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Abstract

This paper empirically tests five structural models of corporate bond pricing: those of Merton
(1974), Geske (1977), Leland and Toft (1996), Longstaff and Schwartz (1995), and Collin-Dufresne
and Goldstein (2001). We implement the models using a sample of 182 bond prices from firms with
simple capital structures during the period 1986-1997. The conventional wisdom is that structural
models do not generate spreads as high as those seen in the bond market, and true to expectations we
find that the predicted spreads in our implementation of the Merton model are too low. However,
most of the other structural models predict spreads that are too high on average. Nevertheless,
accuracy is a problem, as the newer models tend to severely overstate the credit risk of firms with
high leverage or volatility and yet suffer from a spread underprediction problem with safer bonds.
The Leland and Toft model is an exception in that it overpredicts spreads on most bonds, particularly
those with high coupons. More accurate structural models must avoid features that increase the
credit risk on the riskier bonds while scarcely affecting the spreads of the safest bonds.



The seminal work of Black and Scholes (1973) and Merton (1974) in the area of corporate bond

pricing has spawned an enormous theoretical literature on risky debt pricing. One motivating factor

for this burgeoning literature is the perception that the Merton model cannot generate sufficiently

high yield spreads to match those observed in the market. Thus the recent theoretical literature

includes a variety of extensions and improvements, such as allowing for coupons, default before

maturity and stochastic interest rates.1, 2

However, the empirical testing of these models is quite limited. Indeed, only a few papers

implement a structural model to evaluate its ability to predict prices or spreads. Partly, this reflects

the fact that reliable bond pricing data have only recently become available to academics.3

In this paper we compare the Merton model and four newer models to determine the extent to

which innovations in structural bond pricing models have improved the pricing of risky bonds. We

implement these five structural models using a sample of 182 noncallable bonds with simple capital

structures at year-end during the period 1986-1997. The models we consider are a coupon version of

the Merton model and the models of Geske (1977), Leland and Toft (1996), Longstaff and Schwartz

(1995) and Collin-Dufresne and Goldstein (2001). For the sake of brevity, henceforth we refer to

these models as the M, G, LT, LS and CDG models, respectively.

These structural models differ in a number of important features, including the specification of

the default boundary, recovery rates, coupons and interest rates. The original Merton model assumes

bondholders receive the entire value of the firm in distress and that interest rates are constant; it

also can only deal with zero coupon bonds. Our version of the M model treats a coupon bond as if

it were a portfolio of zero-coupon bonds, each of which can be priced using the zero-coupon version

of the model.4 Also, spot rates are used to discount bond cash flows. The Geske model (the G

model) differs from the M model in that it treats the coupon on the bond as a compound option. On

each coupon date, if the shareholders decide to pay the coupon by selling new equity, the firm stays

1See, for example, Black and Cox (1976), Briys and de Varenne (1997), Goldstein, Ju and Leland (2001),
Ho and Singer (1982), Kim, Ramaswamy and Sundaresan (1993), Leland (1994, 1998), Nielsen, Sao-Requejo,
and Santa-Clara (1993), and Titman and Torous (1989). Anderson and Sundaresan (1996) and Mella-Barral
and Perraudin (1997) incorporate strategic defaults into traditional structural models. See also Acharya
and Carpenter (2002), Acharya, Huang, Subrahmanyam, and Sundaram (1999), Anderson, Sundaresan and
Tychon (1996), Fan and Sundaresan (2000), and Huang (1997). Duffie and Lando (2001) take into account
incomplete accounting information. Garbade (1999) examines managerial discretion. Huang and Huang
(2002) and Zhou (2001) incorporate jumps.

2A different approach, which is not the focus of this paper, is the reduced form approach of Duffie and
Singleton (1999) and Jarrow and Turnbull (1995). See also Das and Tufano (1996), Duffie, Schroder, and
Skiadas (1996), Jarrow (2001), Jarrow, Lando and Turnbull (1997) and Madan and Unal (1998).

3See Warga (1991) and Warga and Welch (1993) on the quality of bond price data.
4We implement this “portfolio of zeroes” used by Longstaff and Schwartz (1995) in the M model to

make it comparable to the LS and CDG models. An alternative approach that incorporates the conditional
probability of default can be found in Chen and Huang (2000) and Duffie and Singleton (1999).
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alive; otherwise default occurs and bondholders receive the entire firm. In the Leland-Toft model

(the LT model), the firm continuously issues a constant amount of debt with a fixed maturity that

pays continuous coupons and, as in the G model, equityholders have the option to issue new equity

to service the debt or default. In the event of default, equityholders get nothing and bondholders

receive a fraction of the firm asset value (in effect, assuming a liquidation cost in distress). The

Longstaff-Schwartz model (LS) allows stochastic interest rates that are described by the Vasicek

(1977) model. Default occurs when the firm’s asset value declines to a pre-specified level. In the

event of default, bondholders are assumed to recover a constant fraction of the principal and coupon.

The Collin-Dufresne and Goldstein model (CDG) extends the LS model to incorporate a stationary

leverage ratio, allowing the firm to deviate from its target leverage ratio only over the short run.

To date, the most extensive implementation of a structural model using is found in Jones,

Mason, and Rosenfeld (1984; henceforth JMR), who apply the Merton model to a sample of firms

with simple capital structures and secondary market bond prices during the 1977-81 period. JMR

find that the predicted prices from the model are too high, by 4.5% on average. The errors are

largest for speculative-grade firms, but they conclude that the M model works better for low grade

bonds because it has greater incremental explanatory power for riskier bonds. They also find that

pricing errors are significantly related to maturity, equity variance, leverage and the time period.

Ogden (1987) conducts a similar study using prices from new offerings and finds that the M model

underpredicts spreads by 104 basis points (bps) on average. Both studies conclude that the M model

suffers from a nonstochastic interest rate. One reason they may have emphasized this aspect is that

they examine bonds from a time period when Treasury rates were particularly volatile.5 The high

volatility of interest rates also added to the difficulties of pricing the call options that were typically

embedded in corporate bonds then.

Lyden and Saraniti (2000) are the first to implement and compare two structural models (the

M and LS models) using individual bond prices.6 Using prices for the noncallable bonds of 56

firms that were reported in Bridge, they find that both the M and LS models underestimate yield

spreads. The errors are systematically related to coupon and maturity. Allowing interest rates

to vary stochastically has little impact. They conclude that the LS model’s prediction errors are

related to the estimates of asset volatility.

5Because of double-digit inflation, the Federal Reserve switched to money supply targets during the
1979-1982 period. During this regime, the Federal Funds rate swung wildly from as low as 8.5% to a record
20%, whereas in a typical year the range is considerably less than 3%. See Peek and Wilcox (1987) for an
analysis of Volcker’s policies.

6The other implementations of structural bond pricing models are found in Wei and Guo (1997) and
Anderson and Sundaresan (2000), who implement the M and/or LS models using aggregate data, and
Ericsson and Reneby (2001) who implement a perpetual bond model considered in Black and Cox (1976).
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In addition to implementing the structural models, researchers have examined general patterns

predicted by structural models, such as the shape of the credit term structure or the correlation

between interest rates and spreads (some of these predictions are shared by reduced form models).

These include Sarig and Warga (1989), Helwege and Turner (1999), and He, Hu and Lang (2000)

on the shape of the credit yield curve; Delianedis and Geske (1998) on bond rating changes; Collin-

Dufresne, Goldstein and Martin (2001) and Elton, Gruber, Agrawal and Mann (2001) on changes in

bond spreads; Duffee (1998), Brown (2001), and Neal, Rolph and Morris (2001) on the relationship

between bond spreads and Treasury yields; and Huang and Huang (2002) on real default probabilities

implied by structural models. In most cases, these empirical studies do not find support for the

models and several conclude that the models severely underpredict spreads.

Contrary to the previous empirical literature, we do not characterize structural models as unable

to predict sufficiently high spreads. Using estimates from the implementations we consider most

realistic, we agree that the five structural bond pricing models do not accurately price corporate

bonds. However, the difficulties are not limited to the underprediction of spreads. The M and

G models generate spreads that are too small on average, as previous studies have indicated, but

the LS, LT and CDG models generate spreads that are too high on average. Moreover, most of

these models suffer from the problem that predicted spreads are often either ludicrously small or

incredibly large, while the average spread prediction error is not particularly informative.

For most of the models, predicted spreads are lowest when the bonds belong to firms with low

volatility and low leverage. Holding these factors constant, we find no additional role for maturity.

This is in sharp contrast to the previous literature, which claims that structural models are unable

to generate sufficiently high spreads on short maturity bonds. Leland and Toft’s model is unusual

in that it overestimates bond spreads in most cases, largely because of its simplifying assumptions

about coupons. As a result, the model actually tends to overestimate credit risk on shorter maturity

bonds.

While the LS, CDG and LT models are clearly able to avoid the problem of spreads that are

too low on average, they all share the problem of inaccuracy, as each has a dramatic dispersion

of predicted spreads. This problem is actually exacerbated if one incorporates stochastic interest

rates and costs of financial distress through a face value recovery rule. Possibly, a more accurate

term structure model than the Vasicek model would help. A third source of dispersion arises in

the treatment of coupons. We conclude that the major challenge facing structural bond pricing

modelers is to raise the average predicted spread relative to the Merton model, without overstating

the risks associated with volatility, leverage or coupon.

The organization of the paper is as follows: Section 1 describes our sample of bonds. Section 2
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discusses how we implement the five models and estimate the model parameters. Section 3 details

the predictive ability of the models. We also examine the nature of the model prediction errors

for evidence of systematic biases through t-tests and regression analysis. Section 4 summarizes the

results of the investigation. The formulas for bond prices used in our implementation are given in

the appendix.

1 Data

Our goal is to implement the models on a sample of firms with simple capital structures that have

bonds with reliable prices and straightforward cashflows. Limiting the sample to firms with simple

capital structures is desirable because firms with complicated capital structures raise doubts as to

whether pricing errors are related to deficiencies of the models or to the fact that the model does

not attempt to price the debt of firms with very complicated liabilities.

We use bond prices in the Fixed Income Database on the last trading day of each December

between 1986 and 1997. The Fixed Income Database has bond prices at month-end from January

1973 to March 1998 for all corporate bonds. We choose to analyze Decembers in the 1986-1997

period because a year-end observation on price can be matched up with year-end financial data.

The first December that we use, 1986, is chosen because noncallable bonds are rare before that (we

only have one bond from December 1986 for this reason).

We restrict our sample to bonds issued by nonfinancial firms, so that the leverage ratios are

comparable across firms.7 In addition, we exclude gas and electric utilities, as the return on equity,

revenues and thus the risk of the default, are strongly influenced by regulators. The bonds under

consideration have standard cashflows - fixed rate coupons and principal at maturity. We exclude

credit sensitive notes, step up notes, floating rate debt, foreign currency denominated debt (as well

as foreign issuers) and convertible bonds. We also exclude bonds with call options, put options or

sinking fund provisions. Following Warga (1991), we eliminate bonds with maturities of under one

year, as they are highly unlikely to trade. There are nearly 8,700 noncallable and nonputable bonds

that meet these requirements.

