de Varenne model

The integration limits are

d1 =
ln l0 +

1
2Σ (T )p

Σ (T )
= d2 +

p
Σ (T )

d3 =
ln q0 +

1
2Σ (T )p

Σ (T )
= d4 +

p
Σ (T )

d5 =
ln

q2
0
l0
+ 1

2Σ (T )p
Σ (T )

= d6 +
p
Σ (T )

with

l0 =
A0

FP (0, T )

q0 =
A0

αFP (0, T )

and

PE (l0, 1) = −l0N (−d1) +N (−d2)
PE

µ
q0,
l0
q0

¶
= −q0N (−d5) + l0

q0
N (−d6)
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Finally, the volatility term in the Vasicek case is given by

Σ (T ) = 2ρσ
γ

a

µ
T − 1− e

−aT

a

¶
(15)

+
γ2

a2

µ
T − 1

2a

¡
e−2a∆t − 4e−a∆t + 3¢¶

+σ2T

The value of a risk free unit bond is

P (0, T ) = A (0, T ) e−B(0,T )·rt

with

B (0, T ) =
1− eaT
a

A (0, T ) = exp

"
(B (0, T )− T ) ¡a2r − 1

2γ
2
¢

a2
− γ

2B (0, T )2

4a

#

7.3 The Leland & Toft Model

The default barrier is

L =
C
r

¡
A
rT −B

¢− AP
rT − τCx

r

1 + αx− (1− α)B
where

A = 2ye−rTφ
h
yσ
√
T
i
− 2zφ

h
zσ
√
T
i

− 2

σ
√
T
n
h
zσ
√
T
i
+
2e−rT

σ
√
T
n
h
yσ
√
T
i
+ (z − y)

B = −
µ
2z +

2

zσ2T

¶
φ
h
zσ
√
T
i
− 2

σ
√
T
n
h
zσ
√
T
i
+ (z − y) + 1

zσ2T

and n [·] is the standard normal density function.
The components of the debt and bond formulae are

I (ω) =
1

rT

¡
i (ω)− e−rT j (ω)¢
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i (ω) = φ [h1] +
³ω
L

´−2a
φ [h2]

j (ω) =
³ω
L

´−y+z
φ [q1] +

³ω
L

´−y−z
φ [q2]

and

J (ω) =
1

zσ
√
T


− ¡ωL¢−a+z φ [q1] q1
+
¡
ω
L

¢−a−z
φ [q2] q2


Finally

q1 =
−b− zσ2T
σ
√
T

q2 =
−b+ zσ2T
σ
√
T

h1 =
−b− yσ2T
σ
√
T

h2 =
−b+ yσ2T
σ
√
T

and

y =
r − β − 0.5σ2

σ2

z =

p
y2σ4 + 2rσ2

σ2

x = y + z

b = ln
ω

L

7.4 The Ericsson & Reneby Model

The dollar-in-default claim

G =
³ω
L

´−θ
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θ =

r³
r−β−α−0.5σ2

σ

´2
+ 2r + r−β−α−0.5σ2

σ

σ

The �α-increasing� dollar-in-default claim:

Gα =
³ω
L

´−θα

θα =

r³
r−β−α−0.5σ2

σ

´2
+ 2 (r − α) + r−β−α−0.5σ2

σ

σ

The default barrier (for r 6= α):

Lt =
τ r
r−αθ

α − θ
(ε− 1) · (1 + θα) + δ · (θα − θ) ·Nt

As can be seen, the endogenous barrier grows, along with the nominal

amount of debt, at a rate of α.

The down-and-out binary option is worth

H (ω, 0; ti) = e
−rti ·QB [ω; ti]

where the risk-adjusted probability (under the probability measure where

prices normalized by the money market account are martingales) of no de-

fault until ti is given by

QB [ω; ti] = φ
£
dB
¤− ³ω

L

´−2 r−β−α−0.5σ2

σ2 · φ £DB¤

dB =
ln ωL +

¡
r − β − α− 0.5σ2¢ ti

σ
√
ti

DB =
ln Lω +

¡
r − β − α− 0.5σ2¢ ti

σ
√
ti
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The value of the Þnite maturity dollar-in-default claim is

G (ω, 0; ti) = G (ω) ·
¡
1−QG [ω; ti]

¢
where the risk-adjusted probability (under the probability measure where

prices normalized with G are martingales) of no default until ti is given by

QG [ω; ti] = φ
£
dG
¤

−
³ω
L

´−2 r−β−α−( 1
2 +θ)σ2

σ2
φ
£
DG
¤

with

dG =
ln ωL +

¡
r − β − α− ¡12 + θ¢σ2¢ ti

σ
√
ti

DG =
ln Lω +

¡
r − β − α− ¡12 + θ¢σ2¢ ti

σ
√
ti

7.5 Monte Carlo Simulation

First consider the integral equations for the state parameters. For the con-

stant interest rate models, the integral equation for the value of (logged)

assets simply is

lnωt = lnω0 +

µ
r + λσ − β − 1

2
σ2
¶
t+ σWω

t (16)

(In the Black & Scholes model, β = 0). In the Briys & de Varenne

model, the integral equation for the short rate is

rt = r0e
−at + r(1− e−at) + γ

Z t

0
ea(s−t)dW r

s (17)

The integral equation for the log asset value is

lnωt = lnω0 +

µ
r + λσ − 1

2
σ2
¶
t+ σWω

t (18)

+(r0 − r)
µ
1− e−at
a

¶
+
γ

a

Z t

0

¡
1− e−as¢dW r

s
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7.5.1 Simulating data

In the constant interest rate models, we Þrst generate an (n− 1) vector of
discrete Wiener increments

∆Wω = {∆Wω
i : i = 1...n− 1}

which are normally i.i.d.

