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How Downward-Sloping are Demand

Curves for Credit Risk?

ABSTRACT

We analyze European telecom debt issues between October 1999 and July
2001, and find evidence that the demand curve for telecom-sector debt slopes
downwards. Consequently, industry-wide spreads rise in reaction to unanticipated
new debt issuances. We separate the portion of the bonds’ yield spreads driven
by the issuer’s credit risk from the portion driven by this “new-issuance risk”. A
€16 B issue by Deutsche Telekom increased spreads across all telecom issues by
an estimated twelve basis points. For example, the decline in market value of a
$2.8 billion British Telecom bond attributable to the Deutsche Telekom issue is
estimated to be 1.54%, or $43.2 million.

This paper documents downward-sloping demand curves for credit risk in the Eu-
ropean telecom bond market. As a result of this demand elasticity, bond investors are
subject to “new issuance risk”: the possibility that an unanticipated issuance of bonds
in the industry will depress the market value of their bond holdings. This risk factor is
distinct from the issuer’s default risk. To our knowledge, we are the first to propose the

existence of such a risk factor and to provide an estimate of its impact on yield spreads.

Our contribution is three-fold. First, we strengthen an existing body of literature
examining equity demand curves. In contrast to this literature, we model demand curves
for credit risk, rather than the raw quantity of securities outstanding. Second, we identify
a new key component of corporate yield spreads, adding to those mentioned in the
current literature: risk premia, default risk, tax effects, and liquidity effects. Third, our
analysis suggests that firms may strategically time their fund raising in anticipation of

their competitors’ future debt issuances. Any future offerings will lower prices across the



sector by moving the market down the demand curve; rational managers would choose

to issue debt earlier, at a higher price.

Downward-sloping demand curves (or, colloquially, “investor appetite” effects), are
frequently cited by bond traders and other financial practitioners. For instance, a recent
Financial Times article! described a dispute between Morgan Stanley and UBS Warburg
over a planned joint issuance of $1 billion in convertible bonds for Echostar, a US
telecommunications firm. UBS Warburg was upset that Morgan Stanley had recently
issued a similar bond for an Echostar competitor, Nextel. UBS Warburg contended
that Nextel’s bonds may have exhausted investors’ appetite for Echostar’s issuance and

lowered its market price.
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. Morgan Stanley ... thought UBS Warburg was insisting on too high a
price for the offering and, as a result, Wall Street was taking too long to
digest the issue .... UBS Warburg was said to be irritated that the pushing
out of the Nextel offering could have spoiled Wall Street’s appetite for the

Echostar convertible.”

However, financial modeling has largely disregarded demand-curve effects for securi-
ties pricing purposes. For example, most applications of the Capital Asset Pricing Model
assume that the market portfolio is too large and diversified to be noticeably affected
by changes in the number of any single firm’s outstanding securities. Nevertheless, prior
research has documented the existence of demand-curve effects in equity markets (see
Section I). To the best of our knowledge, however, we are the first to incorporate them

into a pricing model.

What theory motivates the “investor appetite” effects? Firms tend to issue debt to
finance riskier projects. The purchase of these bonds by investors increases their portfolio
concentration in the issuer’s sector. As a result, investors’ overall exposure to sector-

specific risk factors - shocks to input prices, demand shocks, regulatory changes, and

! “Bankers Trade Insults Over $1B Notes Deal”, Financial Times, May 28, 2001.



so on - increases. Risk aversion compels investors to demand greater compensation for
bearing this incremental exposure. Consequently, the prices of bonds that are subject to
these risk factors should fall as any one firm in the industry issues more debt, assuming

that the debt issue is tied together with a real investment decision.

One might argue that, since investors could always hedge away any additional credit
risk - possibly through the use of default swaps or other forms of “default insurance” - we
would not observe these market-demand effects. This argument fails, however, when we
consider that eventually some agents must bear this additional risk, whether as primary
bond investors or as providers of credit derivatives. These agents should be risk averse
as well, and would naturally demand greater compensation as they are asked to hold
more sector-specific risk. Thus, no matter how agents transfer the additional risk among
themselves, the cumulative risk borne by investors will increase; we should still observe

a widening of yield spreads across the sector as industry debt levels rise.

Alternatively, “investor appetite” effects can also be explained by “industry debt
capacity,” a concept proposed by Shleifer and Vishny (1992). In their model, sector-
specific risk factors can cause firms in the sector to experience a simultaneous reductions
in cashflows. If a firm defaults, the best users of its assets - other firms in the sector -
suffer from debt overhang due to their own reduced cashflows, and are unable to amass
enough capital to buy the distressed firm’s assets. Industry outsiders, who presumably
are not the best users of these assets, are able to buy the assets at “fire-sale” prices.
Thus, a greater amount of debt in the sector implies a greater degree of industry-wide
debt overhang and a lower expected recovery rate on losses given default in the industry.
According to this theory, the change in expected recoveries, not “investor appetite” per

se, drives the widening of sector-wide yield spreads as firms issue more debt.

Regardless, We do not test the “risk-aversion” hypothesis against the Shleifer-Vishny
theory of debt capacity. Such an analysis merits separate treatment. Whatever the the-

ory, we do indeed confirm the presence of downward-sloping demand curves for credit



risk, and measure their impact in the European telecom market. We focus on the
European telecom bond market, primarily due to the remarkable amount of debt is-
sued within a relatively short time (October 1999 to July 2001) to support bids for
government-auctioned third-generation mobile-phone bandwidth licenses. For example,
British Telecom grew its outstanding debt from $1.5 billion at the end of 1998 to $30
billion by the end of 2000. Over the same time period, Deutsche Telekom increased its
debt burden from $33 billion to $60 billion.?

We model yield spreads as a linear function of a constant spread premium, the
slope and the level of the swap yield curve, a proxy for the overall level of European
market-wide equity returns, two measures of the issuer’s own default risk (debt-coverage
ratio and distance to default), and a measure of the aggregate expected losses due to
default borne by telecom-sector investors. The correlation coefficient between the first
principal component of yield spreads and this measure of industry credit risk is 96.7%.
We estimate that yield spreads rise by nearly eleven basis points for each additional
€100 million of expected losses due to default in the sector. The relationship between
yield spreads and sector-wide credit risk is extremely significant (¢-statistic of 48) and

is robust to a number of alternative model specifications.

The rest of the paper is organized as follows. Section I reviews the existing literature
on downward-sloping demand curves for equities. Section II describes the construction
of the measure of sector-wide credit risk, and presents a regression model for the level
of yield spreads. Section III describes the data, and section IV discusses the empirical
findings. In section V we reject two alternative explanations often cited in existing

literature: signalling effects and price-pressure effects. Section VI concludes.

2«A $250 Billion Gamble: The Telecom Sector Has Overreached Itself”, The Economist, January
25, 2001.



I. Literature Review

Our paper touches on two issues: (i) the existence of downward-sloping demand curves
for securities and (ii) the determinants of corporate yield spreads. This section surveys
the existing literature on downward-sloping demand curves for equities. We discuss the

literature exploring the determinants of corporate yield spreads in section II.B.

Scholes (1972) was the first to test the hypothesis that demand curves for common
stocks are flat. Secondary equity offerings are associated with a drop in share prices; Sc-
holes concludes that this reaction is associated with new information the market absorbs,

rather than with amended supply.

Subsequent literature is concerned with discerning whether any observed price re-
action to quantity changes is a result of downward-sloping demand curves or of the
revelation of new information. The “information hypothesis” states that an offer to
trade a large block of shares may signal news about the stock, entailing a price reaction.
A third commonly considered explanation is that the phenomenon is a consequence of
temporary “price pressure” effects. The “price-pressure” hypothesis states that any price
reactions are the result of temporary imbalances in supply and demand due to trading
frictions and segmented markets. These reactions will be fully reversed over the course

of a few weeks, as investors trade and rebalance their portfolios.

Mikkelson and Partch (1985) and Leftwich, Holthausen, and Mayers (1990) find price
reactions to large block trades. However, both sets of authors stop short of arguing
that this is unambiguous evidence of non-horizontal demand curves, since the recorded

phenomena are also consistent with the “information hypothesis”.

The first to claim success in ruling out signalling and price-pressure effects was
Shleifer (1986). He studies price reaction to inclusion (exclusion) in the S&P 500 index,
events that trigger substantial purchases (sales) of the firm’s stock by large S&P 500



index funds. He documents a significant price reaction to these events, and posits that

this is a result of downward-sloping demand curves.

Shleifer regresses equity returns on two dummy variables: one for whether the firm’s
bonds were rated A or better by S&P, and one for whether the bonds were rated by
S&P altogether. He interprets the insignificance of these variables as evidence against
the signalling explanation that inclusion in the index certifies the quality of the stock
and raises its price. Furthermore, he fails to find evidence of reversals following the

initial price reaction, and argues that this precludes the “price-pressure” hypothesis.

However, later studies (Dhillon and Johnson (1991) and Jain (1987)) asserted that
inclusion in the S&P 500 Index has a distinct certifying role. Therefore, Shleifer’s results
should not be interpreted as prima facie evidence in favor of downward-sloping demand
curves. Furthermore, Shleifer’s test of the signalling hypothesis puts faith in the rating
agencies’ assessment of the performance of issuing firms. If ratings are trailing measures
of corporate credit quality (Hand, Holthausen, and Leftwich (1992)), then the power of
this test could suffer significantly.

Bagwell (1991 and 1992) analyzes Dutch auction repurchases, in order to test the
downward-sloping-demand-curve hypothesis. “In a Dutch auction, the company states
the number of shares it will buy during a stipulated period, and it states a price range
between which shareholder bids will be accepted. The repurchase price is the lowest price
necessary to acquire the number of shares sought” (Bagwell (1992), p. 72). Bagwell finds
a significant price reaction to Dutch auction announcements and expirations, and points
out that this is consistent with an upward-sloping supply curve. However, little evidence
is presented to reject the 'information hypothesis”; A firm’s willingness to buy back its

stock at a given price range could possibly convey some signal to investors.

Kandel, Sarig, and Wohl (1995) investigated the demand for stocks using the com-
plete demand schedule of 27 Israeli IPOs that were conducted as uniform-price auctions.