To keep the capital structure simple, we choose firms with only one or two public bonds and

we exclude bonds that are subordinated. This leaves us with a sample of 628 bonds. Of these a

sizeable fraction only have matrix prices, which are less reliable than trader quotes, and we delete

these bonds.
7In contrast, Lyden and Saraniti (2000) implement their models on bonds issued both by financial and

nonfinancial firms. Financial firms, such as banks, routinely have leverage ratios above 90%, whereas only
the least creditworthy nonfinancial firms use as much debt.
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Moreover, we must have firms with publicly traded stock in order to estimate asset volatility. We

match by CUSIP to the CRSP database, and require that a firm have five years of stock price data

prior to the bond price observation. In addition to eliminating private firms, this rule eliminates

bonds issued at the subsidiary level.

Lastly, we check the capital structure in more detail by investigating the firms’ liabilities in

Moody’s CD-ROM product for the years 1996-1999, which has capital structure information for

periods ending in December 1994-1997. These data on company histories and financials are an

electronic version of the data in the Moody’s Industrials Manuals. For the years 1986-1993, we rely

on the hard copy of the Moody’s manuals. We eliminate all firms that had more than five types

of debt (counting each bond as a type of debt) and any firm with different priorities in the debt.

A typical firm in the final sample has a public bond or two, bank debt and commercial paper. We

allow firms to have some unusual types of debt (e.g., foreign currency denominated debt) as long as

that debt is not an observation in our pricing exercises and the unusual debt totals less than 3% of

assets and less than 20% of long term debt. Our final sample includes 182 bonds.

Table 1 presents summary statistics on the bonds and issuers in the sample. Panel a indicates

that the firms in our sample are mostly investment grade, although about a dozen firms have spreads

that are representative of the low end of the credit quality spectrum. The firms are also fairly large,

with the average market value near $6.5 billion, and usually have low leverage. Bond maturities

range from just over a year to nearly 30 years, but most are in the range of 5 to 10 years. Only one

of the bonds is a pure discount bond. Most of the firms are in the manufacturing business (panel

b).

A large fraction of the bonds were issued in the early 1990s, reflecting our requirement that the

bonds be noncallable (panel c).8 Our observations come from a variety of interest rate environments

(panel c). Average interest rates (average CMT rates across maturities) range from as high as

8.91% to as low as 4.49%; the slope of the Treasury curve is also quite varied over the period, being

extremely steep in 1992 but barely positive in 1988 and 1997. In December 1988 the yield curve

is nearly inverted (and actually is inverted two months later in February 1989), in advance of the

1990-91 recession, whereas the flat yield curve of 1997 occurs more than two years before the next

inverted yield curve (and recession). Not surprisingly, debt issuance is unusually high in December

1997 and quite low in December 1988.9

Because our sample may be considered unusual in that each firm has a simple capital structure,

8See Crabbe (1991) and Crabbe and Helwege (1994) on the usage of call options over time.
9The debt issuance figures reported in panel c are the residuals from a regression of aggregate nonfinancial

debt issuance (reported by the Federal Reserve) against a time trend, using monthly debt issuance data
from January 1986 to March 1998.
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one may wonder if these bonds are representative of the overall bond market. A comparison of our

bonds to the 7,531 noncallable and nonputable bonds from nonfinancial, nonregulated industries

suggests that they are. The two samples have very similar time series patterns, and similar fractions

of below-investment grade bonds (more than 90% of all noncallable bonds are investment grade).

Our sample has a slight tendency toward safer companies, and thus toward yields that are a tad

lower (7.4% compared to 7.6% for the larger sample). The average bond maturity in our sample is

two years shorter than the average overall, reflecting the fact that our longest bond has a maturity

that is just under 30 years, and our sample has no century bonds.

Data on bond features are taken from the Fixed Income Database; data on balance sheets and

other accounting data are from COMPUSTAT; share prices, dividend yields, and the number of

shares outstanding are from CRSP. Interest rate data are from the Constant Maturity Treasury

(CMT) series reported in the Federal Reserve Board’s H15 release.

2 Implementations

In this section, we first discuss very briefly the implementation of the five models. We then describe

how we estimate parameters for these models.

Each of the models has an analytical or quasi-analytical formula for coupon bond prices. Ex-

cept for the G model, all the pricing formulas are straightforward to implement and are given in

Appendix A for the reader’s convenience. The Geske formula involves multivariate normal integrals

and is not straightforward to implement accurately, especially for long maturity bonds. Following

Huang (1997), we choose to obtain the bond prices for the G model using the binomial method (finite

difference methods can also be used). Once we have a set of bond prices predicted by the models,

we calculate the corresponding predicted yields as bond equivalent yields assuming semi-annual

compounding.

Each of the structural models has a set of parameters that must be estimated. Parameters

related to firm value and capital structure include the initial levels of debt and assets, the payout

parameter, asset return volatility, the speed of a mean-reverting leverage process, and those param-

eters that characterize the target leverage ratio. In addition, implementation of the models requires

estimates of parameters that define the default-free term structure, as well as parameters related

to bond characteristics. Below we discuss how to estimate the three types of parameters which are

summarized in Table 2.
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2.1 Firm value and capital structure parameters

Rather than using the face value of the bond to calculate the default boundary in these models,

we use the book value of total liabilities reported in the firm’s balance sheet. In most structural

models, equityholders earn the residual value of the firm once debt is paid off. Often, the payoff

amount is assumed to be the face value of the bond being priced. However, equity residual values

only begin to accrue once the par value of the bond is paid if there is no other debt in the firm,

and the firms in our sample have other debt. Thus, all the debt must be paid off before equity has

any value. To calculate a leverage ratio, we also need the asset value. This can be estimated as the

sum of the market value of equity and the market value of total debt, the latter being proxied by its

book value.10 The leverage is then measured as total liabilities over the sum of total liabilities and

market value of equity. To show the sensitivity of structural models to the leverage ratio, we also

implement the LS model using a measure of leverage suggested by KMV Corporation (see Crosbie

and Bohn (2002))11 and we examine implied leverage ratios from the LS model as well.

Parameters κ` (the mean-reverting parameter), φ (characterizing the sensitivity of the leverage

ratio to interest rates), and ν (related to the target leverage) can be estimated by regressing leverage

on lagged leverage and interest rates. See Appendix B.2 for more details.

Parameter δ measures a firm’s yearly payout ratio. This parameter is not part of the original

M, G, or LS models, but can be easily added. In the CDG model, the effect of the payout ratio is

exactly cancelled by the inclusion of a target debt ratio, and the results are the same whether we

use the firm’s past payout level or assume no payout (see below for more details). The variable δ is

meant to capture the payouts that the firm makes in the form of dividends, share repurchases and

bond coupons to equityholders and bondholders. To obtain a good approximation of the value of δ,

one must know the firm’s leverage, its dividend yield, its share repurchases, and the coupon on its

debt. We calculate δ as a weighted average of the bond’s coupon and the firm’s equity payout ratio,

where the weights are leverage and one minus leverage. The equity payout ratio is the dividend yield

for firms with no share repurchases in the year of the bond observation, but otherwise the dividend

yield is grossed up by the ratio of share repurchases to dividends. If there are no dividends and only

share repurchases, a share repurchase yield is calculated for the equity portion of the payout ratio.

Share repurchases and yearly dividend levels are reported on Compustat.

A key input parameter in a structural model is σv, the asset return volatility, which is unob-

servable. Asset volatility can be measured by using historical equity volatility and leverage or we

can measure asset volatility from bond prices observed at a different point in time. The latter,

10Given that most of the bond prices are close to par, this approximation is expected to be reasonable.
11KMV is a subsidiary of Moody’s.
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bond-implied volatility, is analogous to the Black-Scholes implied equity volatility used in option

markets. Detailed discussions of these volatility measures are provided in Appendix B.1. We imple-

mented the five structural models using seven estimates of volatility: bond-implied volatility from

the previous month’s bond price, which is always in November in this sample, and six estimates of

volatility based on equity returns. The latter include measures of volatility using 30, 60, 90 and

150 trading days before the bond price observation and one based on equity prices over 150 trading

days after the bond price is observed, on the assumption that some of the future path of equity

price volatility can be anticipated. The sixth equity-based estimate uses the GARCH(1,1) (Boller-

slev (1986)) model and 150 days of prior equity returns. Except for those based on bond implied

volatility, the differences in average errors among the various measures are small and largely reflect

outliers that occur more often with the shorter windows. We discuss the results of bond implied

volatility in more detail in the appendix, but for the sake of brevity in the remainder of the paper

we report only results for historical volatility based on 150 trading days.

2.2 Interest rate parameters

Interest rate parameters on a given day are estimated using the constant maturity Treasury (CMT)

yield data on that day or over the previous month. (The CMT series, published by the Federal

Reserve, is largely a historical series of on-the-run Treasury yields, and is described in more detail

on the Federal Reserve Board’s web page.) We estimate interest rate parameters either by fitting

the Nelson-Siegel (1987; hereafter NS) yield curve model or the Vasicek (1977) model to the CMT

yields (see Appendix B.3 for more details).12

In the one-factor models of G and LT, the riskfree rate is estimated using the rate from the NS

model for a Treasury bond with the same maturity as the corporate bond being priced. For the M

model, each coupon is priced with the spot rate whose maturity matches the date of the coupon. In

the base case, the NS model is used to generate spot rates. For the sake of comparison, the Vasicek

model is also used to calculate spot rates in the M model. In both LS and CDG, interest rate

dynamics are described by the Vasicek model; hence we implement these two models using Vasicek

estimates to ensure their internal consistency.

The correlation coefficient ρ between asset returns and interest rates in both LS and CDG is

approximated by the correlation between equity returns and changes in interest rates. We use

12It should be noted that the use of a yield curve model introduces errors in the riskfree rate used as
the benchmark for calculating the spread. We ignore the term structure errors when calculating spread
prediction errors, as both the predicted yield and the predicted riskfree rate have the same error and it is
eliminated with subtraction. While there is no easy way to correct for this additional source of error, it does
raise the question of which riskfree rate should be used by a practitioner who prefers to have estimates of
yields.
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3-month T-bill rates and stock price data over a window of five years in the correlation estimations.