∆Wω
i ∼ N

³
0,
√
∆t
´

These are used to construct the corresponding log-asset value path from (16)

lnωi+1 = lnωi +

µ
r + λσ − β − 1

2
σ2
¶
∆t+ σ∆Wω

i : i = 1...n− 1

where lnωn is deÞned by the scenario.

In the Briys & de Varenne model, we Þrst generate an (n− 1)×2 matrix
of discrete Wiener increments

∆Wω = {∆Wω
i ,∆W

r
i : i = 1...n− 1}

which have (pair-wise) correlation ρ and distribution as above. These are

used to construct the corresponding short rate path from (17)

ri+1 = rie
−a∆t + r(1− e−a∆t) + γea∆t∆W r

i : i = 1...n− 1

and log-asset value path from (18)

lnωi+1 = lnωi +

µ
r + λσ − 1

2
σ2
¶
∆t+ σ∆Wω

i (19)

+(ri − r)
µ
1− e−a∆t

a

¶
+ γ

µ
1− e−a∆t

a

¶
∆W r

i : i = 1...n− 1

with rn and lnωn deÞned by the scenario.
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7.5.2 Estimating with maximum likelihood

The maximum likelihood function (13) depends on the model in two ways:

Þrst, through the derivative of the equity function and second, through

the conditional moments of the asset value distribution. The former are

straightforward to calculate from the respective equity formulae (2), (5),

(6) and (8). The latter are, for the three constant interest rate models, as

follows:
mi = E [lnωi |lnωi−1 ] = lnωi−1 +

¡
r − β + λσ − 1

2σ
2
¢
∆t

s2 = E
h
(lnωi −mi)2 |lnωi−1

i
= σ2∆t

: i = 2...n

For the Briys & de Varenne model, the conditional moments are (from (19)

above)
mi = E [lnωi |lnωi−1 ] = lnωi−1 +

¡
r + λσ − 1

2σ
2
¢
∆t+B (0,∆t) (ri−1 − r)

s2 = Σ (∆t)

: i = 2...n

where B (0,∆t) and Σ (∆t) were given in section 7.2 above.

7.6 The standard deviation of the estimated parameter vec-

tor

We use the GAUSS Constrained Maximum Likelihood Application to esti-

mate the standard deviation of the estimated parameter vector,
Pbθ. The

estimates this application provides are based on a Taylor-series approxima-

tion to the likelihood function (see e.g. Amemiya (1985), page 111).

√
n
³bθ − θ´ L→ N

¡
0, A−1BA−1

¢
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where

A = E

·
∂2L

∂θ ∂θ0

¸
→ bA = 1

n

nX
i=2

∂2Li
∂θ ∂θ0

B = E

·µ
∂L

∂θ

¶0µ∂L
∂θ

¶¸
→ bB = 1

n

nX
i=2

µ
∂Li
∂θ

¶0µ∂Li
∂θ

¶
From Gauss Applications - Constrained Maximum Likelihood (1995). Specif-

ically, in the this study, where θ =(σ λ), the estimated standard deviation

for the estimated asset volatility is

dX
�σ
=
³
1 0

´³ bA−1 bB bA−1´
 1

0


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TABLE 1: List of Notation/Base Case Scenario Parameters
Base Case Value

Parameter Notation Black & Scholes/ Briys & de Varenne Leland & Toft Ericsson & Reneby
Merton

Current asset value ωn 1000 1000 1000 1000
Riskfree rate rn 5% 5% 5% 5%
Market price of risk λ 0.5 0.5 0.5 0.5
Asset volatility (low/high) σ 20%/40% 20%/40% 20%/40% 20%/40%
Revenue rate β − − 2% 2%
Debt increase rate α − − − 4%
Nominal debt (low/high) N 1237/1649 1237/1649 665/887 750/1000
Debt coupon C − − c · T r ·N
Violations of Absolute Priority (1− f1) = (1− f2) ; ε − 40% − 5%
Bankruptcy costs k − − 15% 15%
Tax rate τ − − 20% 20%
Maturity T 10 10 10 10
Bond principal P N N N

T 100
Bond coupon c − − 8%× P 8%× P
Default threshold δ − 60% − −
Recovery rate of bond ψ − − − 31%
Asset value/short rate correlation ρ − − 0.25 − −
Mean reversion speed of short rate a − 0.2 − −
Mean level of short rate r − 5% − −
Standard deviation of short rate γ − 2% − −
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TABLE 2: Base Case Scenario Characteristics

Model Business Financial Default Equity Leverage Bond
Risk Risk Barrier Volatility Spread

(%) (%) (b.p.)