These events provide less information to investors than those in Bagwell’s study, since



bids are not capped by the maximum price the firm is willing to pay for the stock. Their

results indicate a relatively elastic demand for stocks in ITPOs.

Kaul, Mehrotra, and Morck (2000) present further evidence of the existence of
downward-sloping demand curves for stocks. In November 1996, the Toronto Stock
Exchange (TSE) made a technical change (presumably free from information effects) in
the calculation of the weights for the TSE 300 Index. This resulted in major portfolio
rebalancing by mutual funds trying to mimic the index. These authors document a sig-
nificant impact on excess returns and an unusually high trading volume for the affected

stocks, both positively associated with measures of supply and demand quantity.

The price-pressure hypothesis has been tested by a number of other authors. Hess
and Frost (1982) tested the price effects of new issues of seasoned securities. They reject
and concluded that no significant price movement is expected in the neighborhood of
the issue day. On the other hand, Harris and Gurel (1986) examined prices surrounding
changes in the composition of the S&P 500 index. They assumed that such events
carry no informational content and discovered that prices increase by more than three
percent immediately after an addition is announced. However, this increase is nearly

fully reversed after two weeks, consistent with the price-pressure hypothesis.

II. The Model

A. The Measure of Quantity

Bond investors are faced with many risk factors, but two predominate: interest-rate
risk and default risk. Investors bear more of each risk as new bonds are issued. We
hypothesize that there will be separate demand curves for each risk factor. However,
interest-rate risk is common to most bonds in the economy. It is unlikely that telecom

firms could issue enough debt to have a significant impact on economy-wide interest-rate



risk exposure and cause a movement along the demand curve. In contrast, default risk is,
for the most part, sector-specific and of such a magnitude that new issuances of telecom
bonds can significantly increase the overall amount of this risk borne by investors. We
measure demand curves over aggregate industry default risk, in contrast to demand

curves over the raw quantity of securities found in much of the existing literature.?

If investors do indeed have demand curves over individual risks, then previous studies
have implicitly captured the amalgamated effect of multiple demand curves in the equity
markets. By choosing bonds as the focal point of our study, we were able to tease out
the one factor which, in our opinion, leads to downward-sloping demand curves, rather
than proxy for a basket of such factors. This is not a small improvement: consider, for
example, an economist trying to study demand-curve effects on the pricing of orange
juice. In the absence of exact data on orange juice consumption, she is forced to use
data on beverage consumption instead. As a result, our study is a more powerful test for

the existence of downward-sloping demand curves for securities than its predecessors.

In order to measure the effect of market demand for credit risk, we must first quantify
the outstanding credit risk in the sector. This is not trivial, since a univariate measure
must aggregate across a plethora of different maturities, ratings, domiciles and bond
types. Furthermore, our estimate of quantity should not depend upon market prices.
Otherwise, we run the risk that any observed relationship between yield spreads and the
quantity of credit risk is merely capturing the underlying dependence of both variables on
prices. Our measure of quantity is the present value of expected losses due to the credit
risk the market is asked to bear, and is independent of market prices. While investors
undoubtably care about the higher moments of the loss distribution, the expected loss

should be a reasonable proxy for the level of default risk borne by investors.

3This literature focuses on equity demand curves. Equities are subject to multiple risk factors (such
as market risk, sector risk, and regulation risk). Bonds are also indirectly affected by the same risk
factors that impact equity prices, through their effect on the default risk.



A.1. Measuring the Quantity of Credit Risk

Consider a corporate bond with a face value of F' and periodic coupon payments c.
The principal payment is due at ¢;, and the j-th coupon payment is payable at time
tj, 7=1,...,J. Let r(t) denote the instantaneous riskfree rate at time ¢. In the absence
of arbitrage, there exists* a “risk-neutral” measure P* under which the time-t market
value of a cashflow x payable at time T is

— [r(u)du

MVir(z) =E] |e ¢ x] , (1)

where E* denotes the risk-neutral expectation (Harrison and Kreps (1979)).

We denote the time of the issuer’s default as 7. We take recovery rates to be propor-
tional to the present value of all remaining promised payments. That is, at the time of
default, investors recover (1 — Lp) and (1 — L.) of the present value of the principal and
the remaining coupon payments, respectively. We further assume no recovery of future
coupons (L. = 1 almost surely) and that the (possibly stochastic) recovery rates, the

default time, and the riskfree rates r(t) are all jointly independent.
Suppose that a firm defaults at time 7 = s, where s < ¢t;. The time-s market value

of the principal payment of the bond is

MYV

ity

(F) = E [e_ L7 v dU] F. 2)

The time-t present value of loss on principal, conditional on default occurring at time

s, is given by

E; [fotsr(u)du} Lp MV, (F), (3)

4This is subject to standard regularity conditions. See Delbaen and Schachermayer (1994).



or equivalently,

EZ‘ [ei fttJ r(u) dU} LP F (4)

Let ¢(t,t;) be the time-t probability of default before time t;, conditional on no
default prior to ¢ (¢(t,t5) = P{r < ts|r > t}). The present value of loss is independent

of 7, so the expected value of the loss on principal given default is simply
E; [en 5/ ra) BILL) o(t,1)) F. (5)

The expected loss due to default of promised coupon payments follows in a similar

manner, with the sole difference being our assumption that L. = 1.

The total amount of expected loss due to default borne by investors for a given bond

at time ¢, denoted @, is
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We compute @, for every bond n,n € {1,...N}, and then sum all of them to

obtain the market-wide amount of expected loss due to default borne by investors,

N
Qt = Z Qn,t- (7)
n=1
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A.2. Tmplications of Our Measure of Credit Risk

This measure of credit risk imposes several restrictions on the structure of the hypoth-
esized demand curve for corporate bonds. First, ceteris paribus, each issuer has an
equivalent effect on market appetite. For example, a billion-dollar, ten-year 7% coupon
note issued by British Telecom has the same impact as an identical bond issued by

France Telecom, assuming they share the same default probabilities and recovery rates.

Second, there may be significant clientele effects with regard to credit quality. Various
classes of investors may hold idiosyncratic preferences over different rating classes, or
different durations of bonds. This could be the result of different levels of investor risk

aversion, or even contractual prohibitions on holding certain classes of bonds.®

However, all twelve firms in our dataset operate in the same sector and are in good
standing;® thus the assumption that their issuances have equivalent effects on demand is
reasonable. In addition, we consider the clientele effect to be of secondary importance.

Nevertheless, we test the validity of these assumptions in subsequent sections.

B. A Regression Model of Yield Spreads

Most studies (for example, Elton, Gruber, Agrawal, and Mann (2001)) have viewed
yield spreads as an aggregation of the likelihood of default, a risk premium, a liquidity
premium or a convenience yield, and a tax benefit premium. Collin-Dufresne, Goldstein,
and Martin (2001) (henceforth CGM) attempt to estimate the default probability and
risk premium portion of yield spreads. Even after the inclusion of numerous firm-specific

risk indicators, market-wide measures of risk aversion, and macro-economic variables,

5For example, many US pension funds and insurance companies are forbidden from holding below-
investment grade bonds.

6 All firms maintained investment-grade status (a Moody’s rating of Baa3 or better) throughout the
sample period.
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they find evidence of a missing factor that is driving yield spreads. CGM conjecture

that this missing factor represents supply and demand shocks in bond markets.

Numerous authors have incorporated non-credit-risk-related determinants of yield
spreads into their models. Janosi, Jarrow, and Yildirim (2001) find that the liquidity
premium is a significant determinant of yield spreads. Elton, Gruber, Agrawal, and
Mann find that the differences in the taxation of coupons on US government and corpo-
rate bonds explain a significant portion of corporate yield spreads. To our knowledge,

no one has estimated the impact of supply and demand shocks on corporate spreads.

In our model, we ignore any liquidity and tax effects. The yield spreads are all relative
to swap and LIBOR rates, so they are mostly devoid of distortional tax effects. Fur-
thermore, despite not explicitly modeling the liquidity premium, we incorporate many

of the same variables used in Janosi, Jarrow, and Yildirim’s liquidity measures.

Let sfn,c(t) denote the time-t spread on bond 7, issued by firm f and denominated

in currency C. We estimated the linear model:
simc() = 0 +2]S+Adry ++{R)

A
+ 7/ log (f) + 7L log(67,)

’

+ 79108(Q1) + €, (8)

where S€ is the slope of the C-currency riskfree term structure at time ¢; rC is the level
of the C-currency instantaneous riskfree rate at time ¢; RM is the daily European Market
return, % is the debt-coverage ratio (the market value of assets divided by the face
value of debt), 0, is the distance-to-default (the difference between the market value of
assets and the face value of debt, divided by assets volatility), and Q; is the aggregate

expected loss borne by telecom sector investors. The error terms, €y, are assumed to

be mean-zero disturbances and to be independent across bonds, issuers, and time.

12



C. Choice of Regressors and Predicted Signs

e Slope of the Term Structure: Sf
We measure the slope of the term structure as the difference between the ten- and
two-year swap rates. A decrease in this slope may imply a economic downturn;
during a business cycle trough loss rates are expected to increase and yield spreads
should widen. We expect 71, the coefficient for S¢, to be positive.

e Level of the Term Structure: r{

The instantaneous riskfree rate for currency C' is approximated by the three-month
riskfree rate. Following an argument of Longstaff and Schwartz (1995), a higher
riskfree rate should imply, all else equal, a greater risk-neutral drift on the firm’s
asset process. This in turn should decrease the likelihood of default (under a first
passage model, e.g. Black and Cox (1976)), and we would expect yield spreads to

follow suit. Thus we expect 7,, the coefficient for r{, to be positive.

e European Equity Market Return: RM
Higher market returns may indicate a rise in one or more of the risk factors driving
equity prices; if similar risk factors are influencing bond pricing then fixed-income
spreads should widen as well. Alternatively, a rise in market returns may indicate
an increase in the degree of investors’ risk aversion, leading to a widening in bond

yield spreads. We expect 73, the coefficient for R}, to be positive.

e Debt-Coverage Ratio: log (%)
We constructed time-series of the face value of assets (Ay;) and liabilities (FY,;) for
each firm in our study. Debt-coverage and the likelihood of default are inversely
A

related; we therefore expect a negative coefficient for log (m)

e Distance-to-Default: log (67,)
The distance-to-default concept is rooted in the Black and Cox (1976) style “first-
passage” default models and is a key metric used by commercial default forecasters

such as KMVT™_ Under a structural “first-passage” model, the market value of

13



firm f’s assets is a stochastic process Ay, with time-varying volatility o;;. Default
occurs when assets fall below the face value of the firm’s liabilities at time ¢, Fy,.
The distance-to-default dy, is defined as the difference between the assets and the
face value of liabilities, divided by the asset volatility.