2.3 Parameters related to bond features

Another key input parameter in a structural model is the recovery rate w. Research on recovery

rates by Keenan, Shtogrin, and Sobehart (1999), indicates that the average bond recovery rate

is 51.31% of face value (see also Altman and Kishore (1996)). While this figure is conceptually

straightforward, its components are not: Some of the loss comes from a decline in firm value and

some from the deadweight costs of financial distress. In models with endogenous recovery rates,

the two components can be specified separately. Leland and Toft assume that liquidation values

are about half of firm value (implying a deadweight cost of 50%), but this figure is still a source of

debate in the corporate finance literature (see Andrade and Kaplan (1998)). Alderson and Betker

(1996) analyze estimates provided in bankruptcy cases and conclude that liquidation values are no

less than 63% of going concern values. Andrade and Kaplan (1998), however, suggest that the costs

of financial distress are lower, likely in the range of 15% to 20%.

In the original M and G models, bondholders receive 100% of the firm’s value in the event of

default. In contrast, LT explicitly assumes that bondholders receive only a fraction of the assets in

default. In the LS and CDG models, recovery rates as a fraction of face value are, by definition,

identical to recovery rates as a fraction of asset value. To follow market convention and to make

the results comparable across models, we implement the 51.31% of face value specification for all of

the models. However, we also implement the G model with recovery equal to 100% of firm value to

show the effects of the face value assumption.

Among the five models examined in the paper, the LT model is the only one that considers

taxes by incorporating the tax deductibility of interest payments in their model. Following them,

we choose a value of the tax rate τ = 0.35.

3 Empirical Results

In section 3.1 we discuss the ability of the models to fit market prices. We present the percentage

pricing errors, the percentage errors in yields, and the percentage errors in yield spreads. We

consider the error in spreads to be the most informative measure of model performance because

the corporate bond yield is expected to be greater than the Treasury yield in every model.13 In

13Suppose a corporate bond trades at a yield to maturity (YTM) of 6.5% and a comparable maturity
Treasury has a YTM of 6%. A good test of the model is whether it can explain the 50 basis point (bp)
spread. If the model predicts a YTM of 6.1%, then the spread prediction error is -80% but the the error as
a fraction of yields seems small (about -6%). Any model would predict a YTM above 6%, so the percentage
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addition, we pay particular attention to the standard deviation of the spread prediction errors and

the average absolute spread prediction errors because all of the models have substantial dispersion

in predicted spreads. In section 3.2 we examine if these models have systematic prediction errors.

3.1 Predicted Spreads from the Structural Models

Table 3 summarizes the prediction errors of the five models. For each of the measures of pricing

errors in columns 2 through 7, the numbers in parentheses are standard deviations of the prediction

errors. Columns 2, 4, and 6 show measures of model errors whereas columns 3, 5 and 7 show the

absolute values of the errors. We focus our analysis on columns 6 and 7, which reports errors in

credit spreads.

3.1.1 One-Factor Models

The first row of this table shows that the M model overprices bonds on average. Our results suggest

somewhat less overpricing of bonds than those found by JMR, a difference probably due to our use

of a payout ratio and a cost of financial distress (by assuming the recovery rate is 51.31% of face

value). When measured by the yield spread error, the average error is negative and indicates that

the model has only modest predictive power. All of the spread prediction errors in this table are

significantly different from zero.

The estimates for the M model reported in Table 3 are based on riskfree rates from the NS

model. Given that some models must use Vasicek estimates, one wonders whether the NS model

provides significant benefits. We implemented the M model using rates from the Vasicek model

(not shown) and found that the average spread prediction error scarcely differs from that shown in

Table 3.

Panels a-c of Figure 1 plot the predicted bond spreads from the M model and the actual bond

spreads against maturity for three rating classes. The top panel shows the predictions of the model

for bonds rated A or higher; panel b shows BBB-rated bonds; and panel c plots the market and

predicted spreads of bonds that are rated below investment-grade. All of the rating classes have

many examples of extreme overprediction and extreme underprediction of bond spreads, although

the cases of underprediction are far more numerous. The tendency toward underprediction appears

to be somewhat stronger among the short maturity bonds, but this pattern only appears in bonds

rated BBB or higher.

The “portfolio of zeroes” approach that we use in the M model (and the LS and CDG models)

error in yields is crediting the model with more predictive power than reasonable. The situation is similar
for the pricing errors.
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is simple to implement but treats these “zeroes” (coupons) as independent of each other. The G

model provides a more rigorous treatment of coupons. Rows 2 and 3 of Table 3 show the predictions

from the G model. The results in row 2 assume bondholders receive 51.31% of the face value of

debt, which is an assumption we will use throughout the paper. In the next row, we assume that

there are no costs of financial distress, so that bondholders receive the entire value of the firm in

default.14

The average spread prediction error in row 2 of Table 3 is markedly less negative than the average

error in the M model under the same recovery assumption. This suggests that the compound option

approach to coupons in the G model is an improvement over the “portfolio of zeroes” simplification.

This may be due to the equityholders’ option to pay the coupon, which is incorporated into the G

model but ignored in the M model. If shareholders believe it is worthwhile to pay the coupon when

the firm is actually insolvent (believing it has a good chance to bounce back), then bondholders

face a greater risk of loss (they recover less than they would at the onset of distress). This effect is

more important as maturity lengthens, all else constant (there is more time for the firm to continue

a downward spiral). As few junk companies have long maturity bonds, the effect of the coupon

treatment will be smaller for the bonds with high predicted spreads, and this helps the accuracy of

the G model (see panels a and b of Figures 1 and 2).

This optionality also automatically takes into account conditional probabilities of default, which

are not incorporated in the simple portfolio of zeroes approach. In the latter method, the calcu-

lation of the value of each coupon ignores whether previous coupons have been paid or not. This

overestimates the probability of default for the firm. Consequently, the variance of the estimated

spreads may widen because the firms with the highest probability of default are affected by this

error the most.

The Geske model’s option to continue relies on financing with new equity issuance, whereas Ho

and Singer (1982) allow coupons to be paid from asset sales. Such financing is even more damaging

to bondholders if distress occurs. The impact is expected to be greater for high grade bonds because

they have weaker covenants (Kahan and Tuckman (1993)). Of the 31 bonds in our sample for which

information is available on the SEC’s website, only 2 have covenants preventing this behavior, and

only these were rated speculative-grade at issuance. While the effect may be small, the variation

among the covenants would help reduce the dispersion in spread prediction errors.

In our implementations of the five models, we always assume that bondholders receive a face

14In this model as well as the M and LT models, we actually use the recovery rule min(51.31% of par,
firm value), so that the recovery cannot be higher than firm value. Other estimates, not shown, indicate
that the firms receiving less than 51.31% of face value are a small fraction of the sample and the average
recovery is still close to 51.31%. In addition, we impose the constraint that recovery cannot be more than
the amount owed to bondholders.
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value recovery rate of 51.31%. We do so because two of the models (LS and CDG) do not allow

an alternative rule, making it possible that the other models outperform LS an CDG only because

of the added flexibility in specifying recoveries. To show more clearly how recovery rates matter,

we implement the G model with and without costs of financial distress. In row 2, we assume

bondholders receive 51.31% of face value (which implies a cost of financial distress of about 33%)

while in row 3, we assume bondholders receive 100% of the value of the firm (zero cost of distress).

Including costs of financial distress in row 2 results in substantially higher average spreads, but with

a loss of accuracy (which is apparent from the higher absolute spread errors, as well as the higher

standard deviations of the spread prediction errors). The loss of accuracy occurs because the bonds

with a high probability of default (ones whose predicted spreads are already high) become even

riskier with the larger losses in default while the face value recovery rule has little impact on the

risk of the bonds with low predicted spreads.

To further illustrate this effect on the dispersion of the predicted spreads, consider the predictions

in rows 2 and 3 of the table. The average spread predicted by the G model without distress costs is

only 53 bp, or slightly more than half the actual average spread of 93 bp, whereas the average spread

predicted by the model with distress costs is 85 bp (the medians suggest a similar effect). The actual

market spreads range from 22 bp to a high of 556 bp. Both implementations result in predictions

for dozens of bonds that are less than 10 basis points, although there are somewhat fewer such

cases when distress costs are included. The more extreme differences in predictions occur among

the riskier bonds. The highest predicted spread for the model with full recovery is 1184 bp and the

second highest predicted spread is 647 bp (belonging to the bond with the highest actual spread).

While these estimates are too high, they are much closer than the estimates from assuming costs of

financial distress, which reach 1838 bp (see figure 2). Assuming costs of financial distress does help

avoid the problem of underprediction of spreads to a large extent, but unfortunately increases the

variance of the predicted spreads by extreme overprediction of spreads on the bonds that the model

considers to be very risky. A better approach might be to allow costs of financial distress that vary

among the bond issuers.

Figure 2 shows the predicted bond spreads from the G model (assuming 51.31% face value

recovery). Like the M model, there is evidence of both extreme underprediction of spreads and

extreme overprediction, but the problem is less severe here. The G model does better on short

maturity bonds than the M model does. It also has a greater tendency toward overprediction of

short maturity junk bonds, although this group is extremely small.

The results from the G model suggest the compound option approach is a major improvement

over the portfolio of zeroes treatment used in the M, LS and CDG models. The LT model also

12



views coupon bonds as compound options, but has the additional advantage that it has an easy-to-

implement closed-form solution.

The LT model, shown in row 4 of Table 3, has a serious tendency to overpredict bond spreads.

Every volatility measure that we used in the implementation of the LT model (only one is shown)

results in a significantly positive average spread prediction error. Moreover, the median of the

spread prediction errors summarized in Table 3 is 36% and nearly two-thirds of those spreads

are overestimated. However, the standard deviation and the absolute prediction errors indicate a

dramatic lack of accuracy.

The LT model predicts a spread for the average bond in our sample that is more than twice the

spread actually observed in the market. The highest predicted spread is 5096 bp, which although

way off the mark, at least belongs to a bond with a market spread of 465 bp (see Figure 3). Less

comforting is the fact that the second highest predicted spread, 4655 bp, belongs to a bond that

only trades at a spread of 75 bp.

The LT model’s assumption of a continuous coupon sharply increases the probability of default

on high coupon bonds. Consider the sole zero-coupon bond in our sample (we set its coupon to

one basis point to implement the model). This bond is one of the riskiest in the sample: its market

spread is 488 bp, it is rated B3/CCC+, and both its leverage ratio and asset volatility are above

average. Even the M model, which has trouble generating double-digit spreads at all, predicts a

spread of 45 bp for this bond. Yet, the LT model generates a predicted yield spread of essentially

zero for this bond because the coupon is virtually zero. In contrast, a bond rated AA/Aa2, which

has below-average volatility and below-average leverage, carries a market spread of only 62 bp, but

the LT model estimates this bond’s spread at 50 bp. The higher spread owes largely to its 9.25%

coupon, which was set at a time when Treasury rates were higher.

Figure 3 shows the predicted spreads of the LT model in comparison to the actual bond spreads.