Black & Scholes Low Low - 43 67 164
Low High - 50 80 285
High Low - 59 58 506
High High - 62 68 640

Briys & de Varenne Low Low 459 45 79 158
Low High 612 59 82 270
High Low 459 76 62 351
High High 612 104 76 415

Leland & Toft Low Low 515 52 65 104
Low High 687 95 83 268
High Low 383 88 64 419
High High 511 122 79 600

Ericsson & Reneby Low Low 301 34 56 82
Low High 401 42 69 194
High Low 178 58 54 292
High High 237 65 64 413
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TABLE 3a: Base Scenario Results - Black & Scholes/Merton Model
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
Low Business Risk & Low Financial Risk

Asset volatility ML 20% 0.1% 1.6% 1.3% 1.7% 0.3% 0.1 3.0 1 1.4% 5.0% 9.1%
VR 0.5% 2.8% 2.3%

Asset value ML 1000 -2 20 16 20 4 -0.1 3.0 3 2.2%* 5.4% 9.6%
VR -6 34 27

Spreads ML 164 3 31 25 32 7 0.2 3.0 9 2.2%* 5.2% 9.4%
VR 12 55 44

Prices ML 637 -0.3% 3.1% 2.5% 3.2% 0.6% -0.1 3.0 3 2.0%* 5.4% 9.5%
VR -1.1% 5.4% 4.3%

Low Business Risk & High Financial Risk

Asset volatility ML 20% 0.1% 2.2% 1.7% 2.1% 0.4% 0.4 3.3 28 2.0%* 5.5% 9.8%
VR 0.5% 3.5% 2.8%

Asset value ML 1000 -1 41 33 41 7 -0.3 3.2 20 2.1%* 5.9% 10.4%
VR -8 66 53

Spreads ML 285 3 56 44 55 12 0.5 3.5 54 2.0%* 5.6% 10.3%
VR 15 92 72

Prices ML 752 -0.1% 5.5% 4.4% 5.4% 0.9% -0.3 3.2 20 2.0%* 6.1% 10.3%
VR -1.1% 8.8% 7.0%
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TABLE 3b: Base Scenario Results - Black & Scholes/Merton Model (continued)
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
High Business Risk & Low Financial Risk

Asset volatility ML 40% -0.1% 3.1% 2.5% 3.1% 0.4% 0.0 2.9 0 1.7% 5.6% 10.0%
VR 0.0% 4.2% 3.4%

Asset value ML 1000 2 34 27 34 4 0.1 2.9 3 1.9%* 5.9% 10.4%
VR 1 45 36

Spreads ML 506 -1 74 59 75 12 0.1 2.9 2 2.2%* 5.9% 10.6%
VR 3 102 81

Prices ML 452 0.4% 7.4% 5.9% 7.5% 0.9% 0.1 2.9 3 1.9%* 5.9% 10.4%
VR 0.3% 10.0% 8.1%

High Business Risk & High Financial Risk

Asset volatility ML 40% 0.0% 3.5% 2.8% 3.5% 0.5% 0.3 3.3 17 1.8% 5.1% 9.6%
VR -0.1% 4.8% 3.8%

Asset value ML 1000 2 49 39 49 6 0.0 3.2 2 1.8% 5.4% 9.4%
VR 4 66 53

Spreads ML 640 1 94 74 94 15 0.4 3.4 29 1.8% 5.2% 9.8%
VR 1 127 101

Prices ML 527 0.4% 9.3% 7.4% 9.3% 1.1% 0.0 3.2 2 1.8% 5.5% 9.5%
VR 0.7% 12.5% 10.0%
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TABLE 4a: Base Scenario Results - Briys & de Varenne Model
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
Low Business Risk & Low Financial Risk

Asset volatility ML 20% 0.2% 1.1% 0.9% 1.2% 0.1% 0.0 3.0 0 0.8% 4.0% 8.2%*
VR -0.3% 2.7% 2.1%

Asset value ML 1000 -1 11 9 12 1 0.1 3.0 2 1.1% 4.7% 8.9%
VR 4 26 21

Spreads ML 158 3 17 14 18 2 0.0 3.0 0 0.9% 4.2% 8.5%
VR -4 41 32

Prices ML 652 -0.2% 1.7% 1.4% 1.8% 0.2% 0.1 3.0 1 0.9% 4.3% 8.8%
VR 0.6% 4.0% 3.3%

Low Business Risk & High Financial Risk

Asset volatility ML 20% -0.3% 0.9% 0.8% 0.9% 0.2% 0.2 2.9 5 3.0%* 9.9%* 14.9%*
VR 1.4% 6.3% 3.6%

Asset value ML 1000 6 12 11 11 2 0.0 2.7 3 5.2%* 12.5%* 18.4%*
VR -4 47 38

Spreads ML 270 -6 15 13 15 3 0.0 2.8 2 3.5%* 10.0%* 15.4%*
VR 9 63 50

Prices ML 778 0.6% 1.5% 1.3% 1.5% 0.3% 0.0 2.8 2 3.3%* 9.7%* 15.3%*
VR -0.7% 6.1% 4.9%
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TABLE 4b: Base Scenario Results - Briys & de Varenne Model (continued)
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
High Business Risk & Low Financial Risk

Asset volatility ML 40% -0.6% 1.6% 1.4% 1.7% 0.2% 0.1 3.0 1 2.1%* 7.1%* 12.5%*
VR 5.1% 17.2% 9.0%