We assumed that Ay, evolves according to the following dynamics:

Ape = Appae”it+ Ny, 9)
Ary
f:t_2

where the error terms us; are mean zero with stochastic GARCH(2,2) (Bollerslev

(1986)) variances oy,:
‘7]2",1: =a+ ’YlU?",t—l + 72U?°,t—2 + 73012",7:—1 + ’Y4‘7]2°,t—2 (11)

and Ny, is the change in the outstanding debt of firm f (due to issuance of new
bonds or retirement of old ones) at time ¢. Treating the issue and retirement of debt
as part of the regular lognormal evolution of the asset process, Ay;, would have
lead to large spikes in asset-volatility. These spikes would have reflected changes
in capital structure, rather then changes in the underlying asset volatility per se.
We estimated the variance process Uit for each firm at every observation date. The

resulting distance-to-default metric for firm f at time ¢ is

_ Apr = Fry

12
or (12)

Opt
Firms with a higher distance-to-default measure should be less likely to experience
bankruptcy. In addition, distance-to-default moves inversely with the volatility of
firm assets, oy;; thus, if asset volatility rises, the distance-to-default will fall and
simultaneously the risk premium on the bond will rise. For both of these reasons,

we expect a negative coefficient for d¢;.
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e Demand Curve Effects: log(Q)
We entered @ in our regression model using logs, rather than levels. Our intuition
was that the marginal impact of a billion Euro issue when market quantity was
low should be greater than when quantity was high. As discussed above, a positive
significant coefficient for log(Q) will support our conjecture of downward sloping
demand curves for corporate credit risk.

One might be concerned that any significant positive relationship between log(Q)
and spreads could solely be an artifact of the correlation between log(Q) and each
firm’s new debt issuances. However, following CGM, we proxy for the leverage
effect by including the debt-coverage ratio, and add the distance-to-default for

additional robustness. This should mitigate the danger of capturing spurious cor-

relations due to leverage effects.

Including a variable proxying for the overall level of European corporate yield spreads
would have captured general trends in market-wide yield spreads. We considered several
European bond indices, but declined to incorporate them in our model for two main
reasons. First, they were all heavily laden with European telecom debt; a significant
coefficient for any such indices would have been an a prior: result of this weighting.
Second, most of these indices were quoted in terms of a normalized index value rather
than yields or spreads. Those that quoted yields made no distinction as to the currencies

of the underlying bonds, rendering it impossible to calculate index spreads.

III. Estimation and Data Collection

We estimated our regression model (equation (8)) using a dataset of bonds issued by

twelve European telecommunications firms over the period 10/1/99 to 7/15/01.” This

"We extended our sample period beyond the end of the second quarter of 2001 to capture the market
reaction to two large issuances made by Deutsche Telecom and France Telecom in the first week of July
2001. All told, the sample period comprises 466 business days.

15



industry is particularly suited for our investigation for a number of reasons. Leverage
across the industry increased significantly over a short period®, driven by some of the
largest corporate debt offerings in history. Additionally, the industry is dominated by a
small number of firms so we were able to capture a large majority of the debt held and

issued within the sector by studying only a dozen firms.

This section details our econometric methodology. First, we describe the collection
and construction of a dataset containing characteristics (principal, coupon, coupon fre-
quency, etc.) and prices of European telecom bonds. Second, we outline the assumptions
used in the construction of daily yields and spreads for these bonds and in the estima-
tion of the regressors mentioned in section II.C. Finally, we develop a methodology for

a tractable estimation of Q.

A. Data Collection

We constructed a database of every bond issued by these firms and listed in either
Bloomberg, Datastream, or the Reuters Fixed Income Database. These sources de-
scribed each bond in the dataset: its principal and coupon rates; coupon frequency;
issue-, first-coupon- and maturity-dates; denominated currency and issuing firm; as well
as whether or not it had floating coupon rates, convertible or callable embedded options,

or “step-up” coupon provisions.’

The first two columns of Table I list the twelve firms covered in our dataset, and
the associated two-letter abbreviation we use throughout the paper. The third column
contains the principal amount of outstanding debt for each firm, as reported in the most
recent financial statement available on July 15, 2001. The fourth column details the

aggregate principal value of debt (as of that date) captured in our database, and the

8«Unburdening: Europe’s telecom giants are wrestling with debt and poor rating, to the joy of
financial traders”, The Economist, May 10, 2001
94Step-up” bonds have coupon rates that adjust to changes in the issuer’s credit rating.
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fifth column lists the ratio of debt captured in the database to total debt outstanding.
The sixth column reports the number of new debt issues captured in our database, while

the seventh column records the total principal amount of those new issuances.

Issuer Outstanding Debt (as of 7/15/01) || New Issuance in Data
Name Abbr. || of Record | in Dataset | % incl. Number | Principal
British Telecom BT €46.6 B €35.9B 77.0% 38 €344 B
Deutsche Telekom | DT €68.6 B | €34.7B 50.5% 57 €35.5 B
France Telecom FT €70.0 B ©44.0 B 62.9% 34 €379 B
Portugal Telecom PT €5.7B €28 B 49.3% 1 €1.0B
Sonera, SO €5.3 B €2.08B 37.7% 4 €1.7B
TDC TD €69 B €23 B 33.5% 13 €2.0B
Telefonica TF €34.5 B €12.2 B 35.3% 13 8.5 B
TeleNor TN €5.3B €35B 66.0% 6 €2.4 B
Vodafone VF €399B | €274B 68.6% 15 €19.2 B
Telecom Italia TI €31.3 B €29.0 B 92.8% 7 €12.7 B
KPN KP €26.1 B €22.6 B 86.8% 20 €21.9B
Telia TE 4.1 B €2.2B 53.3% 7 €15 B

Total ©344.3 B | €218.6 B 63.5% 215 €178.5 B

Table I

Outstanding face value of debt on 7/15/2001 both as reported by the issuer
and as captured in our dataset, along with the number and aggregate
principal value of new debt issues in our database. All face values were
converted into Euros.

The numbers in the fifth column indicate that our dataset fails to capture each
firm’s debt in its entirety. Some firms incorporated bank-issued lines of credit into their
reported amounts of outstanding debt. The outstanding balance on lines of credit can
fluctuate significantly on a day-to-day basis; it is quite difficult to obtain information on
the terms of these credit agreements; and lines of credit are not traded securities and
thus have no market prices. As a result of these problems, we opted to exclude lines

of credit from our study. Alas, we were unable to obtain exact information as to the
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precise breakdown of published debt into corporate notes and lines of credit, and can

only present the available figures along with the aforementioned caveats.

Some of the bonds were not directly issued by the firms mentioned above. We
included in our dataset bonds issued by wholly-owned subsidiaries of the telecom firms,
and bonds that were issued by a parent company as long as they were guaranteed by the
telecom firm itself. As an example, three bonds in our database were issued by Sogerim

S.A, a wholly-owned subsidiary of Telecom Italia, and fully guaranteed by Telecom Italia.

We collected daily bid prices from Reuters and Datastream for all available bonds.
Unfortunately, these sources only capture prices for publicly traded debt; prices for any
privately placed, or otherwise untraded issues were unavailable. Nevertheless, we were
able to capture a significant portion of the outstanding debt for each issuer and a large

majority of all debt issued during our sample period.

We cleaned and checked the data. Bonds with prices reported on only five or fewer
dates were discarded, along with prices that led to non-sensible yields. As we compared
data from different sources, we occasionally discovered inconsistencies; for instance, dif-
ferent prices quoted for the same bond, or different reported maturities and principals.
We attempted to resolve contradictions by consulting the Financial Times, the Wall

Street Journal, and the firms’ own financial reports.

B. Yields and Spreads

Daily bond yield spreads are the dependent variable of interest in our econometric work.
In this section we describe the empirical issues surrounding our computations of yields

and spreads, and detail our estimation of the riskfree term structure.

We chose to exclude certain types of bonds from our spread calculations. Determining
the yield on a floating-rate bond requires forecasting future coupon payments; rather

than introduce such noisy inferences, we opted to focus only on fixed-rate bonds. We
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also omitted any convertible and callable bonds, since their market prices are distorted

by the value of the option to convert and/or call them.

In addition, we excluded from our spread calculations eleven bonds issued by Tele-
fonica Peru S.A. or Telefonica Argentina S.A. and guaranteed by Telefonica of Spain.
We believe that daily fluctuations in the prices of these bonds are primarily driven by
changes in the Latin-American, rather than European, bond markets. We also omitted

one British Telecom index-linked bond from the spread calculations.

The criteria for inclusion in the calculation of right-hand-side variables (that is,
the distance-to-default, the debt-coverage ratio and Q) were different. We made every
attempt to capture the amount of default risk that investors are asked to bear and
include it in our measure of Q. Latin-American-issued bonds represent (indirect) claims
on the assets of Telefonica and were seamlessly aggregated into ) despite being held out
of the spread calculations. Since the computation of Q required no market prices (see
Section I1.D), we were able to include the Q-contribution due to callable and convertible

bonds by treating them as regular, non-option-embedded bonds.

Additionally, we included the @)-contribution of floating-rate bonds by forecasting the
unknown future coupons'® and calculating the bonds’s Q-contribution as we would for
a fixed-rate bond. This procedure introduces a fair amount of noise into the () measure;
however, our goal was to capture the debt burden and the ensuing default risk in their
entirety. The error resulting from omitting these bonds altogether would have been
far greater than any error due to mis-projection of future coupons. In contrast, mis-
estimation of future coupon payments would have dramatically skewed any calculations
of spreads on the floating rate bonds; consequently, the projection process was reserved

for the creation of the right-hand-side measures only.