In panel a, the highest predicted spread for a bond rated A or higher is 4655 bp, which tends to

obscure the pattern in other high-grade bonds. Excepting this extreme outlier, the LT model reveals

a tendency toward overprediction of spreads that is highest at short maturities. This bias exists for

all three rating groups, but is extreme with junk bonds, almost implying a strict downward sloping

credit yield curve. For the investment grade bonds, the model tends to either overpredict short

maturity bond spreads or to severely underpredict them, while the longer maturity bonds are priced

more accurately.

We have considered the predictive power of three one-factor models, each of which was created

without regard for the stochastic nature of riskfree interest rates. Two of these tend to predict

spreads that are too low relative to the market, while the third usually overestimate credit risk. Of
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the three models, only the M model is implemented with any sense of variation in the riskfree rate,

yet it is only the LT model with a constant Treasury rate that generates high spreads on average.

In the balance of section 3.1 we consider the impact of explicitly incorporating stochastic interest

rates into the structural models.

3.1.2 Two-Factor Models

The last five rows of Table 3 summarize the results from implementing the LS and CDG two-factor

models. Rows 5 and 6 report results for the LS model using two different data sources for the

Vasicek model parameters (in row 5, the Vasicek model is estimated using Treasury yields from one

day, while in row 6, the model estimates are based on data throughout the month of December). In

the implementation of the CDG model, shown in rows 7-9, we use the Vasicek estimates based on

one day’s data.

The CDG model differs from the LS model in the assumption of a target leverage ratio. We

implement the version of the CDG model that assumes that the target depends on interest rates

(the two-factor model). To show the sensitivity of the CDG model to parameter choices, we present

results from three implementations: Row 7 of Table 3 is based on parameters that are estimated

from the sample firms’ data. These parameters include the firm’s mean asset return and the speed

of adjustment toward the target leverage ratio. Row 8 assumes a lower speed of adjustment to the

mean and row 9 assumes a lower mean asset return.

Both the LS and CDG models have much higher predicted spreads than either the M or G

models and in most implementations (varying in the choice of equity volatility) the average spread

error is positive (the average spread error for the LS model shown in row 6 is the lone negative

figure). And, the estimates for the CDG model reveal a strong tendency toward overestimation of

spreads, and which is only somewhat mitigated in the last two rows of the table.

The higher average spreads in these two-factor models appear to be a major improvement over

the M and G models. However, they come at a substantial expense to accuracy. The absolute spread

errors of the LS model in row 5 of Table 3 are nearly double those of the M and G models under

the same recovery rate assumption, and they are even higher in the CDG model. The LS and CDG

models have substantially fewer bonds that suffer from the kind of serious spread underprediction

problem seen in the M model. The median spread error in the LS model using one day to estimate

Vasicek is negative 13%, compared to negative 62% and negative 72% for the G and M models

respectively. The median predicted yield spread for the CDG model under the same assumptions is

even higher (218 bp vs. 77 bp for the LS model).

While these two-factor models have truly higher predicted spreads, the range of predicted spreads

14



is extreme: there are 34 bonds for which the LS model’s prediction is less than 1 bp, including 11

bonds where the predicted spread is so close to zero that the prediction error is reported as -100%.

The CDG model shown in row 7 can boost the spreads of some of these bonds, as only 22 bonds have

a predicted spread of less than 1 bp, and only 10 bonds have a reported error of -100%. In contrast,

the lowest predicted spread in the G model is 3 bp. At the other end of the credit spectrum, the

results are equally extreme. The highest predicted spread for CDG is 3179 bp, quite a bit more

than the 2161 bp predicted for that bond by the LS model, which itself is still much higher than

any spread actually found in the sample (see figures 4 and 5).

We can identify a number of factors that are likely to cause this tremendous dispersion in

predicted spreads: the assumption of an exogenous default boundary, face value recovery rates, the

failure to adjust this portfolio of zeroes approach for conditional probabilities of default, and the

use of the Vasicek model. The flat default boundary in LS is likely to make a risky bond even more

risky with little impact on the credit risk of a safe bond. We saw in our analysis of the G model,

where we were able to hold all other features of the model constant, that the face value recovery

rate adds markedly to the dispersion of predicted spreads. Neither the LS and CDG models nor the

coupon version of the M model that we implement can reasonably incorporate a recovery rate based

on firm value.15 A related issue for these two models is how to implement the face value recovery

rate rule. Under the simple portfolio of zeroes approach, a default results in bondholders recovering

a fraction of the coupon on every future coupon date. This is not consistent with bankruptcy

practices. Lastly, as we noted earlier, this portfolio of zeroes approach overestimates the probability

of default in assuming independence of the coupons. This may lead to dispersion because the bonds

that are already considered risky by the model (i.e., those with a high probability of default on their

early coupons) will have an even greater probability of default associated with them, while there

are no bonds that would be considered safer as a result.

The LS and CDG models may lose accuracy from the use of the Vasicek model if the interest

rate volatility is poorly estimated in this model.16 In row 6 of Table 3, we show the sensitivity of

the LS model to the estimates of the Vasicek model. The implementation in this row uses Treasury

data from the entire month in which the bond trades, rather than just a single day. The estimates

based on one month data lead to much lower estimates of interest rate volatility.

The two sets of estimates for the LS model in Table 3 differ both in average predicted spreads and

the degree of dispersion in predicted spreads. Consider the estimates for 1997, when the estimate

15In results not reported, we implemented the LS model with recovery rates that vary by industry (using
data from Altman and Kishore (1996)), but like Lyden and Saraniti (2000), we find it does not improve the
estimates.

16Chan, Karolyi, Longstaff and Sanders (1992) conclude that the Vasicek model is a poor fit for the
short-term rate and note that the fit is particularly sensitive to the level of interest rates.
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of volatility is 34% using one day data and is nearly zero using the time series data. The former

group includes six bonds that have predicted spreads of less than a basis point, whereas the less

volatile interest rate dynamics results in nine such bonds. Nearly all of the spread estimates for the

1997 sample increase when estimated interest rate volatility rises, but the higher volatility actually

exacerbates the overprediction problems on the riskiest bonds with only a small impact on the safest

bonds.

The predicted spreads from the LS model from row 5 of Table 3 are shown in Figure 4, plotted

against maturity for the three rating groups. Relative to the actual spreads, the LS has a tendency

to predict either a very high spread or a very low spread. More often the highest predicted spreads

belong to the lowest rated bonds. The dispersion is also more extreme at the shorter maturities,

especially in the range of 5 to 10 years.

The CDG model also exhibits wide dispersion in predicted spreads, but this model differs

markedly from the LS model in its predictions for the portion of the sample that have market

spreads between 75 and 200 bp (there are 79 bonds in this group). The CDG model clearly raises

the spread on the typical bond relative to the LS model. The latter model predicts spreads of less

than 10 bps for 10 of these bonds (only 3 in the CDG model), and underpredicts the spread for 35

bonds (only 16 bonds in the CDG model). Of these 79 bonds, the CDG model predicts a spread

that is more than double the actual spread for 54 of the bonds, compared to only 27 for the LS

model.

Indeed, the results in Table 3 suggest that the CDG model severely overestimates credit risk.

Possibly the model might be better implemented with other estimates for the parameters related to

the target leverage ratio such as the speed of adjustment (κ`) and mean asset returns.

We estimate an average speed of adjustment factor of .10, which is markedly less than the .145

found by Frank and Goyal (2003). Our average may differ because our sample includes more firms

from the 1990s. However, raising κ` would lead to even higher spread errors. In row 8, we show

the impact on predicted spreads of lowering each estimated κ` by 15% (the average κ` falls from

.10 to .085). The estimates shown in row 8 indicate that, for the level of κ` observed in our sample,

the effects of mismeasurement of the speed of adjustment are small. The average spread prediction

error falls only by 15 to 20 percentage points, from a base of 270 percentage points. Lowering κ`

further would make it closer to zero, effectively making the model equivalent to the LS model.

The average asset return in our sample is 1.5% per month, only slightly higher than the median

return. Together with our sample’s average dividend yield (adjusted for share repurchases), this

implies an annual average asset return of 24%, which seems high by historical standards. Our sample

starts in 1986 and is dominated by bonds that are priced after 1990, which likely explains the high
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estimated returns. However, bond market participants may not view the high average asset returns

of the 1990s as long run average rates of return. If so, then a lower mean asset return is more

appropriate in the implementation. In the last row of Table 3 we show results from reducing each

firm’s estimated mean asset return by 45%. This adjustment makes the average asset return in the

sample about equal to the return that would lead to equity returns observed over longer periods of

time (i.e., consistent with an average equity return of 15% and an equity risk premium of 6%).

By reducing the mean asset return estimate, the problem of bond price underestimation is much

smaller. Spreads are now overpredicted by only 79%. The median yield spread is predicted at only

57 bp and the median spread prediction error is negative 36%. However, the absolute errors are still

quite large, as are the standard deviations. The wide variation in estimated spreads in the CDG

model may reflect the added opportunity for parameter estimation error. An alternative to using

estimates of mean asset returns and speed of adjustment would be to simply estimate the implied

risk-neutral long-term mean of leverage, which not only fits the data to the spreads, but avoids

estimation of the mean asset return in the model (c.f. Appendix B.2).

Figure 5 presents the predicted and actual bond spreads from the CDG model from row 7 of

Table 3. The highest rated bonds, shown in panel a of the figure, have a higher fraction of bonds

that are considered extremely safe by the model. However, they are not the majority of the bonds

in this rating class, and the rest of the bonds are credited with too much risk, especially at the

shorter maturities. Bonds rated A or higher also appear to have overpredicted spreads more often

among bonds that mature in 10 or fewer years, but once maturity extends beyond 10 years there is

no particular relationship between maturity and spread prediction errors.

3.1.3 Alternative Measures of Leverage

We have presented pricing errors from the five structural models using parameters that we consider

reasonable. One could argue that all of the parameters are subject to measurement error and that

the pricing errors are due to the implementation, and such a complaint would naturally focus on

asset volatility and leverage. While we have ruled out measurement error in asset volatility as a

major issue, we have not yet considered the possibility that our measure of leverage is causing errors.

We next summarize the sensitivity of the implementations to the choice of the leverage parameter.

For the sake of brevity, we do not consider this parameter for every model.

In estimations (not reported) we also used the bond par value as the strike price in the M model

and LS models. Both models had sharply lower estimated spreads as a result, which is unsurprising

once one considers the capital structures of the firms in the sample.17

17The median ratio of long term debt to total liabilities is about 30%, and the median face value of the
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Another possible way to parameterize leverage is suggested by KMV (see Crosbie and Bohn

(2002)), who place a greater weight on short-term obligations probably for the purpose of better

predicting the firm’s default probability within one year. The logic of this approach is that debts

due in the near term are more likely to cause a default. KMV measure the numerator of the leverage

ratio as short-term debt plus half the value of long-term debt. Clearly, this will also lead to much

lower estimates of credit spreads unless the sum of short term debt and long term debt is close to

total liabilities (as noted earlier, this is not the case in our sample). The most extreme effect of

using KMV’s leverage measure in our sample is the funeral home firm Hillenbrand, whose liabilities

largely consist of prepaid funeral packages that are sold in the form of insurance. As the policies

are neither long term nor short term debt, the inability to honor them would not be considered a

source of credit risk by KMV, yet no bondholder would ignore these obligations.