Asset value ML 1000 6 8 8 7 1 0.4 3.2 24 4.6%* 13.6%* 19.6%*
VR -3 32 26

Spreads ML 351 -6 13 11 13 1 -0.2 2.9 4 1.5% 6.3% 11.6%
VR 12 59 47

Prices ML 538 0.6% 1.3% 1.1% 1.4% 0.2% 0.2 2.9 6 1.4% 6.3% 11.6%
VR -1.0% 5.7% 4.6%

High Business Risk & High Financial Risk

Asset volatility ML 40% -0.7% 1.6% 1.4% 1.6% 0.2% 0.1 3.1 1 2.5%* 9.6%* 15.9%*
VR 5.6% 18.6% 11.8%

Asset value ML 1000 7 9 8 6 1 1.8 8.9 2025 11.8%* 22.7%* 31.2%*
VR 5 39 31

Spreads ML 415 -5 9 8 8 1 -0.3 3.3 22 2.4%* 8.8%* 16.3%*
VR -1 52 43

Prices ML 673 0.5% 0.9% 0.8% 0.8% 0.1% 0.4 3.3 27 2.4%* 8.9%* 16.2%*
VR 0.2% 5.2% 4.3%
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TABLE 5a: Base Scenario Results - Leland & Toft Model
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
Low Business Risk & Low Financial Risk

Asset volatility ML 20% 0.0% 1.1% 0.9% 1.1% 0.2% 0.2 3.0 7 0.9% 4.0% 9.3%
VR 6.5% 13.4% 7.6%

Asset value ML 1000 0 3 3 3 1 -0.3 2.9 20 2.0%* 5.8% 10.0%
VR -6 34 13

Spreads ML 104 1 15 12 15 3 0.3 3.1 17 1.3% 4.2% 9.5%
VR 111 270 125

Prices ML 76 0.0% 1.0% 0.8% 1.0% 0.2% -0.3 3.1 12 1.3% 4.1% 9.6%
VR -6.1% 11.3% 7.1%

Low Business Risk & High Financial Risk

Asset volatility ML 20% 0.0% 1.6% 1.3% 1.7% 0.4% 0.3 3.2 22 1.4% 5.3% 8.5%
VR 29.5% 63.4% 32.2%

Asset value ML 1000 -1 2 1 2 1 -2.8 12.2 4820 4.7%* 5.9% 6.8%*
VR -117 186 117

Spreads ML 268 -1 30 24 31 8 0.4 3.3 27 1.4% 5.2% 8.5%
VR 892 2666 941

Prices ML 91 0.1% 2.1% 1.6% 2.1% 0.5% -0.3 3.2 16 1.3% 5.1% 8.5%
VR -17.6% 29.6% 22.8%

51



TABLE 5b: Base Scenario Results - Leland & Toft Model (continued)
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
High Business Risk & Low Financial Risk

Asset volatility ML 40% -0.1% 2.7% 2.1% 2.7% 0.5% 0.4 4.1 74 1.4% 4.8% 9.7%
VR 18.7% 44.8% 22.8%

Asset value ML 1000 0 8 6 8 2 -0.9 5.4 379 3.0%* 6.6%* 11.7%
VR -59 108 68

Spreads ML 419 -1 50 39 50 11 0.5 4.4 124 1.5% 4.6% 9.5%
VR 492 1444 563

Prices ML 61 0.1% 3.3% 2.6% 3.4% 0.6% -0.3 3.9 52 1.3% 4.9% 9.9%
VR -13.9% 24.6% 19.0%

High Business Risk & High Financial Risk

Asset volatility ML 40% -0.2% 3.3% 2.6% 3.3% 0.7% 0.1 3.3 4 2.0%* 6.2% 10.4%
VR 31.7% 62.7% 37.6%

Asset value ML 1000 0 18 14 18 4 -0.3 3.2 14 2.3%* 6.5% 11.6%
VR -126 196 153

Spreads ML 600 -3 69 54 69 15 0.1 3.3 7 2.0%* 5.9% 10.5%
VR 984 2331 1100

Prices ML 73 0.3% 4.5% 3.5% 4.5% 0.9% 0.1 3.3 3 2.0%* 6.1% 10.3%
VR -19.9% 32.9% 28.1%
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TABLE 6a: Base Scenario Results - Ericsson & Reneby Model
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
Low Business Risk & Low Financial Risk

Asset volatility ML 20% 0.0% 1.1% 0.9% 1.1% 0.1% 0.0 2.8 2 1.0% 4.5% 8.1%*
VR 0.9% 2.3% 1.9%

Asset value ML 1000 0 2 2 2 0 -0.5 3.1 37 2.9%* 5.7% 10.3%
VR -2 5 4

Spreads ML 82 0 11 9 11 1 0.1 2.8 4 1.1% 4.8% 8.4%
VR 19 41 32

Prices ML 116 0.0% 0.8% 0.6% 0.8% 0.1% -0.1 2.8 4 1.1% 4.8% 8.3%
VR -1.3% 2.9% 2.3%

Low Business Risk & High Financial Risk

Asset volatility ML 20% 0.0% 1.3% 1.0% 1.3% 0.1% 0.2 3.0 4 1.3% 5.8% 10.3%
VR 1.7% 3.8% 3.0%