10The coupons on each floating-rate bond are specified as a number of basis points over a given
reference rate, such as the 3-month LIBOR. We assumed that reference rates are martingales; thus
today’s expected value of any future 3-month LIBOR rate is just today’s 3-month LIBOR rate.
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The number and aggregate principal of the bonds in the dataset, separated by type
and issuer, is presented in Table II. The second and third columns (under the heading
“Spreads and Q") list the number and total principal amount of bonds used both for
the dependent spreads variable (left-hand-side) and for computing @ (right-hand-side).
The fourth through ninth columns (under the heading “Q only”) detail the number and
aggregate principal of bonds that were were used to compute @ but not included in
the spread calculations. These bonds are further broken out into floating-rate bonds,
convertible or callable bonds, and a miscellaneous category. The last two columns list the

total number of bonds and aggregate principal captured for each issuer in our dataset.

Spreads & Q @ Only i
Issuer Fixed Floating Ca/Co!! Other Total

# | Prin | # | Prin.|# | Prin|# | Prn| # | Prin
BT || 28 | €16.6B | 13 | €6.6B | 10 | €17.3B | - - |l 51 | €40.6B
DT | 46 | €33.0B | 12| €4.4B | - | - - || 58 | €37.5B
FT | 39 | €21.9B | 8 | €88B |10 | €174B | 1 | €0.2B || 58 | €48.4B
PT| 2 | €0B| - -| 4| €08B| - - €2.8B
SO €15B | 1 | €05B | - - - - 5 €2.0B
TD | 12 | €22B| 2 | €0.1B| - -| 1|€01B| 15 | €24B
TF | 25 | €88B| 6 | €1.8B| 2 | €0.2B |11 | €2.1B | 44 | €12.8B
TN | 13 | €1.6B| 3 | €21B| 2 | €0.1B | - -l 18 | €3.B
VF | 21 | €174B || 4 | €8.1B| 2 | €26B | - || 27 | €28.1B
TI| 7 | €178B| 2 | €15B| 9 | €9.9B | - - | 18 | €29.3B
KP| 17 | €11.5B | 4 | €6.7B| 7 | €1.2B | - - | 28 | €19.4B
TE| 15| €14B| 4 | €0.9B | - - - - 19 | €23B
| Total || 229 | €135.7B || 59 | €41.58 | 46 | €49.5B | 13 | €2.3B | 347 | €229.4B

Table IT
Breakdown of Dataset Bonds by Type.

12These bonds are either callable, convertible, or both.
13Note that Table II presents all the debt in our dataset, while Table I presents only outstanding
debt as of 7/15/01. As a result, the “Total” column in Tables I and II do not match.
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B.1. Computation of Yield Spreads

We computed daily semi-annually-compounded yields to maturity for each priced bond
in the dataset. Typically, one calculates yield spreads by netting the bond yield against
a riskfree rate of the same maturity and coupon frequency. However, our dataset con-
tains zero-coupon bonds as well as bonds that pay coupons quarterly, semi-annually,
and annually. On account of this heterogeneity, any choice of a particular type of refer-
ence curve - zero-coupon, semi-annual, or otherwise - would have invariably resulted in

inappropriately-calculated yield spreads for some bonds.

As a result, we opted to take yield spreads relative to the yield to maturity of a
riskfree bond with the same maturity, coupon rate, and frequency. We created synthetic
prices for these “replica” riskfree bonds by estimating the riskfree zero-coupon term

structure (Section III1.C) and assuming no arbitrage and no transaction costs.

We matched each bond to a reference curve appropriate for the bond’s denominated
currency; that is, all Dollar-denominated bond yields were netted against a US Dol-
lar reference curve, all Euro- and Eurozone-currency-denominated bonds were netted
against a Euro reference curve, and so on. This necessitated finding six reference curves:

US Dollar, Euro, Pound Sterling, Japanese Yen, Swiss Franc, and Swedish Krona.

C. Estimation of the Zero-Coupon Riskfree Curves

In order to estimate the zero-coupon riskfree curves, we collected daily currency-specific
swap yields for one- to thirty-year maturities'® from Datastream. We chose swap yields,
rather than government yields, since government bond prices are often “contaminated”
by the presence of tax and other regulatory considerations that are irrelevant to our
study. Following convention, the ¢-period swap rate was taken to be the yield to maturity

on a semi-annual coupon bond maturing at time ¢ and trading at par.

130nly one- to ten-year swap rates were available for the Swedish Krona.

21



Since the swap rates are coupon rates, we cannot use them to obtain the zero-coupon
term structure directly. Instead, we estimate zero-coupon rates by fitting Svensson’s
(1994) extension of the Nelson and Siegel (1987) model to observed swap yields. This
method parameterizes the zero-coupon yield curve in a tractable manner, yet is able to
capture a wide variety of curvatures and slopes. In particular, under Svensson’s model,

the zero-coupon yield to maturity ¢ periods in the future is given by:

1—e Mt ot L—e ™
y(t)=a0+(a1+a2) T — age 1+a3 T—e 2 . (13)

For each day in our sample period, the parameters ag, a1, as, as, A1, and Ay were chosen
to minimize a weighted sum of the absolute pricing errors for all available swaps. We
minimized absolute, rather than squared, errors so as to increase the weight of the
medium term (one- to ten-year) rates and de-emphasize the fit of the longer maturity
bonds; 86.3% of our observations belong to bonds with one to ten years till maturity, as

opposed to the 8.7% of observations from longer maturity bonds.

However, the Svensson method results in volatile and sometimes even negative yields
for maturities of less than one year. In order to estimate these short-term riskfree rates
more reliably, we used daily LIBOR data'* The quoted rates are currency-specific, zero-

coupon, money-market yields for maturities ranging from one to twelve months.

We assumed that LIBOR yields are measured without error, and used linear inter-
polation to obtain the zero-coupon term structure for maturities of less than a year.
Upon visual inspection, we noted that there was a “kink” between the LIBOR curve
and the swap-implied zero-coupon curve. To obtain a smoother curve, we linearly inter-
polated between the one-year LIBOR and the three-year fitted yields. In addition, the
one- and two-month LIBOR rates tended to be much more volatile than other LIBOR

rates. This is probably due to market-microstructure and liquidity-related issues rather

MTIBOR rates were obtained from the British Bankers’ Association website, www.bba.org.uk.
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than changes in investor risk aversion and beliefs. Accordingly, we fixed the zero-coupon

yields for all maturities less than three months at the three-month LIBOR rate.

D. Estimation of Q

Recall that we established (section II.A.1) that

Qi = Y (B[ 5] eayety)

Jit<ti<ts
+ E* [6_ L r(U)du} F,E [LP] ¢f(t’ tJ)’ (14)
~ N
Qt = ZQn,t- (15)
n=1

The risk-neutral discount factors, E*[e~ /o "]  are taken from the fitted riskfree curves.
All that remains is to estimate, under the physical measure, the firm-specific term struc-

ture of default probabilities ¢(t,t;), and expected rates of loss given default, E[Lp ;].

D.1. Estimating Default Probabilities

We modeled the credit rating of a given issuer as a stationary, continuous-time Markov
process over the eight possible Moody’s major rating classes - Aaa, Aa, A, Baa, Ba, B,
Caa, and D, where D denotes default.!® Such a model has been examined extensively
by Jarrow and Turnbull (1997); Jarrow, Lando, and Turnbull (1997); and Lando (1998).

Transition from rating class ¢ to rating class j is modeled as a Poisson process with

15The assumption of stationary and Markovian rating transitions has been questioned in recent liter-
ature. Lando and Skgdeberg (2000) , and Carty and Fons (1994) find evidence of “momentum” effects
in S&P and Moody’s ratings transitions. Blume, Lim, and MacKinlay (1976) demonstrate a gradual
increase in conservatism of the agencies’ rating definitions. Nickell, Perraudin, and Varotto (2000) doc-
ument business cycle effects in ratings transitions. Nevertheless, our study is conducted over a relatively
short period of time (only seven quarters) and the true transition rates can be treated as stationary.

23



constant intensity A;;. Thus, the probability that this transition occurs over a short
interval At is approximately A;;At. Default is the unique absorbing state in the system;

the probability of transition from default to any non-default rating is zero.

Let P(t) represent the transition matrix for the eight Moody’s rating classes over a
time-horizon of length ¢. Thus, the (i,7) component of P(t), P;;(t), is the probability
that an i-rated firm will have, ¢ units of time hence, a rating of j. Under standard

continuous-time Markov-chain theory,'® there exists a generator matrix A such that

P(t) = e, (16)

A"

The instantaneous transition intensity from state 7 to state j is given by \;; = —

The probability of a j-rated firm defaulting within ¢ units of time is simply P; p (),
where the D-th column of P(t) corresponds to the “default” state. We used an empirical
one-year transition frequency matrix'? as an estimate of P(1); let P(1) denote this

estimate. The implied generator matrix, A, is the matrix logarithm of P (1).

In the continuous-time-Markov-chain framework, there is a positive probability of
transition between any two states over any period of time ¢ (with the exception of
zero-probability transitions from default to any other state). However, there is a “peso-
problem” in that some transitions are so unlikely (such as a transition from Aaa to
default in one year) that they were not observed in the data. As a result, the empirical
transition matrix ]5(1) contains several zero entries. These zeros induced negative off-
diagonal elements in the implied generator matrix A, even though the “true” generator

matrix A has negative entries along the diagonal and non-negative entries elsewhere.

16See, for example, Resnick (1992).

17This was taken from the Moody8 dataset on the CreditMetrics’ website, www.creditmetrics.com.
This dataset was constructed from 26 years of data on primarily American firms, and only covers
transitions from one rating class to another. Firms that fell out of the rating system were omitted.
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We attempted to correct for the misspecification in A by making use of the fact that
any row in a continuous-time-Markov-chain generator matrix sums to zero. We reset
any negative off-diagonal entries in A to zero and then adjusted the diagonal elements
accordingly. Using the adjusted A and relationship (16) we estimated the transition

matrix (and the default probabilities) for any rating class over any time-horizon t.

The firms in our study experienced credit-rating upgrades and downgrades during
the sample period. Adjusting the probabilities of default to reflect rating changes may
result in significant jumps in default probabilities - and therefore overall @ - on the day
of a ratings change. However, changes in rating are lagged responses to actual shifts
in credit quality (Hand, Holthausen, and Leftwich (1992)). We wanted to incorporate

these shifts into our analysis without generating excessive “spikes” in Q.