We implemented the LS model using KMV’s leverage ratio, and as expected, the lower average

leverage leads to much lower predicted spreads. Despite reducing the average predicted spread, the

KMV measure could be very useful. By adding a constant to the spreads generated by the KMV

measure, predicted bond spreads would fit the data better. For example, the highest predicted spread

(without the added constant) falls from 2161 bp to 870 bp in the LS model with the KMV measure

of debt. The lower variance arises because the reduction in leverage is greatest for the riskiest firms

(for bonds rated A or higher, switching to this method reduces leverage by 7%, compared to a 23%

decrease for junk-rated firms). Partly, this reflects the fact that lower-rated firms do not participate

in the commercial paper market, and have less short-term debt.18

Another way to consider the sensitivity of the results to the choice of leverage parameter is

to fit the leverage ratio to the bond prices and examine the implied leverage ratio. We generated

implied leverage ratios for the LS model, and to speed convergence, we allow two bonds from the

same firm on the same day to have different implied leverage ratios. The average implied leverage

ratio obtained for the LS model is 35%, a bit higher than the ratio of total liabilities to assets we

have been using. Yet, the average implied leverage ratio is no more informative than the average

spread prediction error. As before, there is substantial variation across credit ratings. Bonds rated

A or higher have an implied leverage ratio that is 12% higher than the observed leverage ratio, while

BBB bonds and junk bonds have implied leverage ratios that are 5% and 18% below the observed

ratios, respectively (all three figures are statistically different from zero). Thus, if there is a better

leverage parameter that we could use, it must be a parameter that raises the leverage of the safe

bonds while simultaneously lowering the leverage of the riskier bonds.

bond is only $150 million, which is typically a bit more than half of the firm’s long term debt. Hence, par
value can easily understate the firm’s obligations by 85%.

18See Crabbe and Post (1994).
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3.2 Systematic Prediction Errors

In the previous section we mentioned some examples of bonds with extreme pricing problems. In

this section, we consider in more detail the question of why the models’ predictions are inaccurate.

We estimate a multivariate regression analysis of the spread prediction errors to determine which

factors cause the weaknesses of the models. Before the regression stage, however, we narrow the

list of potential variables by conducting t-tests on two subsamples, those with the lowest spread

prediction errors and those that have the highest spread prediction errors.

We examine five types of variables that might lead to systematic valuation errors: (1) measures

of leverage and capital structure (e.g., bond ratings, book leverage, long term debt/total liabilities),

(2) variables related to firm value, (3) measures of asset volatility, (4) bond features, and (5) variables

that proxy for differences in expected recovery rates (e.g., plant, property and equipment, capital

expenditures and R&D). We examine 26 variables with t-tests to determine if any of these areas are

problematic in the structural models. Many of these variables are already part of the models.

3.2.1 T-tests to Determine Systematic Errors in Spread Predictions

Table 4 presents the t-tests for the five structural models. The t-tests examine differences in charac-

teristics of two groups: those with spread prediction errors that are below the median in the sample

and those that have prediction errors that are above the median. The errors analyzed in this table

are the percentage differences between the predicted spreads and the observed spreads.

To present the results in a compact format, we only report signed t-statistics in Table 4. If

the average of a variable is higher in the sample of bonds with the most positive spread prediction

errors, then the t-statistic will be positive. For example, most models have a significant difference

in maturity between the two subsamples, with the lower spreads associated with shorter maturity.

Then the t-statistic in Table 4 in the maturity row will be a large positive number.

The results of the t-tests indicate that all of the models have systematic errors related to leverage,

although the problem is less extreme in the LT model. In general, the models do a poor job of pricing

safer bonds. The bonds with the smallest predicted spreads have a significantly lower leverage ratio

on average (particularly if measured by market leverage). As this factor is included in each of the

models, the results suggest that either leverage is measured poorly or that the models do not assign

the appropriate risk to each level of leverage. Other leverage-related variables are also significant.

For example, the average ratings are sharply different between the two samples for all but the LT

model. The bonds with the higher predicted spreads are typically rated BBB+ (9 on this scale)

while the bonds with the low predicted spreads have an average rating of about an A- or an A.

Further, the spread underprediction problem is typically less severe for the firms where book value
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of leverage is close to the market value of leverage. It appears that firms with very high market

values of equity are often treated by the models as if they are remarkably safe firms, whereas the

bond market is not quite so sanguine about their prospects.

The t-tests show slight support for CDG’s view, in that the difference between the current

leverage ratio and the ten year average ratio is close to statistically significant or actually significant

in all but the LT model. When significant, the t-tests are always positive, suggesting that bonds

with high leverage today receive the highest spreads in most of the models, even if the market does

not perceive this leverage ratio to be normal over the longer term.

Table 4 reveals little evidence that systematic errors occur with firm size. The market values

of assets differ significantly in the M model and the LT model, but with opposite signs for the two

models.

Although the LT model is again an exception, most models have a strong difference between

the market to book ratios of the two samples. As the growth rate of the firm, measured by changes

in market value, is not a source of mispricing, this suggests that market to book is not related to

future prospects so much as it is to valuation effects. As many of the bond prices are observed in

the booming equity market of the 1990s, errors associated with high market to book may be related

to mismeasurement of asset volatility or leverage.

The results on market to book are similar to those for the volatility measures (the models that

have lower spreads on high market to book firms are those with low spreads on low volatility firms).

Most models severely underpredict spreads for firms with low asset volatility, suggesting that all

but the LT model are relying rather heavily on volatility as a way to generate higher spreads.

Maturity is a major factor in the M model, but less so in the G and LS models. The maturity

t-tests are not significant for the LT or CDG models. The M model’s underprediction problem is

quite severe for low leverage and low volatility firms, so unless those firms have many years for

leverage and volatility to come into play, there is little chance in that model to generate a high

spread. In contrast, the LT model actually has a negative coefficient on maturity, suggesting, if

anything, more difficulty in raising the spread on a long term bond. The literature often proclaims

that no structural model can generate sufficiently high spreads on short maturity bonds, but the

LT model does not reveal any such problem. We should note, however, that there is no definitive

cut-off for ‘short-term.’ While we include in our sample only bonds that have a maturity of over

one year, the problem raised by researchers such as Duffie and Lando (2001) may actually refer to

an even shorter horizon.

Coupon is statistically significant in all the models’ t-tests, but this variable is highly correlated

with rating and leverage, and may not be important by itself. Likewise, most models have a difficult

20



time generating high spreads if the payout ratio is low, but the payout ratio reflects the coupon as

well.

The t-tests for the variables related to recovery rates are contradictory. Sometimes the results

indicate that firms that have spreads that are too low have fewer tangible assets, suggesting that

they have greater expected losses in default than the model anticipates. But the t-tests also indicate

that the bonds with the most underpredicted spreads have the lower capital expenditures, which

suggests few growth opportunities and above average recovery rates. Moreover, the R&D t-test is

never significant when these two variables are.

There is no evidence that the change in firm value that occurs with interest rates is a major

omission of the M or G models, as neither the correlation nor the interest rate volatility are signifi-

cantly different across their two groups. The LT model also shows no significance for the correlation,

but does have a significant relationship with volatility. As the LT model is so strongly affected by

coupon, one must consider whether the higher volatility is just another proxy for coupon. The t-test

for the 3-month correlation is highly significant in the LS and CDG models, suggesting much lower

spreads on bonds of firms that have a very negative correlation with interest rates. A very negative

correlation reduces the estimated credit risk of a bond in these models, whereas a very positive

correlation leads to a higher estimated spread. Apparently, including the correlation makes the

spreads of the bonds with the most negative correlations too low and the spreads of the bonds with

positive correlations too high in these two models. Most of the firms have negative correlations, but

the positive correlation group is not insubstantial.

Few of the bond-specific variables matter. Old bonds are priced very differently in the LT model

only because the average coupon fell so sharply over the sample period. The other models do not

have tendencies related to old bonds, even though these bonds are thought to have lower trading

volumes and less liquidity.

Note that the current leverage ratio relative to its target has an even higher t-statistic in the

CDG model, which is surprising given that this model incorporates the target leverage ratio. The

asset growth variable, which is the percentage change in the market value of assets over the previous

five years, is very significant in the CDG t-test and not in other models. Hence it is likely that the

target leverage ratio in the CDG model is not all that closely tied to the long-run average leverage

ratio, and is more closely tied to asset returns.

3.2.2 Regression Analysis

The results of the t-tests indicate a number of systematic differences in the prediction errors of the

models, often based on variables that are included in the models. One might argue that a combi-
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nation of factors leads to higher or lower prediction errors and, therefore, analysis in a multivariate

regression setting is more appropriate. Next we estimate regressions using variables that appear to

be important from the t-tests. We use the actual spread prediction error, rather than the absolute

value of the error, because we believe the factors that lead to underprediction of spreads are typically

not the same as those that lead to overprediction of spreads, which is the assumption when both

positive and negative errors are treated equally.19

Table 5 shows five sets of regressions, two for each of the structural models. Each regression is

estimated with 182 bonds whose prices are observed in a variety of different interest rate settings.

To control for these different pricing environments, we include four control variables: a measure of

the slope of the Treasury yield curve; the level of interest rates (measured by the average of the

CMT interest rates at month-end); the volatility of Treasury rates (estimated using the Vasicek

model); and a measure of the ease with which corporations can issue bonds. The last is the residual

from a regression of aggregate corporate bond issuance against a time trend.

The columns in Table 5 show regressions of spread prediction errors under two specifications.

The first specification includes all of the variables representing parameters in the five models as well

as our control variables related to the interest rate environment. The second specification includes all

of these variables plus a number of variables that are not included in any of the structural models, but

which the t-tests indicate might be important. In results not reported, we also estimate regressions

adding one variable at a time to determine its incremental impact on the adjusted R-square of the

regression.