Asset value ML 1000 0 7 5 7 1 -0.2 3.1 10 1.4% 5.8% 10.4%
VR -9 21 16

Spreads ML 194 0 18 15 18 2 0.2 3.0 4 1.3% 5.9% 10.5%
VR 56 114 88

Prices ML 107 0.0% 1.3% 1.1% 1.3% 0.1% -0.1 3.0 2 1.2% 5.8% 10.5%
VR -3.6% 7.3% 5.9%
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TABLE 6b: Base Scenario Results - Ericsson & Reneby Model (continued)
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
High Business Risk & Low Financial Risk

Asset volatility ML 40% 0.1% 2.3% 1.8% 2.3% 0.3% 0.1 2.9 2 0.8% 4.2% 8.1%*
VR 2.2% 5.8% 4.4%

Asset value ML 1000 0 9 7 9 1 -0.1 2.9 3 0.9% 4.5% 8.5%
VR -9 23 18

Spreads ML 292 1 28 23 29 4 0.1 2.9 3 0.8% 4.4% 8.4%
VR 50 119 89

Prices ML 99 0.0% 2.0% 1.6% 2.1% 0.2% -0.1 2.9 1 0.9% 4.2% 7.8%*
VR -3.1% 7.6% 5.9%

High Business Risk & High Financial Risk

Asset volatility ML 40% -0.1% 2.6% 2.1% 2.5% 0.3% 0.2 3.0 5 1.3% 5.6% 10.0%
VR 3.5% 8.8% 6.6%

Asset value ML 1000 0 15 12 15 2 -0.1 3.0 3 1.4% 5.8% 10.0%
VR -18 46 36

Spreads ML 413 -1 35 28 34 4 0.2 3.0 5 1.3% 5.7% 9.8%
VR 91 207 159

Prices ML 91 0.1% 2.4% 1.9% 2.4% 0.3% -0.1 3.0 1 1.3% 5.4% 9.7%
VR -5.0% 12.1% 9.9%
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TABLE 7a: Summaries across Models
Bias & Efficiency Distribution

Empirical Mean Standard Mean Mean Std. of
Approach error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
Low Business Risk & Low Financial Risk

Asset volatility ML 0.1% 1.2% 1.0% 1.3% 0.2% 0.1 3.0 2 1.0% 4.4% 8.7%
VR 1.9% 5.3% 3.5%

Asset value ML -1 9 7 9 1 -0.2 3.0 16 2.1% 5.4% 9.7%
VR -3 25 16

Spreads ML 2 18 15 19 3 0.2 3.0 8 1.4% 4.6% 9.0%
VR 34 102 58

Prices ML -0.1% 1.6% 1.3% 1.7% 0.3% -0.1 3.0 5 1.3% 4.7% 9.1%
VR -2.0% 5.9% 4.2%

Low Business Risk & High Financial Risk

Asset volatility ML -0.1% 1.5% 1.2% 1.5% 0.3% 0.3 3.1 15 1.9% 6.6% 10.9%
VR 8.3% 19.2% 10.4%

Asset value ML 1 15 12 15 3 -0.8 5.3 1213 3.4% 7.5% 11.5%
VR -35 80 56

Spreads ML -1 30 24 30 6 0.3 3.1 22 2.1% 6.7% 11.2%
VR 243 733 288

Prices ML 0.1% 2.6% 2.1% 2.6% 0.5% -0.2 3.0 10 2.0% 6.7% 11.2%
VR -5.7% 13.0% 10.1%
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TABLE 7b: Summaries across Models (continued)
Bias & Efficiency Distribution

Empirical Mean Standard Mean Mean Std. of
Approach error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
High Business Risk & Low Financial Risk

Asset volatility ML -0.2% 2.4% 2.0% 2.5% 0.4% 0.1 3.2 20 1.5% 5.4% 10.1%
VR 6.5% 18.0% 9.9%

Asset value ML 2 15 12 15 2 -0.1 3.6 102 2.6% 7.7% 12.6%
VR -17 52 37

Spreads ML -2 41 33 42 7 0.1 3.3 33 1.5% 5.3% 10.1%
VR 139 431 195

Prices ML 0.3% 3.5% 2.8% 3.6% 0.5% 0.0 3.1 16 1.4% 5.3% 10.0%
VR -4.4% 12.0% 9.4%

High Business Risk & High Financial Risk

Asset volatility ML -0.2% 2.8% 2.2% 2.7% 0.4% 0.1 3.2 7 1.9% 6.6% 11.5%
VR 10.2% 23.7% 14.9%

Asset value ML 2 23 18 22 3 0.3 4.6 511 4.3% 10.1% 15.6%
VR -34 87 68

Spreads ML -2 52 41 51 9 0.1 3.3 16 1.9% 6.4% 11.6%
VR 269 679 351

Prices ML 0.3% 4.3% 3.4% 4.3% 0.6% 0.1 3.2 8 1.9% 6.5% 11.5%
VR -6.0% 15.7% 13.1%
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TABLE 7c: Summary across Models and Scenarios (averages of Tables 7a-7b)
Bias & Efficiency Distribution

Empirical Mean Standard Mean Mean Std. of
Approach error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%

Asset volatility ML -0.1% 2.0% 1.6% 2.0% 0.3% 0.2 3.1 11 1.6% 5.8% 10.3%
VR 6.7% 16.6% 9.7%