To avoid this problem, we calculated py, the firm-specific distribution of “time-in-
rating-class”. Each py is an 8 x 1 vector in which the i-th element is the percentage of
observations in our sample when the firm was in the i-th rating class.!® We took these
empirical rating distributions as a measure of average credit quality over the sample
period. The resulting estimate of the cumulative default probability for firm f within ¢

units of time (under the physical measure) is

¢r(t,t+ A) = (ur - P(A))()- (17)

Admittedly, the assumptions that default probabilities are time-invariant and that
transition rates are stationary are very restrictive. They imply that a firm’s likelihood
of default in one year is the same in October 1999 as it is in July 2001, which is unlikely

given the substantial increase in industry leverage over that time.

18For instance, over the course of our sample, British Telecom spent roughly 90% of the time with
an A rating and 10% of the time with a Baa rating, so ugT ~ (000.90.10000)".
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Nevertheless, we feel that this methodology captures three desired effects: firms that,
on average, had lower ratings in our sample period also had higher estimated default
probabilities; the probability of default increased monotonically with time-till-maturity;

and the default probabilities did not jump significantly in reaction to rating changes.

D.2. Recovery Rates

Several simplifying assumptions underly our treatment of recovery rates. First, we take
the distribution of recovery rates to be independent from the distribution of the default
time. Second, we assume that recovery rates maintain a constant first moment over our
sample period. In particular, we do not account for the state of the business cycle or the
level of industry-wide leverage. This is inconsistent with the Shleifer and Vishny (1992)

theory in which expected recovery rates decrease as industry-wide debt levels rise.

We use the expected recovery rates provided by EnronCredit (detailed in Table III).
There were no recovery rates available for Sonera; we therefore took Sonera’s recovery
rate to be the same as TeleNor’s (another Scandinavian firm of comparable size) at 26%.
We took the recovery rates as of October 20, 2001 to be constant over the sample period,

since we do not have access to historical data from EnronCredit.

Issuer Recovery Rate Issuer Recovery Rate
British Telecom 35% Telefonica 35%
Deutsche Telekom 35% TeleNor 26%
France Telecom 26% Vodafone 40%
Portugal Telecom 32% Telecom Italia 26%
Sonera 26% (Conjectured) | KPN 30%
TDC 26% Telia 30%
Table III

EnronCredit-estimated Recovery Rates by Issuer.

9See www.enroncredit.com.
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D.3. Aggregation of ), ;

In order to estimate Q;, we had to aggregate Qn,: across all bonds and issuers. However,
these bonds were denominated in a variety of currencies. We had to convert each @,
to an arbitrary common currency prior to aggregation. Since a plurality of bonds were
denominated in Euros or Euro-equivalent currencies (56.1% of principal and 43.9% of the
number of all bonds), we assembled daily exchange rates from Datastream and converted
all @+ to Euros. This currency conversion introduced exchange-rate volatility into Q..

but we do not believe that this materially affects our results.

E. Equity Market Returns and Equity Indices

We downloaded daily equity market-capitalization values from Datastream. Where pos-
sible, we used the closing price from the main exchange of each firm’s home country.
When a firm was not traded on its home-country exchange, we used the stock value
at the Frankfurt stock exchange. We proxied for RM, the daily market-wide European
stock return, with the Dow Jones STOXX™™ European Total Market Index.?

F. Balance Sheet Proxies

Our proxy variables for default risk, debt-coverage ratio % and distance-to-default d;,
required firm-specific daily time-series of the market value of assets, debt, and equity.
Time-series for the market value of equity, Ey;, were easy to obtain; in contrast, the
time-series for the market value of the firms’ debt and assets had to be estimated from

our bond data. In particular, our dataset contains a mixture of bonds, both with and

without observed prices. We proxied for Dy;, the time-series of the market value of

20The Total Market Index is a value-weighted index of European equities that encompasses over 95% of
the “free float market capitalization of investable stock universe” of European firms. See www.stoxz.com.
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each firm’s debt, by summing, for each issuer on every observation day, the outstanding
market value of all the priced bonds along with the outstanding face values of the

unpriced bonds. The market value of assets was estimated as Ay, = Dy + Ey.

This measure of D;; may not be ideal. Adding the unpriced debt at face value
may overstate the value of the debt, particularly so as the credit quality of most firms
deteriorated over our sample period. Also, as Table I documents, we were not successful
in capturing all the debt held by these firms. We considered estimating the amount of
missing loans by using accounting statements, but the method of reporting debt varied
greatly from issuer to issuer. We ultimately decided that balance-sheet data are too

heterogenous to allow for an consistent treatment of debt across firms.

IV. Results

A. Principal Components Analysis

CGM regressed yield spreads on credit risk, market risk, or liquidity variables and then
examined the principal components of the residuals. They found that there was a single
factor driving the majority (58%) of unexplained yield spread changes. Similarly, we

extracted the first principal component of yield spreads and compared it to log(Q).

We only used spreads for those bonds extant throughout the sample period; our
dataset includes 41 such bonds.?! Figure 1 demonstrates the similarity between the two
time-series. Our results are striking; the correlation coefficient between the first principal

component of our selected yield spreads (accounting for 88.7% of variation in spreads)

21For a small number of bonds, we encountered small “holes” (up to five-days long) in the time-series
of spreads due to missing price observations. We linearly interpolated across these “holes.”
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Figure 1. Time-series of log(Q)) and the First Principal Component of Yield Spreads.

and log(Q) is 96.7%.22 This suggests that the quantity measure @) may actually be the

“missing factor” to which CGM refer.
B. Estimating the Model
Recall our basic regression model:

Sfm(t, T) = Y% =+ ’YlStC + ’YQth + ’}/3R£VI

A
+ 74 log (F—”) + 75 log(dy,t)
fit

’

+ 74 108(Q) + £ £ t- (18)

We estimated this model (to which we refer as Model 1) via ordinary least squares;

the parameter estimates (see Table IV) were supportive of our underlying hypotheses.

22We separate spreads by currency and obtain correlations of 95.1% for €-denominated bonds, 97.3%
for £-denominated bonds, 92.3% for SFR-denominated bonds and 94.9% for $-denominated bonds.
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) Parameter | Standard
Variable ) t-Stat | p-value
Estimate Error
Yo | Intercept | —7.5070 (0.1427) | 52.6166 | < 0.0001
v | S¢ 0.1417 (0.0073) | 19.4168 | < 0.0001
va | 7€ 0.0600 (0.0029) | 20.5292 | < 0.0001
v3 | RM 0.7629 (0.2415) | 3.1594 0.0016
Y4 log(?—;) —0.3270 (0.0061) | 53.8674 | < 0.0001
vs | log(dy) —0.0608 (0.0031) | 19.5514 | < 0.0001
Yo | log(Q) 0.4130 (0.0065) | 63.4380 | < 0.0001
Table IV

Results of Model 1 - OLS Regression (using White’s
heteroskedastic-consistent covariance estimator). Number of Obs. = 29908.

The estimates for the coefficients of the slope and level of the yield curve and the
market returns were all positive and highly significant. With the exception of the coef-
ficient for the level of the yield curve, this conforms with the findings of CGM and with
our expectations (see section II.C). As predicted, our estimate for -y, was significant and
negative, confirming our intuition that as firms increase their debt-coverage they simul-
taneously lower their default risk. Likewise, 75, the coefficient for the distance-to-default,

was negative and significant; raising 6 lowers the likelihood of default.

Yg, the coefficient for log(@®) is positive and highly significant, as predicted by our
hypothesis of downward-sloping demand curves for credit risk. New debt issuances, by
a given firm as well as by its competitors, appear to widen yield spreads. It may be

argued that the positive loading on log(Q) is a result of capturing leverage effects of

additional debt financing; we examine and reject this argument in section IV.E.1.
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C. Model Misspecification

In formulating this model, we restricted the regression coefficients to be the same across
firms. This is likely to be an oversimplification, as the observations represent bonds
issued by firms subject to idiosyncratic risk factors. Furthermore, the accuracy of each
firm’s time-series of market values of debt and assets depends upon on our varying

success at capturing prices for that firm’s outstanding debt.

To allow for such heterogeneity, we re-constructed our model with firm-specific co-
efficients for all variables except for log(Q). Although each firm may exhibit different
sensitivity to the quantity of market risk, we are seeking to measure the average market-
wide response to new issuances and thus force the cross-equation restriction of a common

vq coefficient. The resulting new model is given by:
spmc(t) = 9+ SE + e+ Ry

A
+ 7{ log (F—“> + 7 log(dy,)

I

+ Yo log(Q) + €7 (19)

We refer to this model as the Firm Specific Regression model, or FSR.