The role of the interest rate environment in explaining spread prediction errors is not especially

clear from the regressions, as the coefficients seem contradictory across the various models. Of the

five models, the LS model is the most sensitive to the interest rate environment. Not only are

more of the control variable coefficients significant, but the average Treasury rate and interest rate

volatility together (not shown) generate an adjusted R-square of 0.36 in this model. In contrast,

the explanatory power of these variables is well under .05 for the M, G and LT models and about

.15 for the CDG model. The significant negative coefficients on interest rate volatility in the M

and G models would suggest that these models would suffer less from underpredicted spreads if

they allowed more richness in the Treasury term structure. However, two factors raise doubts

about this interpretation. First, the LT model, which assumes a constant interest rate, shows no

evidence of underestimating credit spreads when interest rates are volatile (interest rate volatility

is not significant in any of the 11 specifications of the LT model that we estimated). Second, the

coefficients on interest rate volatility are significant in the LS and CDG models, which should not

19Lyden and Saraniti estimate regressions using absolute errors.
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occur if variables are incorporated correctly in a model (they should not generate systematic errors

and only white noise should remain). The positive significant coefficients on interest rate volatility

in the LS and CDG models suggest that the two models overstate the role of stochastic interest

rates, generating excessively high spreads when the volatility variable is large. Perhaps this problem

arises from the lack of precision in Vasicek model estimates.

A second feature of structural models that has often been thought in the literature of causing

major pricing errors is maturity, but the regression estimates in Table 5 contradict this view. To

the extent that short-term bonds have a spread underprediction problem, as has been emphasized

in the literature, the only evidence is in the M and G models. There is no indication that maturity

in and of itself affects the LS and CDG models, and maturity actually has a significantly negative

coefficient in the LT model in each of the 11 specifications. Moreover, even the M and G models

do not exhibit a systematic bias toward underprediction of short term bonds once the bond rating

is introduced into the regression. Bond ratings and maturity are related, as most speculative-grade

debt is issued with a shorter maturity than that typically found on investment-grade bonds. The

spread underprediction problem so often associated with short maturity debt in structural bond

pricing models is better described as a problem with very safe bonds, which are hard to price

regardless of their maturity.20

It is typically the case among our five models that a very safe bond is one with low leverage or low

asset volatility. The exception is the LT model, where the safety of a bond is more often described by

its coupon, but even this model relies heavily on leverage to generate higher spreads. In each of the

models we examine, the firm’s leverage ratio is a major determinant of the spread prediction error.

All five models have significantly positive coefficients on leverage in all the estimated specifications.

Moreover, the adjusted R-square always rises considerably when leverage is included. Leverage is

universally important in these structural models in generating higher predicted spread: A firm with

low leverage is unlikely to have spreads as high as those observed in the bond market.

For all but the LT model, risk is also sharply delineated by the firm’s asset volatility. Like

leverage, asset volatility is significantly positive in every specification of these four models. And,

the explanatory power of the regressions is again clearly higher when volatility is considered. This

is especially true of the M and G models, which have few other sources of risk available to generate

high spreads.

The LT model instead relies on coupon and leverage to define risk. In the second specification

shown in Table 5 the coefficient on coupon is not significant, although it is still positive. The

reason is that the indicator variable for old bonds, which we included to capture liquidity, is highly

20We also estimated regressions with an indicator variable for bonds with less than 5 years to maturity.
This variable was not significant for any of the models.
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correlated with coupons. In our sample, Treasury rates fall sharply from the beginning of the sample

to the end, so that old bonds have high coupons.

The final variable to consider that is already part of a structural model is the correlation of firm

value with interest rates. This variable is not important in any of the models. The fact that even

the LS and CDG models do not have significant coefficients suggests that the correlation has a weak

impact on the model. We recalculated the estimation errors in the LS model under the assumption

that the correlation between firm value and interest rates was zero to check on the impact of the

correlation estimates. These results (not shown) indicate that the correlation plays a small role

in the model. For example, the average spread prediction error when eliminating the correlation

differs by only 2 percentage points from that shown in Table 3. This may owe to the relatively low

correlations among the firms in our sample, which are all well below .15 in magnitude.

The second set of regression specifications reported in Table 5 includes the other variables that

were significant in the t-tests. Likely most of these were significant because they were related to

volatility or coupon, as few are consistently significant once other factors are considered. Although

we see from the two implementations of the G model that the recovery rate assumption has a large

impact on the prediction errors, this factor is not well captured by plant, property and equipment,

or our other measures of recovery rates.

The only reliably significant variable added to the second set of regressions is bond rating. Most

of the models have a spread underprediction problem with bonds that the credit rating agencies per-

ceive as risky and this risk is not captured by volatility or leverage. The rating agencies acknowledge

the impact of leverage, and to a lesser extent, volatility, but low ratings are also associated with

financially aggressive management management (e.g., who might undertake a share repurchase) and

firms with volatile leverage (e.g., cyclical companies). Ratings can also be reduced for firms with a

declining franchise value (such as IBM or Kellogg’s, who lost their AAA ratings with decreases in

market share), firms that are poorly managed or those that have high technology risk.

Our results indicate that many of the models have very low predicted credit spreads for bonds

belonging to safe firms. Indeed, the negative coefficients on the intercepts in the regressions suggest

the M, G, and LS models may simply underestimate spreads on all bonds. If corporate bonds have

a large and constant liquidity premium, part of the spread underprediction problem may owe to

liquidity factors that are not part of any of these models.21 To consider this possible explanation,

we add 25 bp to each predicted spread as a liquidity premium. We find this only helps the M and

G models. For the other models, adding a constant for liquidity largely exacerbates the problem of

overpredicted spreads, and in the LT model actually causes a higher standard deviation of spread

21See, for example, Huang and Huang (2002) and Janosi, Jarrow and Yildirim (2001) on recent attempts
to estimate how much of the corporate bond yield spread is due to credit risk.
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prediction errors. Of these three, only the LS model enjoys a decrease in the average absolute spread

with the liquidity premium but the decrease is only 6 percentage points.

4 Conclusions

This paper directly tests five corporate bond pricing models using a sample of noncallable bonds

belonging to firms with simple capital structures between 1986 and 1997. In particular, we imple-

ment the models of Merton (1974), Geske (1977), Leland and Toft (1996), Longstaff and Schwartz

(1995), and Collin-Dufresne and Goldstein (2001). We examine each of these models under similar

assumptions to compare their abilities to predict corporate bond spreads. Then we consider whether

the predicted spreads are prone to systematic errors.

We find that all the models have substantial spread prediction errors, but their errors differ

sharply in both sign and magnitude. In particular, the average error is a rather poor summary of a

model’s predictive power, as the dispersion of predicted spreads is quite large (as seen in the high

standard deviations and large average absolute prediction errors). All five models tend to generate

extremely low spreads on the bonds that the models consider safe (usually low leverage and low

asset volatility) and to generate very high spreads on the bonds considered to be very risky.

Although both the M and G models share a tendency toward underestimation of corporate

bond spreads on average, the fact that the problem is less severe for the G model suggests that the

endogenous default boundary of the G model is a major improvement. The option to make coupon

payments in distress helps to improve the dispersion of predicted spreads relative to other models.

Moreover, we can see by altering the recovery rate assumption in the G model that the dispersion

of predicted spreads is exacerbated by the use of a fixed face value recovery rate.

In contrast, the LT model overpredicts spreads on average. The problem is widespread and is

not sensitive to the parameter estimates. Rather, it owes largely to the assumption of a continuous

coupon. Indeed, this model actually overpredicts spreads on shorter maturity bonds, a very surpris-

ing result given the extant literature. We should note, however, that our regressions do not show a

significant relationship between maturity and prediction errors in any of the other models, holding

other factors constant. The previous literature may have overemphasized maturity in and of itself

as a cause of mispricing.

The two factor models of LS and CDG incorporate stochastic interest rates and a correlation

between firm value and interest rates. We find that the correlation is not very important empirically.

Stochastic interest rates do raise the average predicted spreads but the results are rather sensitive to

the interest rate volatility estimates from the Vasicek model. While other features of the LS model
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also lead to high spreads on average, a sizeable fraction of the bonds in the sample still have the

problem of extremely low predicted spreads.

The CDG model might alleviate the problem of excessive dispersion in predicted spreads if the

most underprediction occurs among firms with leverage ratios below their targets and the overpre-

dicted spreads belong to bonds with unusually high leverage ratios. The CDG model helps somewhat

in this regard, but it tends toward overestimation of credit risk overall. The model requires the es-

timation of several parameters that are not in the other models, and thus may suffer more from

measurement errors.

Despite the fact that most models generate their highest spreads on junk bonds, our regression

results always point to a significantly lower predicted spread for lower-rated bonds, ceteris paribus.

While the ratings agencies heavily weight leverage, they also consider the potential for default from

other sources and these may improve the models.

In conclusion, it is clear that these five structural bond pricing models have difficulty in accu-

rately predicting credit spreads. However, the difficulties are not limited to the underprediction of

spreads, as the previous literature implies. Underprediction of spreads often stems from the fact

that the main channels for default are through high current leverage ratios, high asset volatility, or

high payout ratios. Factors that help to raise these bonds’ predicted spreads, such as the volatility

of interest rates, raise estimated spreads on most bonds, but often by a small amount on the safe

bonds and by even more on the riskiest bonds. Interest rate volatility may require a better model

than the Vasicek model if excess dispersion of spreads is to be avoided. The modeling of the coupon

is another important issue, as we found little evidence favoring the simple portfolio of zeroes ap-

proach used in the M, LS and CDG models or the continuous coupon approach of the LT model.

And, the recovery rate assumption can affect the variance of the spread prediction errors greatly.

We conclude that the focus of future research efforts should be on raising spreads on the safer bonds

without raising them too much for the riskiest bonds.

26



Figure Legends

Figure 1 displays actual and predicted spreads for the sample of 182 bonds with simple capital

structures at year-end during the period 1986-1997. The spreads are plotted against the remaining

years to maturity of the bond. The actual spreads are marked with an asterisk and the predicted

spreads from the Merton model are denoted with a square. Spreads are calculated in basis points

over the Nelson-Siegel (1987) estimates of the Treasury yield curve.

Figure 2 displays actual and predicted spreads for the sample of 182 bonds with simple capital

structures at year-end during the period 1986-1997. The spreads are plotted against the remaining

years to maturity of the bond. The actual spreads are marked with an asterisk and the predicted

spreads from the Geske (1977) model are denoted with a square. Spreads are calculated in basis

points over the Nelson-Siegel (1987) estimates of the Treasury yield curve.

Figure 3 displays actual and predicted spreads for the sample of 182 bonds with simple capital

structures at year-end during the period 1986-1997. The spreads are plotted against the remaining

years to maturity of the bond. The actual spreads are marked with an asterisk and the predicted

spreads from the Leland and Toft (1996) model are denoted with a square. Spreads are calculated

in basis points over the Nelson-Siegel (1987) estimates of the Treasury yield curve.

Figure 4 displays actual and predicted spreads for the sample of 182 bonds with simple capital

structures at year-end during the period 1986-1997. The spreads are plotted against the remaining

years to maturity of the bond. The actual spreads are marked with an asterisk and the predicted

spreads from the Longstaff and Schwartz (1995) model are denoted with a square. Spreads are

calculated in basis points over the Vasicek (1977) estimates of the Treasury yield curve.