Asset value ML 1 15 12 15 2 -0.2 4.1 460 3.1% 7.7% 12.3%
VR -22 61 44

Spreads ML -1 35 28 35 6 0.2 3.2 20 1.7% 5.8% 10.5%
VR 171 486 223

Prices ML 0.1% 3.0% 2.4% 3.0% 0.4% -0.1 3.1 10 1.6% 5.8% 10.4%
VR -4.5% 11.6% 9.2%
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TABLE 8a: Alternative Scenarios - Briys & de Varenne Model with Constant Interest Rates
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%

Asset volatility ML 40% -0.6% 1.5% 1.3% 1.6% 0.2% 0.0 3.2 1 2.1%* 7.8%* 13.1%*
VR 7.2% 23.3% 12.6%

Asset value ML 1000 7 9 8 6 1 2.0 10.7 3116 11.3%* 21.7%* 27.4%*
VR 2 37 29

Spreads ML 415 -4 8 7 8 1 -0.3 3.2 17 2.0%* 7.0%* 12.9%*
VR 3 49 41

Prices ML 660 0.5% 0.8% 0.7% 0.8% 0.1% 0.3 3.3 21 2.0%* 7.5%* 13.4%*
VR -0.2% 4.9% 4.1%

Parameter values: σ = 40%, N = 1649 and the rest as in base case scenario except: r = 5%, γ = 0.
Scenario characteristics: default barrier 600, equity volatility 101%, leverage 75%, bond spread 415

TABLE 8b: Alternative Scenarios - A Start-Up Firm (Ericsson & Reneby Model)

Asset volatility ML 100% -0.2% 5.3% 4.2% 5.6% 0.8% 0.0 3.0 0 1.0% 4.6% 8.7%
VR 4.6% 15.3% 10.4%

Asset value ML 1000 1 11 9 12 1 0.3 3.1 13 1.2% 3.8%* 7.9%*
VR -6 25 19

Spreads ML 1342 -4 133 106 141 21 0.1 3.0 1 1.1% 4.7% 8.9%
VR 178 532 366

Prices ML 49 0.4% 6.0% 4.8% 6.4% 0.8% 0.1 3.0 3 1.2% 4.4% 8.8%
VR -5.2% 18.6% 14.3%

Parameter values: σ = 100%, N = 750 and the rest as in base case scenario except c = 3% · P,α = 4%,β = 0%,ψ = 10%̇.
Scenario characteristics: default barrier 53, equity volatility 117%, leverage 48%, bond spread 1342.
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TABLE 8c: Alternative Scenarios - Ericsson & Reneby Model with High Barrier
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%

Asset volatility ML 20% -0.1% 1.5% 1.2% 1.5% 0.3% 0.2 3.1 7 1.7% 5.2% 10.2%
VR 0.6% 4.0% 3.4%

Asset value ML 1000 2 24 19 24 4 -0.1 3.0 1 1.4% 4.9% 9.5%
VR -5 65 54

Spreads ML 507 -1 12 10 13 2 0.1 3.0 1 1.5% 4.9% 9.7%
VR 18 152 131

Prices ML 86 0.1% 0.8% 0.7% 0.9% 0.1% -0.1 3.0 1 1.5% 5.0% 9.6%
VR -0.6% 10.6% 8.9%

Parameter values: σ = 20%, N = 1710 and the rest as in base case scenario.
Scenario characteristics: default barrier 687, equity volatility 83%, leverage 92%, bond spread 507.

TABLE 8d: Alternative Scenarios - Leland & Toft Model with Low Barrier

Asset volatility ML 20% 0.0% 1.1% 0.9% 1.1% 0.1% 0.0 3.0 0 1.2% 4.4% 8.8%
VR 1.3% 3.0% 2.3%

Asset value ML 1000 0 7 5 7 1 -0.1 3.0 1 1.8% 4.4% 8.8%
VR -9 19 14

Spreads ML 303 -1 27 22 28 3 0.1 3.0 0 1.5% 4.4% 8.8%
VR 34 76 58

Prices ML 6 0.0% 2.0% 1.6% 2.1% 0.2% 0.0 3.0 0 1.2% 4.5% 8.7%
VR -2.4% 5.3% 4.2%

Parameter values: σ = 20%, N = 750 and the rest as in base case scenario except T = 100,β = 6%.
Scenario characteristics: default barrier 333, equity volatility 39%, leverage 62%, bond spread 303.
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TABLE 9a: Sample size - Black & Scholes/Merton Model (Low Business Risk & High Financial Risk)
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
Sample size 90 days

Asset volatility ML 20% 0.3% 3.4% 2.7% 3.6% 0.9% 0.4 3.5 37 2.4%* 6.1% 8.9%
VR 0.4% 3.8% 3.0%

Asset value ML 1000 -4 64 51 69 15 -0.3 3.2 17 2.7%* 6.4% 9.6%
VR -7 71 57

Spreads ML 285 10 88 69 94 28 0.6 3.9 95 3.3%* 6.8%* 9.8%
VR 14 99 77

Prices ML 752 -0.6% 8.5% 6.8% 9.1% 2.0% -0.3 3.2 17 2.7%* 6.4% 9.6%
VR -0.9% 9.5% 7.6%