The results, presented in Table V, reaffirm those of the more restrictive Model 1.
First, 7o remains positive and significant. Second, the signs of *yf and %{ conform, for

the most part, to our hypotheses. In particular, only TeleNor does not have significant

negative coefficients for log (d7,) and for log (%) We confirmed that the specification

fit

of the extended FSR Model was superior to that of the more restricted Model 1.2

28We conducted Wald tests of the hypotheses: Hi : v/ = v, Vfe{1,2,...,12}, i€ {0,1,...,5}.
The p-values for each of these hypotheses are well below 0.01% (indicating that we strongly reject all
null hypotheses), with the exception of the one relating to R™. Consequently, throughout the remainder
of this paper results will refer to a model with firm-dependent 73” , 'yf , ’)/éf , 7{ , 'yg , but a common 3.
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A
S¢ r¢ Log(dy) Log(F—Jf)
Estimate  p-Val Estimate p-Val Estimate p-Val Estimate p-Val
BT || —0.1849 < 0.0001 | —0.0900 < 0.0001 | —0.1620 < 0.0001 | —0.2212 < 0.0001
DT | —0.0665  0.0457 0.0624 < 0.0001 | —0.6296 < 0.0001 | —0.1001 < 0.0001
FT 0.0497 0.0014 0.0535 < 0.0001 | —0.2191 < 0.0001 | —0.0471  0.0048
PT || —0.1564 < 0.0001 | —0.0543 0.0125 —0.0587 0.0059 —0.1555 < 0.0001
SO | —0.2484 0.0060 —0.4803 < 0.0001 | —0.2708 < 0.0001 | —0.2709 < 0.0001
TD | 0.3010 < 0.0001 | 0.0921 < 0.0001 | —0.4361 < 0.0001 | —0.0545  0.0150
TF 0.2743 < 0.0001 | 0.1277 < 0.0001 | —0.0520  0.2081 —0.0971 < 0.0001
TN 0.1861 < 0.0001 | —0.0173 0.1309 0.0460 0.7338 0.1245 0.5842
VF 0.2412 < 0.0001 | 0.0989 < 0.0001 | —0.1593 < 0.0001 | —0.5099 < 0.0001
TI —0.4765 < 0.0001 | —0.1586 0.0020 —0.1265 0.0010 —0.2237 < 0.0001
KP 0.7457 < 0.0001 | 0.1328 0.1982 —0.1879  0.0013 —0.6694 < 0.0001
TE || —0.0115 0.8782 —0.0685 0.1150 —0.1413 0.1577 —0.1626 < 0.0001
) Parameter | Standard

Variable Estimate Error t-Stat | p-value

RM 0.6445 (0.2080) | 3.0983 | 0.0019

log(Q) 0.5543 (0.0117) | 47.5606 | < 0.0001

Table V

Results of FSR Model - OLS Regression (using White’s
heteroskedastic-consistent covariance estimator). Estimates of the
(negative) 7;’s are omitted, and estimates that do not display our
theoretically-predicted signs are boldfaced. Number of Obs. = 29908.

D. Heteroskedasticity

Numerous sources of heteroskedasticity are present in our data. Individual bonds may

differ in liquidity or clientele, and firms may have idiosyncratic risk factors not captured

by our proxies for default risk. Market conditions may change over time, altering the

sensitivity of yield spreads to log(Q). This may result in inefficient OLS estimates and

artificially low standard errors. Using White’s and Breusch-Pagan’s tests, we rejected

the null hypothesis of homoskedasticity. Both p-values were well below 0.01%.
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We used White’s heteroskedastic-consistent covariance matrix estimator to deal with
this problem. In addition, we re-estimated the model under various specifications of
the covariance matrix.?* Our main result, a positive and significant ¢ coefficient, was

obtained across all covariance structures and estimation techniques.

E. Robustness Checks

We conducted a number of tests of model robustness. In all cases, the predictions of our

hypothesis were confirmed by a positive and highly significant .

E.1. Same-Firm versus Other-Firm Q

One might argue that the positive estimate of ¢ is merely capturing each firm’s increased
leverage due to its own new debt. This would imply that the portion of Q contributed
by firm f, Qf, (and not portion of @ contributed by other firms in the market, Q )
generates the positive 7g. We estimated a modified regression with ny,flog(Qf) +
Yo, log(Q—;) replacing vqlog(Q). Both yq,; and g, were positive and significant
(see table VI), indicating that changes in aggregate credit risk due to other firms’ debt

issuance do indeed have a significant and positive effect on corporate spreads.

Parameter | Standard

Variable Estimate Error t-Stat | p-value

log(Q;) | 0.23907 | (0.01005) | 23.79 | < .0001

log(Q_;) | 0.45214 | (0.01235) | 36.62 | < .0001

Table VI
OLS Regression of same-firm vs. other-firm (). Number of Obs. = 29908.

24Tn particular, we assumed group-wise (by firm) heteroskedasticity, and autocorrelated errors (across
dates). We also departed from ordinary least squares and adopted weighted least squares, with weight-
ings proportional to the inverse of the bond’s principal. Results are available upon request.
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E.2. Time-Trend Inclusion

As seen previously (Figure 1), log(Q®) steadily increased as firms issued new debt. It
could be the case that our measures of ) are just proxying for a general widening
trend in yield spreads, unrelated to any demand curve effects. Furthermore, the sample

correlation of log(Q)) and a linear time trend is 97.5%., making it hard to determine

which of the two is driving the observed widening in yield spreads.

We therefore checked how changes in spreads react to changes in log(Q) by estimating

the following regression (model AFSR):
Aspnc(t) = 70+ AST +fArf + AR

A
+ v/ Alog (F—”) + 7L Alog(dy,)
fit

+ 7oA log(Q) + €f.n1- (20)

If log(®) merely proxies for an unrelated time-trend in the FSR model, we should obtain
a significant 7, and an insignificant ¢ in the AFSR model. Our results (see Table VII)
contradict the time-trend hypothesis; - is positive and significant, even in the presence
of a significant intercept . The ¢-statistic for g is lower than in the original FSR

model, but one must be careful about comparing t-statistics across different regressions.

i Parameter | Standard
Variable t-Stat | p-value

Estimate Error
Yo 0.00175 (0.000483) | 3.62 | 0.0003

Alog(Q) | 0.05699 | (0.02369) | 2.41 | 0.0162

Table VII
Results of AFSR Model - OLS Regression (using White’s
heteroskedastic-consistent covariance estimator). Number of Obs. = 29802.
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Furthermore, the correlation between the first principal component of corporate yield
spreads (PC1) and a time-trend (TT) is ppcirr =90.98%, which albeit high on an
absolute scale, is significantly lower than ppey joeg) = 96.72.%° This strengthens our

hypothesis that log((), and not an arbitrary time-trend, drives the widening in corporate

yield spreads throughout the sample period.

E.3. Rating Changes

A commonly used measure of credit quality is the credit rating assigned to an issuer by
agencies such as S&P or Moody’s. As a robustness check, we added dummy variables to
the FSR model reflecting the credit rating of the issuing firm. For simplicity, we ignore

S&P’s ratings, along with any placements (positive or negative) on Moody’s WatchList.?®

Moody’s breaks most of its major rating classes into finer subgroups. For instance,
the major rating Aa is subdivided into Aal, Aa2, and Aa3. All twelve issuers were rated
between Aal and Ba2 over the entire sample period. Let 174 r equal 1 if firm f is rated
R at time t, where R € {Aal, Aa2, Aa3, A1, A2, A3, Bal, Ba2}, and 0 otherwise. We

omitted 17, a2 to avoid collinearity in regressors. The resulting model is:

Ay
stact) =2 + ASE+Are + AR ++]log (ﬁ:) + 74 log(d7,4)
+ Yaarljpaar + 4 VBailiear + 70 10g(Q) + € (21)

The results are presented in Table VIII. First, 7o remains positive and significant,

suggesting that the market-wide level of credit risk explains yield spreads even after

ZNeither log(Q) nor PC1 can be assumed to be normal or serially uncorrelated. We therefore con-
structed 99% confidence intervals for ppcq 44(g) Via Monte-Carlo simulation. The resulting confidence
interval is [96.11%,97.31%)], and thus ppcy j0e(q) > pPc1,TT With 99% significance.

26« WatchList lists the names of credits whose Moody’s ratings have a likelihood of changing. These
names are actively under review because of developing trends or events which, in Moody’s opinion,
warrant a more extensive examination... In certain cases, names may be removed from this Watchlist
without a change in rating,” from www.moodys.com.
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With a log(Q) Term Without a log(Q) Term
) Parameter | Standard Parameter
Variable Estimate Error t - Stat | p-value Estimate p-value
Tag —0.99466 | (0.03366) | —29.55 | < .0001 | —1.30770 < .0001
Tag2 —0.84243 | (0.02788) | —30.22 | < .0001 || —1.09784 < .0001
Tag3 —0.82111 | (0.05491) | —14.59 | < .0001 || —0.90131 < .0001
T4 —0.81061 | (0.02421) | —33.48 | < .0001 || —0.90972 < .0001
T4 —0.62022 | (0.02508) | —24.73 | < .0001 || —0.74487 < .0001
T3 —0.60631 | (0.02008) | —30.19 | < .0001 || —0.71965 < .0001
Ipga1 —0.50811 | (0.03470) | —14.64 | < .0001 | —1.01638 < .0001
log(Q) 0.43831 | (0.01502) | 29.18 | < .0001
Table VIII

Results of FSR Model with rating indicators - OLS Regression (using

White’s heteroskedastic-consistent covariance estimator). Only the loading
on the rating indicators and log(Q)) are displayed. Number of Obs. = 29908.

accounting for Moody’s analysis of the issuer’s credit risk. Second, without the inclusion

of a log(Q) term (the right half of Table VIII), the marginal impact of a change in rating
on yield spreads is counter-intuitive. For example, yield spreads are predicted to decrease
by 30 basis points upon a downgrade from A3 to Baal, all else equal. When a log(Q)
term is included (the left half of Table VIII), the estimated marginal impacts of rating

downgrades are all negative, as one would expect. We view this as further evidence of

the effect of @ on the dynamics of credit spread movements.
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E.4. Firm-Specific Yield Spread Sensitivity to Q

If there demand curves for credit risk do slope down, the ~g coefficient should remain
positive and significant even when we estimate the FSR model for each firm separately.
To test this claim, we estimated the following seemingly-unrelated regression:
Agy
stac(t) = 9 +HSE +drf +9sRY + 7] log (ﬁct)

)

+L log(81) + 75 108(Q) + € pns- (22)

We report regression estimates in Table IX. In all cases, vq,f, the firm- f-specific coeffi-

cient on log(()), remained positive and significant.

) Number of Standard

Firm Observations e Error i-Stat | p-Val

BT 4598 0.54758 | (0.07907) | 6.93 | < .0001
DT 2683 0.97690 | (0.04994) | 19.56 | < .0001
FT 7485 0.41897 | (0.02825) | 14.83 | < .0001
PT 579 0.60206 | (0.11436) | 5.26 | < .0001
SO 819 1.23541 | (0.11347) | 10.89 | < .0001
TD 1031 0.83319 | (0.06205) | 13.43 | < .0001
TF 1788 0.63581 | (0.04697) | 13.54 | < .0001
TN 835 1.74587 | (0.18340) | 9.52 | < .0001
VF 5392 0.20514 | (0.02136) | 9.60 | < .0001
TI 1989 0.06433 | (0.00529) | 1.22 | 0.0224
KP 2255 2.70804 | (0.05420) | 49.96 | < .0001
TE 454 0.78712 | (0.18080) | 4.35 | < .0001

Table IX

Seemingly-Unrelated Regression - OLS estimates of v, ; (using White’s
heteroskedastic-consistent covariance estimator).