Figure 5 displays actual and predicted spreads for the sample of 182 bonds with simple capital

structures at year-end during the period 1986-1997. The spreads are plotted against the remaining

years to maturity of the bond. The actual spreads are marked with an asterisk and the predicted

spreads from the Collin-Dufresne and Goldstein (2001) model are denoted with a square. Spreads

are calculated in basis points over the Vasicek (1977) estimates of the Treasury yield curve.
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A Formulas for Prices of Defaultable Bonds

For completeness, we include in this appendix all of the formulas for bond prices used in our model

implementations except the formula for the Geske model.

Let Vt, Kt and rt be the time-t values of the firm’s assets, total liabilities, and the riskfree

interest rate, respectively. Assume that

dVt = (rt − δ) Vt dt + σv Vt dZQ1t (1)

drt = (α− β rt) dt + σr dZQ2t (2)

d ln Kt = κ` [ln(Vt/Kt)− ν − φ(r − θ)] dt (3)

where σv, δ, α, β, σr, κ`, ν, and φ are constants, θ = α/β, and ZQ1 and ZQ2 , two one-dimensional

standard Brownian motion processes under the risk-neutral measure Q, are assumed to have a

constant correlation coefficient of ρ.

All five of the structural models examined in this study assume (1) and except CDG, all assume

κ` is zero. The G and LT models assume a constant interest rate. The LS and CDG models assume

the dynamics of the (default-free) interest rate can be described by the Vasicek model given in (2).

The M model allows for any term structure model.

A.1 The Extended Merton Model

Consider a defaultable bond with maturity T and unit face value that pays semi-annual coupons

at an annual rate of c. For simplicity, assume 2T is an integer. Let Tn, n = 1, . . . , 2T , be the nth

coupon date.

In the extended Merton model, Kt = K ∀t ∈ [0, T ] and default is triggered if the asset value is

below K on coupon dates. The price of a coupon bond is equal to the portfolio of zeroes and can

be written as follows

PM(0, T ) =
2T−1∑

i=1

D(0, Ti)EQ
[
(c/2)I{VTi

≥K} + min (wc/2, VTi) I{VTi
<K}

]

+ D(0, T )EQ
[
(1 + c/2) I{VT≥K} + min

(
w(1 + c/2), VT

)
I{VT <K}

]
(4)

where D(0, Ti) denotes the time-0 value of a default-free zero-coupon bond maturing at Ti, I{·} is

the indicator function, EQ[·] is the expectation at time-0 under the Q measure, and w is the recovery

rate.
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It is known that

EQ[I{Vt≥K}] = N(d2(K, t)) (5)

EQ
[
I{Vt<K}min (ψ, Vt)

]
= V0 D(0, t)−1e−δtN(−d1(ψ, t)) + ψ

[
N(d2(ψ, t))−N(d2(K, t))

]
(6)

where ψ ∈ [0,K], N(·) represents the cumulative standard normal function and

d1(x, t) =
ln

(
V0

xD(0,t)

)
+ (−δ + σ2

v/2)t

σv

√
t

; d2(x, t) = d1(x, t)− σv

√
t (7)

Given a term structure D(0, ·), (4) along with (5) and (6) can then be used to calculate the price of

a defaultable coupon bond under Merton’s assumptions.

Notice that any term structure model is allowed in this extended Merton model. In our imple-

mentation, D(0, ·) is obtained using the Nelson-Siegel (1987) model (in the base case) and also the

Vasicek (1977) model; see section B.3.

A.2 The Leland and Toft Model

In LT, coupons are paid continuously and the total coupon is c per year. All the formulas given in

this subsection are from Leland and Toft (1996) (although the notation here is somewhat different).

The value of a defaultable bond is given by

PLT(0, T ) =
c

r
+

(
1− c

r

) (
1− e−rT

rT
− I(T )

)
+

(
wVB − c

r

)
J(T ) (8)

where

I(T ) =
(
G(T )− e−rT F (T )

)
/(rT )

J(T ) =
1

zσv

√
T

[
−e(z−a)bN(q−(T ))q−(T ) + e−(z+a)bN(q+(T ))q+(T )

]

G(T ) = e(z−a)bN(q−(T )) + e−(z+a)bN(q+(T ))

F (T ) = G(T ) |z=a

with

a =
r − δ

σ2
v

− 1
2
; b = ln(V0/VB); z =

(
a2 +

2r

σ2
v

)1/2

; q∓(t) =
−b∓ zσ2

vt

σv

√
t

.

The default boundary VB is given in eq. (13) of LT.
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A.3 The CDG and LS Models

In CDG, (1)-(3) are assumed to hold. The value of a defaultable bond that pays semi-annual coupons

is given by

PCDG(0, T ) =
( c

2

) 2T−1∑

i=1

D(0, Ti)[1− w`Q
Fi(0, Ti)] +

(
1 +

c

2

)
D(0, T )[1− w`Q

FT (0, T )] (9)

where D(0, Ti) denotes the time-0 value of a Ti-maturity default-free zero-coupon bond given by

the Vasicek (1977) model, QFi(0, Ti) represents the time-0 default probability over (0, Ti] under the

Ti-forward measure (e.g., Geman, El Karoui, and Rochet (1995) and Jamshidian (1989)), and w`,

the loss rate, equals 1 − w. In CDG, the loss rate on coupons is 100%. Here we use the same loss

rate on both coupons and principal. (This reduces the model’s overprediction error in spreads.)

One can see from (9) that the key step in implementing the CDG model is to determine Q·(0, ·).
It can be calculated as follows:

QFT (t0, T ) =
n∑

i=1

q(ti− 1
2
; t0), t0 = 0, ti = iT/n, (10)

where for i = 1, 2, . . . , n,

q(ti− 1
2
; t0) =

N(a(ti; t0))−
∑i−1

j=1 q(tj− 1
2
; t0)N(b(ti; tj− 1

2
))

N(b(ti; ti− 1
2
))

(11)

a(ti; t0) = −M(ti, T |X0, r0)√
S(ti|X0, r0)

(12)

b(ti; tj) = −M(ti, T |Xtj )√
S(ti|Xtj )

(13)

and where the sum on the RHS of (11) is defined to be zero when i = 1, X ≡ V/K, and

M(t, T |X0, r0) ≡ EFT
0 [ln Xt] ;

S(t|X0, r0) ≡ VarFT
0 [ln Xt] ;

M(t, T |Xu) = M(t, T |X0, r0)−M(u, T |X0, r0)
CovFT

0 [ln Xt, ln Xu]
S(u|X0, r0)

, u ∈ (t0, t)

S(t|Xu) = S(t|X0, r0)−

(
CovFT

0 [ln Xt, ln Xu]
)2

S(u|X0, r0)
, u ∈ (t0, t)

This approach is in the spirit of LS and used by CDG to implement the one-factor (but not the

two-factor) version of their model.

30



Under the T -forward measure,

eκ`t ln Xt = ln X0 + ν̄
(
eκ`t − 1

)
+

∫ t

0

[(1 + φκ`)ru − ρσvσrB(t, T )] eκ`udu

+
∫ t

0

σveκ`u dZFT1u (14)

rt = r0e
−βt +

(
α

β
− σ2

r

β2

) (
1− e−βt

)
+

σ2
r

2β2
e−βT

(
eβt − e−βt

)
+ σre

−βt

∫ t

0

eβu dZFT2u

= EFT
0 [ru] + σre

−βt

∫ t

0

eβu dZFT2u (15)

where

ν̄ ≡ (ν − φθ)− (δ + σ2
v/2)/κ` (16)

B(t, T ) =
1
β

(
1− e−β(T−t)

)
(17)

Eqs. (14) and (15) can then be used to calculate M(t, T |X0, r0) and CovFT
0 [ln Xt, ln Xu] and thus

the expectations in (11)-(13).

It follows from (14) that

eκ`tEFT
0 [ln Xt] = ln X0 + ν̄

(
eκ`t − 1

)
+

∫ t

0

(1 + φκ`)eκ`uEFT
0 [ru]du

− ρσvσr

β

[
eκ`t − 1

κ`
− eβT e(κ`+β)t − 1

κ` + β

]
(18)

Eq. (15) can then be used to evaluate explicitly the integral on the RHS of (18) and hence to arrive

at M(t, T |X0, r0). Similarly,

CovFT
0 [lnXt, ln Xu]eκ`(t+u) = (19)

σ2
v EFT

0

[∫ t

0

eκ`v dZFT1v

∫ u

0

eκ`v dZFT1v

]
(≡ I1)

+ σv(1 + φκ`) EFT
0

[∫ t

0

eκ`v dZFT1v

∫ u

0

eκ`v rvdv

]
(≡ I2)

+ σv(1 + φκ`) EFT
0

[∫ u

0

eκ`v dZFT1v

∫ t

0

eκ`v rvdv

]
(≡ I3)

+ (1 + φκ`)2 CovFT
0

[∫ t

0

eκ`v rvdv,

∫ u

0

eκ`v rvdv

]
(≡ I4)

One can show that ∀t ≥ u,

I1 =
σ2

v

2κ`

(
e2κ`u − 1

)
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I2 = (1 + φκ`)
ρσvσr

κ` + β

[
e2κ`u − 1

2κ`
− e(κ`−β)u − 1

κ` − β

]

I3 = (1 + φκ`)
ρσvσr

κ` + β

[
1− e(κ`−β)t

κ` − β
+

e2κ`u − 1
2κ`

+ e(κ`+β)u e(κ`−β)t − e(κ`−β)u

κ` − β

]

I4 = (1 + φκ`)2
σ2

r

2β

[
−

(
e(κ`−β)t − 1

) (
e(κ`−β)u − 1

)

(κ` − β)2
+

(
e(κ`+β)u − 1

) e(κ`−β)t − e(κ`−β)u

κ2
` − β2

− β

κ2
` − β2

e2κ`u − 1
κ`

+
1

κ2
` − β2

(
1− 2e(κ`−β)u + e2κ`u

)]

The LS model can be nested within CDG. The price of a defaultable bond in the LS model can

be obtained by setting κ` to zero. The resultant formulas are omitted here for brevity.

B Parameter Estimation

In this appendix, we discuss estimation of asset return volatility, parameters in the mean-reverting

leverage process, and interest rate process parameters.

B.1 Asset Return Volatility

One estimate of asset (return) volatility σv can be obtained from historical equity (return) volatility

σe using the relationship: σe = σv
Vt

St

∂St

∂Vt
, where St denotes the market value of equity at time

t. Specifically, given ∂St/∂Vt and σe, the above formula can be used to solve for σv. One simple

scheme is to use ∂St/∂Vt = N(d1(Kt, t)) – a result of the Merton (1974) model – where d1 is defined

earlier in (7). One estimate of σe is the sample volatility of daily equity returns over a particular

horizon. (The RiskMetricsTM (1994) estimate of σe was used in an earlier analysis and did not

produce sharply different results.) The GARCH(1,1) specification is also used to estimate σe.