Sample size 250 days

Asset volatility ML 20% 0.1% 2.2% 1.7% 2.1% 0.4% 0.4 3.3 28 2.0%* 5.5% 9.8%
VR 0.5% 3.5% 2.8%

Asset value ML 1000 -1 41 33 41 7 -0.3 3.2 20 2.1%* 5.9% 10.4%
VR -8 66 53

Spreads ML 285 3 56 44 55 12 0.5 3.5 54 2.0%* 5.6% 10.3%
VR 15 92 72

Prices ML 752 -0.1% 5.5% 4.4% 5.4% 0.9% -0.3 3.2 20 2.0%* 6.1% 10.3%
VR -1.1% 8.8% 7.0%

Parameter values and scenario characteristics as in base case scenario.
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TABLE 9b: Sample size - Black & Scholes/Merton Model (Low Business Risk & High Financial Risk) (continued)
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
Sample size 500 days

Asset volatility ML 20% 0.0% 1.6% 1.3% 1.6% 0.3% 0.3 3.2 22 1.7% 3.9% 9.6%
VR 1.0% 4.3% 3.4%

Asset value ML 1000 0 31 24 30 5 -0.3 3.2 17 1.8% 4.1% 9.7%
VR -17 80 64

Spreads ML 285 1 41 32 40 8 0.4 3.4 37 1.7% 4.4% 9.6%
VR 30 114 89

Prices ML 752 -0.1% 4.1% 3.2% 4.0% 0.7% -0.3 3.2 17 1.8% 4.1% 9.7%
VR -2.4% 10.6% 8.5%

Sample size 750 days

Asset volatility ML 20% 0.0% 1.3% 1.1% 1.3% 0.2% 0.2 3.2 9 1.2% 5.9% 10.9%
VR 1.1% 4.8% 3.8%

Asset value ML 1000 0 26 20 25 4 -0.2 3.1 6 1.2% 5.9% 11.2%
VR -19 88 71

Spreads ML 285 0 34 27 33 7 0.3 3.3 17 1.3% 6.1% 11.1%
VR 34 126 99

Prices ML 752 0.0% 3.4% 2.7% 3.3% 0.6% -0.2 3.1 6 1.2% 5.9% 11.2%
VR -2.6% 11.7% 9.4%

Parameter values and scenario characteristics as in base case scenario.
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TABLE 9c: Sample size - Ericsson & Reneby Model (High Business Risk & Low Financial Risk)
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
Sample size 90 days

Asset volatility ML 40% 0.0% 3.8% 3.0% 4.0% 0.6% 0.1 2.7 6 1.8% 5.2% 9.8%
VR 0.9% 4.7% 3.8%

Asset value ML 1000 0 15 12 16 3 -0.1 2.6 8 2.2%* 5.9% 10.3%
VR -4 19 15

Spreads ML 292 1 47 38 49 8 0.1 2.7 7 1.9%* 5.5% 10.2%
VR 20 75 61

Prices ML 99 0.0% 3.3% 2.7% 3.5% 0.5% 0.0 2.7 5 1.6% 5.4% 9.6%
VR -1.2% 5.2% 4.2%

Sample size 250 days

Asset volatility ML 40% 0.1% 2.3% 1.8% 2.3% 0.3% 0.1 2.9 2 0.8% 4.2% 8.1%*
VR 2.2% 5.8% 4.4%

Asset value ML 1000 0 9 7 9 1 -0.1 2.9 3 0.9% 4.5% 8.5%
VR -9 23 18

Spreads ML 292 1 28 23 29 4 0.1 2.9 3 0.8% 4.4% 8.4%
VR 50 119 89

Prices ML 99 0.0% 2.0% 1.6% 2.1% 0.2% -0.1 2.9 1 0.9% 4.2% 7.8%*
VR -3.1% 7.6% 5.9%

Parameter values and scenario characteristics as in base case scenario.

62



TABLE 9d: Sample size - Ericsson & Reneby Model (High Business Risk & Low Financial Risk) (continued)
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
Sample size 500 days

Asset volatility ML 40% 0.1% 1.7% 1.4% 1.7% 0.2% 0.1 2.8 2 1.2% 6.1% 11.0%
VR 5.3% 10.3% 7.6%

Asset value ML 1000 0 7 6 7 1 -0.1 2.8 3 1.3% 6.0% 11.1%
VR -20 38 29

Spreads ML 292 1 22 17 21 3 0.1 2.9 3 1.2% 5.7% 11.0%
VR 119 222 164

Prices ML 99 -0.1% 1.5% 1.2% 1.5% 0.2% -0.1 2.8 2 1.1% 6.3% 11.2%
VR -6.8% 12.5% 10.0%

Sample size 750 days

Asset volatility ML 40% -0.1% 1.4% 1.1% 1.4% 0.2% 0.1 3.3 6 1.9%* 5.3% 9.5%
VR 7.1% 12.6% 9.4%

Asset value ML 1000 0 6 4 6 1 -0.1 3.3 7 1.9%* 5.4% 9.6%
VR -27 45 36

Spreads ML 292 -1 17 13 17 2 0.1 3.3 7 1.9%* 5.1% 9.5%
VR 161 270 206

Prices ML 99 0.1% 1.2% 0.9% 1.2% 0.1% -0.1 3.3 4 2.0%* 5.4% 9.6%
VR -8.8% 14.6% 12.2%