KPN’s sensitivity to log(()) is the highest of all firms. This may be because KPN was

one of the most levered firms in our sample and had relatively low credit ratings. The
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Economist even singled KPN out as being in “greater trouble” than its competitors.?”

This may be evidence in favor of the Schleifer-Vishny theory of industry debt capacity.
KPN is more likely to default; therefore investors in KPN bonds are more likely to

penalized by an industry-wide collapse in recovery values during an economic downturn.

Sonera and TeleNor also have relatively high ~¢ coefficients. Sonera in particular
was singled out by The Economist as being overly leveraged relative to its competitors.?
These are two of the three Scandinavian-based companies in our sample; Scandinavian

bond investors may be more risk averse than their Continental counterparts.

Vodafone and Telecom Italia have the lowest (but still positive and significant) es-
timates of 7y. Both firms are parts of large manufacturing conglomerates (Vodafone
owns Mannesmann AG and Telecom Italia is a subsidiary of Olivetti), and thus are
more diversified and less exposed to the European telecom sector than the other firms
in the study. Again, this is consistent with the industry-debt-capacity theory. Vodafone
and Telecom Italia own (proportional to their size) the least amount of telecom-sector

assets, and are likely to be least affected by a fall in telecom-sector liquidation values.

E.5. Clientele Effects

We tested for possible clientele effects by currency and by maturity. In particular, we
split the bonds in our sample into “short-term” (less than two years to maturity) and
“long-term” (two or more years until maturity) groups. Similarly, we grouped them by
their denominated currency: Euro (€) and related currencies (Deutsche Mark, French

Franc, Dutch Guilder, Spanish Peseta and Portugese Escobar), British Pound (£), US

2T“Unburdening: Europe’s Telecoms Giants are Wrestling with Debt and Poor Ratings, to the Joy
of Financial Traders.” The Economist, 10 May 2001. Indeed, KPN has the lowest average distance-to-
default measure (0.97) of the larger firms in our dataset; compare to BT with 3.36, DT with 4.94, FT
with 4.73, VF with 6.93 and TT with 3.80.

28Tbid.
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Dollar ($), Swiss Franc (SFR) and Yen (¥). We present the estimated g coefficients
for these subsamples in Table X.

Maturity
All Bonds 0-2 Yrs. 2+ Yrs

Obs. Y0 p-Value | Obs. Y0 p-Value | Obs. o7s) p-Value

All || 29908 0.4130 < .0001 | 4044 0.16211 < .0001 | 25864 0.46443 < .0001
$ 6756 0.73036 < .0001 | 1082 0.26308 < .0001 | 5674 0.73353 < .0001
£ 5238 0.69814 < .0001 | 911 —0.3214 < .0001 | 4327 0.84370 < .0001
€ || 16048 0.52989 < .0001 | 1538 0.40469 < .0001 | 14510 0.56787 < .0001
SFR || 1427 1.09983 < .0001 | 380 0.92424 < .0001 | 1047 1.18755 < .0001
¥ 437  0.31509 0.0026 | 132  0.09412 0.1767 | 305 1.83082 < .0001

Table X
Results of Model 1 - OLS Regression on Partial Samples, by Maturity and
by Currency (using White’s heteroskedastic-consistent Covariance
estimator). Only the v, coefficients are displayed, and estimates that do
not conform to our hypothesis are boldfaced.

The g coefficient remains positive and significant across all denominations and ma-
turities (except for the short-term £-denominated bonds). 7 coefficient is generally
larger for long-term bonds than for short-term bonds. This suggests the demand curve

for credit risk of long-term bonds is steeper than that for short-term bonds.

F. Fixed-Duration Portfolios

We have already demonstrated that the significance of 7¢ is robust to separating the
data into subsets grouped by currency, firm, and maturity. However, even within the
subset of long-term bonds, there still is substantial variation in durations. There may

be clientele effects by duration that our previous analysis has failed to capture.

To address this issue, we constructed fixed-duration portfolios of bonds, in which

each portfolio maintained (by balancing of the weights of its constituent bonds) a fixed
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duration of either 2.5 or 5 years. Each portfolio comprised two bonds, issued by the same
firm and denominated in the same currency. We further restricted ourselves to bonds
with recorded prices throughout the sample period. We constructed four portfolios with
durations of 2.5 years and seven portfolios with durations of 5 years. A breakdown of

these portfolios is presented in Table XI (left panel).

The composition of the fixed-duration portfolios and estimation results of

Fixed Duration Portfolios: 2.5 Years
) Bond 1 Bond 2
Firm | Curr. Principal ‘ Coupon | Principal ‘ Coupon e p-value
1| BT | $ $15B | 63% $ 1B 7% || 0.36527 | < .0001
2|| FT | € | FF25B | 7{% | €915M | 53% | 0.42933 | <.0001
3| FT | $ | $400M | 6£% | $500M | 6% | 0.29962 | <.0001
Al VF | £ £25B | 41% £3B 43% || 0.09139 | < .0001
Fixed Duration Portfolios: 5 Years
) Bond 1 Bond 2
Firm | Curr. Principal ‘ Coupon | Principal ‘ Coupon e p-value
5 || BT | £ | £00M | 73% | £600M | 52% | 0.21103 | < .0001
6 | BT | $ $1.5B | 63% $ 1B 7% || 0.56360 | < .0001
7| FT | € €25B | 7I% | €915M | 53% | 0.31134 | < .0001
8 || FT | $ | $400M | 6% | $500M | 6% | 0.31623 | <.0001
9 | VF | € | €25B | 41% €3B 43% | 0.06983 | < .0001
10 TI | € €45B | 53% | €L75B | 63% | 0.69490 | < .0001
11| KP | € | €1.25B | 4% €15B | 42% | 1.13405 | < .0001
Table XI

the associated OLS regressions. All bonds pay coupons annually.
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Since the bonds in each portfolio have the same issuer and denominated currency,

the FSR model simplifies to:

st = Yo+ S+ Yert + s RM
A, _
+ 74 log 7 + 75 log(d;) + 7@ log(Q) + €. (23)
t

The estimated 7g’s are presented in Table XI (right panel). For all twelve portfolios, vg
was both positive and highly significant, in support of our hypothesis.

V. Alternative Explanations

We have seen that the ¢ coefficients are positive and significant for various specifications
of our model. Can we now conclude that there demand curves for credit risk do indeed

slope down? Or could other economic effects explain the observed phenomenon?

A. The Information Hypothesis

New issues of debt in the European telecom market may have signaled that the bidding in
European bandwidth auctions would be more competitive than previously expected. The
information hypothesis posits that incremental debt issuance signaled negative prospects
for the entire industry. The observed increase in yield spreads is a reaction to the

information content of new debt, and is unrelated to any demand curve effects.

If debt issues conveyed new information about a firm’s prospects, there should be an
effect on equity prices as well. Changes in @ could affect equity returns in two possible
ways. First, investors could lower their expectations of future cashflows, leading to

jumps in excess equity returns. Second, investors may view the firm as having greater
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systematic risk, and thus we should observe a rise in the CAPM f of the firm’s equity. We

test for both effects, and fail to find any evidence supporting the information hypothesis.

A.1. Changes in Excess Returns

We tested whether changes in @) were associated with daily excess equity returns. We

assumed that the Capital Asset Pricing Model holds;
rie =17+ B (M =) + g, (24)

where 7, is the equity return for firm f at time ¢, 7/ is the time-t market return, r; is
the time-¢ instantaneous riskfree rate in firm f’s home country, and £;; are mean-zero

disturbances, serially uncorrelated and uncorrelated with excess market returns.

We used the EuroStoxx Nordic Total Market Index as proxy for 7 for Telia, TDC,
Sonera, and TeleNor, and the EuroStoxx Eurozone Total Market Index for all other
firms. The riskfree rate was taken to be the three-month British-Pound LIBOR yield for
British Telecom and Vodafone; the three-month Swedish-Krona LIBOR yield for Telia
and Telenor; and the three-month Euro LIBOR rate for all other firms.

We wanted to explore the effects of Q on the excess returns ¢ 7t- We first estimated
a seemingly-unrelated regression of the Capital Asset Pricing Model for all twelve firms,

and extracted the OLS residuals, £;;. We then estimated the following regression:

Ere = of +afAlog(Qry) + afAlog(Q-y)

A
+ a:’,:Alog (ﬁ) + O@{A log(d54) + ugy, (25)

where A log(Q;) and Alog(Q_ f) are the daily changes in the log(Q)-contributions of firm

f’s bonds and the bonds of its competitors, respectively; A log (%) and Alog(ds,) are
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the changes in firm f’s debt-coverage ratio and distance-to-default; and uy; are mean-

zero errors uncorrelated with each other and with all other regressors.

Note that we split log(Q) into log(Q;,) and log(Q_;,). A significant o] coefficient
would not be surprising, since it would simply be capturing the relationship between the
firm’s risk and its increased leverage. However, the information hypothesis suggests that
there should also be a significant ag , the coefficient for Q_ #; if the information revealed
by competitors’ debt issuance affects bond yield spreads it should also affect equities.

An insignificant ag would be strong evidence against the information hypothesis.

Firm || Alog(Qf) | p-Val | Alog(Q_f) | p-Val
BT 0.23702 | < .0001 0.01904 0.7115
DT 0.12690 0.0056 -0.05938 0.2289
FT 0.10396 0.0193 0.05366 0.2373
PT 0.93960 | < .0001 0.02724 0.5369
SO 1.12568 | < .0001 0.06827 0.1214
TD 0.08712 0.2885 0.04919 0.2645
TF 0.24943 | < .0001 0.01751 0.7024
TN 0.26631 0.5174 0.01011 0.8991
VF 0.31044 | < .0001 0.00546 0.9061
TI 0.44883 | < .0001 0.01525 0.7575
KP 0.14784 0.0011 0.05148 0.2563
TE 0.07278 0.5341 0.03870 0.4576

Table XII
CAPM Residuals - OLS Regression (using White’s
heteroskedastic-consistent covariance estimator).