Parameter values and scenario characteristics as in base case scenario.
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TABLE 10a: Maturity - Black & Scholes/Merton Model (Low Business Risk & High Financial Risk)
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
Maturity 5 years

Asset volatility ML 20% 0.0% 2.3% 1.8% 2.3% 0.5% 0.4 3.2 28 1.6% 5.9% 10.4%
VR 0.4% 4.9% 3.8%

Asset value ML 1000 0 34 27 34 7 -0.4 3.1 31 2.0%* 6.3% 10.9%
VR -6 71 56

Spreads ML 389 3 83 66 83 21 0.6 3.4 56 2.2%* 6.0% 10.8%
VR 24 183 139

Prices ML 823 0.0% 4.1% 3.3% 4.1% 0.9% -0.4 3.1 31 2.1%* 6.3% 11.0%
VR -0.8% 8.7% 6.8%

Parameter values: σ = 20%, N = 1649 and the rest as in base case scenario except T = 5.
Scenario characteristics: equity volatility 67%, leverage 85%, bond spread 389.

Maturity 10 years

Asset volatility ML 20% 0.1% 1.6% 1.3% 1.7% 0.3% 0.1 3.0 1 1.4% 5.0% 9.1%
VR 0.5% 2.8% 2.3%

Asset value ML 1000 -2 20 16 20 4 -0.1 3.0 3 2.2%* 5.4% 9.6%
VR -6 34 27

Spreads ML 164 3 31 25 32 7 0.2 3.0 9 2.2%* 5.2% 9.4%
VR 12 55 44

Prices ML 637 -0.3% 3.1% 2.5% 3.2% 0.6% -0.1 3.0 3 2.0%* 5.4% 9.5%
VR -1.1% 5.4% 4.3%

Parameter values and scenario characteristics as in base case scenario.
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TABLE 10b: Maturity - Black & Scholes/Merton Model (Low Business Risk & High Financial Risk) (continued)
Bias & Efficiency Distribution

Empirical True Mean Standard Mean Mean Std. of
Approach value error deviation absolute estimated estimated Sk. Ku. JB Size test

error std. std. 1% 5% 10%
Maturity 20 years

Asset volatility ML 20% -0.1% 1.9% 1.5% 1.9% 0.3% 0.2 3.0 10 1.7% 5.8% 10.1%
VR 0.2% 2.5% 2.0%

Asset value ML 1000 2 46 37 46 6 -0.1 2.9 3 1.8% 5.7% 9.9%
VR -4 60 48

Spreads ML 212 -1 35 28 36 6 0.3 3.1 20 2.4%* 6.2% 10.4%
VR 5 47 37

Prices ML 655 0.3% 7.0% 5.6% 7.1% 0.8% -0.1 2.9 3 1.8% 5.6% 10.0%
VR -0.6% 9.1% 7.3%

Parameter values: σ = 20%, N = 1649 and the rest as in base case scenario except T = 20.
Scenario characteristics: equity volatility 39%, leverage 74%, bond spread 212.

Maturity 30 years

Asset volatility ML 20% 0.0% 1.8% 1.5% 1.8% 0.2% 0.0 2.8 2 1.6% 5.2% 10.1%
VR 0.3% 2.2% 1.8%

Asset value ML 1000 1 48 39 49 5 0.2 2.8 5 1.4% 5.3% 10.4%
VR -5 58 46

Spreads ML 179 1 27 22 28 4 0.1 2.8 3 2.0%* 5.5% 10.4%
VR 5 34 27

Prices ML 584 0.2% 8.2% 6.6% 8.3% 0.8% 0.2 2.8 5 1.4% 5.3% 10.4%
VR -0.9% 9.9% 7.9%

Parameter values: σ = 20%, N = 1649 and the rest as in base case scenario except T = 30.
Scenario characteristics: equity volatility 34%, leverage 58%, bond spread 179.
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FIG. 1. Efficiency of the two estimation approaches. The four Þgures display kernel density plots for simulated distributions of the bond
price estimators, using the maximum likelihood (solid line) and volatility restriction (dashed line) methods. For all four models, results are based on

the high Þnancial and business risk scenarios.
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FIG. 2. Estimating business risk. The Þgure plots pairs of asset risk (σ) estimates and historical equity volatility for the corresponding sample
path. The black dots represent results for the volatility restriction method whereas the grey dots show asset / equity volatility pairs for the
maximum likelihood approach. The results are based on the high Þnancial and business risk scenario for the Ericsson & Reneby model.

67



0

20

40

60

80

100

120

0% 20% 40% 60% 80% 100% 120% 140%

Historical Stock Volatility

E
st

im
at

ed
 B

on
d 

P
ric

e

Volatility Restriction Maximum Likelihood

FIG. 3. Estimating bond prices. The Þgure plots pairs of bond price estimates and historical equity volatility for the corresponding sample
path. The black dots represent results for the volatility restriction method whereas the grey dots show bond price / equity volatility pairs for the

maximum likelihood approach. The results are based on the high Þnancial and business risk scenario for the Ericsson & Reneby model.
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FIG. 4. The relationship between initial asset value and historical equity volatility. The Þgure plots the realized historical equity
volatility for a given sample path against the level of asset value at which that path started. The plot is based on the Ericsson & Reneby model in

the high Þnancial and business risk scenario.
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