The results are presented in Table XII. The information hypothesis is not borne out
in the data; the ag coefficients are all insignificant. This suggests that excess equity
returns are not affected by changes in the quantity of credit risk in the sector. These

findings support the hypothesis of downward-sloping demand curves.
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We also obtained positive and generally quite significant?® a{ ’s, the coefficients for
Alog(Qy;). The positive sign of these coefficients is probably capturing a manifesta-
tion of debtholder-shareholder conflict, in which increased issuances represent wealth

transfers from debtholders to shareholders as the firm funds new, riskier projects.

A.2. Changes in Systematic Risk: I-CAPM

Even if changes in @ do not convey information that alters investors’ expectations of
future firm cashflows, they may still signal shifts in the level of telecom-sector systematic
risk. If so, we may observe changes to the CAPM beta of the firms’ equities, even if
we do not witness any effect on excess returns. In order to test for such an effect, we

allowed for a time-varying ﬂtf and estimated an intertemporal-CAPM model:
e = i B =) +ep (26)
B = 2 +741og(@Q). (27)

where 7'{ , M 7y and e 7+ are as defined previously.

If changes in @ signal shifts in telecom-sector systematic risk, then log(Q) should
noticeably affect ﬂtf . That is, we should estimate a significant fyg. We test the hypoth-
esis Hy : fyé; # 0, and report the estimates in Table XIII. The estimated 7;’s were
predominantly insignificant and negative, inconsistent with the information hypothesis.
The sole exception was Telia, whose fyé; was both positive and significant. These results

support to the hypothesis of downward-sloping demand curves.

Our results also indicate that these telecom firms were generally riskier than the

overall market, as most firms had average tf 's greater than one. The Scandinavian

2 Three of the Scandinavian firms - TDC, TeleNor, and Telia - have insignificant af ’s. This suggests
that the Nordic Stoxx Total Market Index does not proxy well for the appropriate market portfolio.
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Firm || E[8}4] Bo t-Stat | p-Val | Firm || E[G},] Bo t-Stat | p-Val
BT 1.612 | 0.29522 1.19 | 0.2341 || TF 1.569 | 0.03821 0.15 | 0.8776
DT 1.850 | -0.25512 | -1.03 | 0.3037 || TN -0.134 | 1.14836 1.14 | 0.2545
FT 2.166 | -0.07838 | -0.32 | 0.7520 || VF 1.987 | 0.24982 | 1.01 | 0.3140
PT 1.333 | -0.17762 | -0.72 | 0.4739 || TI 1.124 | -0.44929 | -1.81 | 0.0701
SO 1.203 | -0.16446 | -1.36 | 0.1740 || KP 1.933 | -0.45588 | -1.84 | 0.0661
TD 0.425 | -0.22684 | -1.88 | 0.0608 || TE 0.318 | 0.62769 | 2.33 | 0.0198

Table XIII
Intertemporal CAPM - OLS Regression (using White’s
heteroskedastic-consistent covariance estimator).

countries were all notable exceptions to this rule, as TDC, Telia, and TeleNor had 3/ ’s

that were less than one or even negative.°

In summary, our analysis suggests that new debt issuances do not signal new informa-
tion about the firms’ prospects or their level of systematic risk. Thus, the information
hypothesis does not explain the observed widening of spreads in response to Q. Our

results still support the hypothesis of downward sloping demand curves for credit risk.

B. Price-Pressure Effects

Prior research on downward-sloping demand curves for corporate securities wrestles with
price-pressure hypothesis. That is, are price reactions to new issuances the result of a
temporary imbalance in supply and demand? Or is it a permanent result of movement
along a downward-sloping demand-curve? Such a price-pressure mechanism may account
for our results, particularly since bond markets are generally less liquid than equity

markets and imbalances would naturally take longer to correct themselves.

30 As noted previously, our proxies for Scandinavian market returns and riskfree rates are probably
flawed; a better methodology would have accounted for the fact that equity holders in these particular
firms probably invested in both Scandinavian and Euro-zone markets and have adjusted the reference
“market portfolio” appropriately. Without precise data on the cross-section of the equity holdings of
the average Scandinavian telecom shareholder, we cannot refine our analysis in this way.
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In particular, the price-pressure hypothesis predicts that increases in () cause a
temporary rise in spreads followed by a complete reversal (Harris and Gurel (1986)).
Demand-curve explanations, on the other hand, suggest a permanent increase in spreads,
ceteris paribus, in reaction to a rise in Q. In order to resolve these contrary predictions,

we estimated the following model:
Aspnct) = v +41ASC + I ArC + 7/ ARM
$fmn,C Yo TV T VAT T Y3 Al

A
+ 7{Alog (F—ft> + vsAlog(dyy)

fit
+ ) Y A10g(Qu-a,i—t) + Efts (28)
(a,bleZ
where Asyr, ASE, Arf, ARM, Alog (%), and Alog(ds,) are the one-day changes

in spreads, slope and level of the reference curve, market return, and firm-wise logarithm
of the debt coverage ratio and distance-to-default, respectively. Alog(Q(t_a,t_b]) is the
total change in log Q over the period (¢ — a,t — b]. T is the set of intervals

T = {(-10,-5],(=5,0],(0,5], (5,10], (10, 15],
(15, 20], (20, 30], (30, 45], (45, 60], (60, 75], (75, 90]}. (29)

Coeflicients with positive a’s and b’s measure to what extent yield spreads react to past
changes in log(Q), while coefficients with negative a’s and b’s measure how yield spreads
move in anticipation of future log () changes. For example, v(s,19) measures the average

effect of today’s change in log(()) on spreads five to ten days into the future.

Our results, presented in table XIV, are inconsistent with the price-pressure hypothe-
sis. The positive and significant (g 5 coefficient indicates that there is an immediate rise
in yield spreads over the first week following an increase in ). A price-pressure mech-

anism would generate a later reversal to offset this initial rise; such a reversal should
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manifest itself as one or more negative and significant 74 coefficients. However, all
Y(a,) coeflicients subsequent to (o5 are positive (but of mixed significance), save for the

negative (yet insignificant) 745 60)-

Parameter | Standard

Variable Estimate Error t-Stat | p-value
Y(~10,-5] -0.00042 0.00963 | -0.04 | 0.9652
Y(-5,0] 0.01126 0.00966 | 1.17 | 0.2440
Y(0,5] 0.02810 0.00956 | 2.94 | 0.0033
Y(5,10] 0.01489 0.00938 | 1.59 | 0.1123
(10,15 0.01054 0.00954 | 1.11 | 0.2691

0.00744 0.00971 | 0.77 | 0.4434

]

]
Y(20,30] 0.01753 0.00714 2.46 | 0.0141
Y(30,45] 0.01158 0.00608 | 1.91 | 0.0567
7Y(45,60] -0.00583 0.00649 | -0.90 | 0.3691
Y(60,75] 0.00510 0.00682 | 0.75 | 0.4542
Y(75,90] 0.00070 0.00636 | 0.11 | 0.9126

Table XIV
Price-Pressure Model - OLS Regression (using White’s
heteroskedastic-consistent covariance estimator). Only the Y,y coefficients
are displayed. Number of observations = 25881.

We illustrate the cumulative impact on sector-wide yield spreads due to Deutsche
Telekom’s June 2000 issuance of €16 billion in figure 2. To capture the time-dynamics of
spread changes better, we re-estimated the above model with separate v, coefficients
for five-day intervals ranging from (¢ — 15,¢ — 10] to (¢ 4+ 115,¢ + 120]. We graphed the
expected cumulative change in yield spreads from 15 business days before the issuance
to 120 days after it. We also graph two-standard-deviation error bands, constructed

used White’s heteroskedastic-consistent covariance estimator.

The yield spread increase insignificant even 120 past the issuance date, contrary to
the price-pressure hypothesis. Furthermore, the cumulative impact on yield spreads

was larger than the previous “point-estimate” from the FSR model. In particular, this
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Yield—Spread Changes Due to Deutsche Telekom Issuance, 6-28-00
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Figure 2. Dynamics of Issuance Effects Following Deutsche Telekom’s €16 B Issuance.

regression suggests that Deutsche Telekom’s issuance inflated yield spreads by a cumu-
lative total of twenty basis points over roughly 40 days; our previous models (without

regressors for lagged changes in log(Q) suggested only a twelve basis point increase.

The gradual rise in yield spreads is surprising. One would reason that since new
issuances were announced in advance, investors would have immediately incorporated
any Q-effect into yield spreads. Instead, yield spreads inflated around issuance dates
and continued to do so for several weeks, suggesting that the Q effect is unanticipated by
investors. We would have liked to examine how yield spreads reacted to announcements

of future issuances, but we were unable to find reliable announcement dates.

This effect could also be an artifact of market illiquidity. Investors may immediately
change their valuations of telecom bonds in reaction to “surprise” debt issuances, but
we only observe the resulting change in prices when a trade occurs. The significance
and sign of the (444,44 coefficients would then be a function of the trading frequency

of these bonds, and not a measure of the actual time-dynamics of demand curve effects.

48



Both effects - the gradual widening in yield spreads and the higher predicted cumula-
tive impact of issuances relative to the original point-estimate - may be the result of the
upward trend in Q). In particular, this trend could lead to spurious correlations between

lagged and current changes in Alog((@)). These correlations may bias our estimates of

the lagged log(Q) coefficients upwards, resulting in the aforementioned effects.

V1. Interpretation and Conclusions

We documented that the quantity of credit risk, @, is a statistically significant de-
terminant of the level of yield spreads. This effect is economically significant as well.
Deutsche Telekom issued nearly €16B on June 28th, 2000, the largest issuance in our
dataset. log(Q) increased by 0.2167 (from 20.4216 to 20.6383); as a result, sector-wide
yield spreads increased by an estimated twelve basis points, all else equal. Deutsche

Telekom’s issuance reduced the market value of a $2.8 billion British Telecom bond by

an estimated 1.53%, or $43.2 million.

To conclude, our study provides evidence that the demand curve for credit risk in
the European telecom sector does indeed slope significantly downwards. The quantity
of expected loss borne by bond investors, both due to a firm’s own debt and due to that
of its competitors, has a positive and statistically significant effect on the yield spreads
of the firm’s outstanding debt. This result is robust to various specifications of our

regression model, and survives testing against several alternative explanations.
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