Bond implied volatility is analogous to the Black-Scholes option implied volatility used in option

markets. Namely, given a structural model, one chooses the asset volatility such that the model

price for the bond fits today’s bond market price. This bond-price implied volatility is then used as

an estimate for a future date’s asset volatility. In our analysis, bond-implied volatility is estimated

using bond prices in each November during our sample period. Except for four newly issued bonds,

all the bonds have trader quotes in November. All but four of the quotes indicate that prices varied

between November and December in our sample period.

We implemented the models using bond-implied volatility and the pricing errors are smaller

than those associated with historical equity volatilities that we use in most of the paper. However,

despite the greater accuracy, bond-implied volatility may not be so much a measure of volatility
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as a catch-all for errors in the structural model. If prices do not change much from one month to

the next, then the estimate of the bond-implied volatility will include the effects of all the factors

that are not in the structural model. Thus, we expect this method to generate more accurate

predicted prices in the next month absent major news. One way to consider the usefulness of the

bond-implied volatility approach is to compare spread prediction errors from this method to the

errors in spreads from a random walk model (where we simply assume the December spread will

be November’s spread). For the M model, the average spread prediction error from the random

walk method is 1.9%, which is an improvement over the 13% average error obtained by using the

bond-implied volatility approach.

Asset volatility can be also estimated based on the equity value. Under the KMV approach

(Crosbie and Bohn (2002)), one solves both the asset value and the asset volatility simultaneously

using both the equity value and equity volatility as the target. (We implemented this method using

a subsample in an earlier version of the paper and found the KMV estimates are very close to those

based on historical equity volatility.) A related approach, that we do not implement, is to fit the

market price of equity only (Black (1985)).

B.2 Parameters in a Mean-Reverting Leverage Process

Here we discuss how to estimate parameters κ`, φ, and ν defined in (3) in the CDG model. One

can see from (14) that κ` and φ can be estimated by regression. However, this would not produce a

direct estimate of ν̄ defined in (16) since the regression is under the physical measure whereas (14)

is defined under the T -forward measure.

Under the physical measure denoted by P,

dVt = (µv − δ)Vt dt + σv Vt dZ1t

d ln Xt =
[
µv + κ`ν̄ + κ`

(
φ rt − ln Xt

)]
dt + σv dZ1t

where µv is a constant, the constant ν̄ is as defined earlier, and Z1 is a one-dimensional standard

Brownian motion under P. Let α` ≡ µv + κ`ν̄. A regression of the change in the log leverage ratio

against log leverage lagged one period and the interest rate will then generate parameter estimates:

α̂`, κ̂` and φ̂. If µv can be estimated, then ν̄ can be estimated as follows:

̂̄ν =
(
α̂` − µ̂v

)
/κ̂`

In our implementation, monthly market leverage ratios and 3-month CMT data over the prior 10

years are used in the regressions and µv is estimated by the mean return of the asset value over the
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prior 10 years.

B.3 Interest Rate Parameters

Let y(t, T ; Θr) denote the spot rate at time t with term equal to T − t predicted by a particular

model characterized by its parameter set Θr. To fit the model to CMT rates on day t, one chooses

parameters in Θr to minimize the sum of errors squared, where the error is measured as the deviation

between the model yield and the market yield. Given the estimated spot curve y(t, ·; Θr) at t, the

model price of a default-free coupon bond can be easily computed.

In the Nelson and Siegel (1987) model,

y(t, T ; Θr) = β0 + δ1(β1 + β2)

(
1− e−(T−t)/δ1

)

T − t
− β2 e−(T−t)/δ1 (20)

where Θr = (β0, β1, β2, δ1), and β0 and δ1 need to be positive.

In the Vasicek (1977) model,

y(t, T ; Θr) = − ln D(t, T )/(T − t) = −A(t, T ) + rt B(t, T ) (21)

where Θr = (α, β, σr, rt), B(t, T ) is defined in (17), and

A(t, T ) =
(

σ2
r

2β2
− α

β

)
(T − t) +

(
σ2

r

β2
− α

β

)
e−β(T−t) − 1

β
− σ2

r

2β2

e−2β(T−t) − 1
2β

(22)
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Table 1: Summary Statistics on the Bonds and Issuers in the Sample

Panel A

Mean Std Dev Min Max
Years to maturity 8.968 6.929 1.088 29.69
Coupon (%) 7.916 1.506 0 12.25
Bond rating 7.456 3.143 2 24
Yield spread over CMT (bp) 93.53 84.75 22.13 555.6
Asset market value ($ millions) 6578 7472 172.8 47973
Market leverage ratio 0.303 0.152 0.086 0.864
Asset volatility (over 150 days) 0.236 0.088 0.085 0.592
Corr between firm value and 3m T-bills -0.02 0.044 -0.13 0.102
Payout (%) 4.833 2.349 0 12.15

Panel B

Industry # of bonds % of sample
Manufacturing 124 68.13
Mines 16 8.79
Retail 12 6.59
Service 15 8.24
Transportation and utility 10 5.50
Wholesale 5 2.75

Panel C

Observation year end Average CMT Yld curve Debt issuance No. of
rate (%) slope deviation bonds

1986 6.39 0.84 7.68 1
1987 7.75 1.13 -1.43 4
1988 8.91 0.02 -5.97 8
1989 7.81 0.06 -7.72 9
1990 7.48 0.77 -4.73 5
1991 5.55 2.06 -1.33 12
1992 5.06 2.10 5.58 18
1993 4.49 1.56 5.42 15
1994 7.21 0.22 -11.00 19
1995 5.51 0.39 0.08 27
1996 5.78 0.52 -4.59 26
1997 5.65 0.09 5.89 38

Table 1 reports summary statistics on the bonds and issuers in our sample. Bond rating is the average of
Moody’s and Standard and Poor’s ratings, where AAA is 1, AA+ is 2, etc. Bond yield spreads are measured
against the constant maturity Treasury yield. Asset volatility is annualized and is based on equity volatility
over the previous 150 trading days. Asset value is the market value of the firm’s equity plus total liabilities.
Leverage is total liabilities over asset value. Correlation is calculated using equity returns and 3 month
T-bill returns over the previous five years. Payout is a weighted average of the dividend yield (adjusted for
share repurchases) and the bond yield, where the weights are the leverage ratio and one minus the leverage
ratio. The yield curve slope is the 10-year Treasury rate minus the 2-year Treasury rate. The debt issuance
deviation is the residual from a regression of aggregate debt issuance (reported by the Federal Reserve
Board) against a time trend over the period January 1986-March 1998.
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Table 2: Estimation of Model Parameters

Parameter Description Estimated as: Data Source

Bond features:

c coupon given FID

T maturity given FID

F face value total liabilities Compustat

w recovery rate given Moody’s

Firm characteristics:

V firm value total liabilities plus Compustat

market value of equity and CRSP

µv asset returns average monthly change in V Compustat

and CRSP

σv asset volatility historical equity volatility Compustat

adjusted for leverage and CRSP

δ payout ratio weighted average of c and the Compustat,

share repurchase-adjusted CRSP and FID

dividend yield

κ` speed of adjustment coefficient from a regression CRSP, CMT

to target leverage of changes in log leverage and Compustat

against lagged leverage and r

φ sensitivity of coefficient from a regression CRSP, CMT

target leverage of changes in log leverage and Compustat

to interest rates against lagged leverage and r

τ tax rate assumed at 0.35 -

Interest rates:

r riskfree rate the NS or Vasicek models CMT

ρ correlation between correlation between equity CRSP and CMT

V and r returns and r

σr interest rate volatility the Vasicek model CMT

FID is the Fixed Income Database. CRSP is the Center for Research in Security Prices database. CMT is the
constant maturity Treasury rate series available on the Federal Reserve Board’s web site. NS refers to the
Nelson and Siegel (1987) model. Total liabilities are used for the default boundaries in most instances, but
sensitivity to the assumption is also shown by using the KMV measure of liabilities. Likewise, we also show
the sensitivity of the estimates to using historical equity volatility by estimating the models with implied
volatility and future volatility.
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Table 3: Performance of the Structural Models

Bond Absolute Absolute Absolute

Pricing Percentage Percentage Percentage Percentage Percentage Percentage

Models Pricing Error Pricing Error Error in Yld Error in Yld Error in Sprd Error in Sprd

Mean Mean Mean Mean Mean Mean

(Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.)

Merton 1.69% 3.67% -91.30% 91.84% -50.42% 78.02%

(4.94%) (3.71%) (17.05%) (13.84%) (71.84%) (39.96%)

Geske (face recovery) 0.70% 3.22% -1.71% 8.45% -29.57% 66.93%

(4.89%) (3.73%) (15.28%) (12.83%) (74.06%) (43.12%)

Geske (firm recovery) 2.09% 3.11% -5.47% 7.58% -52.92% 65.73%

(3.97%) (3.23%) (8.46%) (6.62%) (48.28%) (28.34%)

Leland -1.97% 4.06% 15.60% 19.06% 115.69% 146.05%

(7.54%) (6.64%) (74.74%) (73.92%) (490.19%) (481.97%)

LS (1-day CMT) -2.69% 5.63% 6.62% 15.02% 42.93% 124.83%

(8.19%) (6.51%) (24.85%) (20.86%) (171.63%) (125.07%)

LS (1-month CMT) -0.68% 4.56% 1.52% 11.90% -6.63% 96.83%

(6.94%) (5.26%) (21.17%) (17.55%) (132.53%) (90.44%)

CDG (baseline) -11.21% 12.64% 32.06% 36.74% 269.78% 319.31%

(13.12%) (11.75%) (44.41%) (40.60%) (370.41%) (328.42%)

CDG (low κ) -10.50% 12.09% 30.09% 35.14% 251.12% 304.32%

(13.03%) (11.56%) (43.82%) (39.86%) (362.73%) (319.16%)

CDG (low µ) -3.76% 7.35% 11.00% 20.17% 78.99% 170.16%

(10.13%) (7.90%) (31.39%) (26.42%) (247.95%) (196.57%)

Table 3 reports means and standard deviations of the percentage errors in the models’ predictions. The
percentage errors in prices, yields and spreads, as well as their absolute values, are calculated as the predicted
spread (yield, price) minus the observed spread (yield, price) divided by the observed spread (yield, price).
The errors are those generated from implementing the models using 182 bonds with simple capital structures
during 1986-1997 with the assumption that recovery rates are 51.31% of face value in default and that asset
volatility is measured using 150-day historical volatility.
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Table 4: T-tests of Prediction Errors from Defaultable-Bond Pricing Models

Pricing models

Extended Geske Leland- Longstaff- Collin-Dufresne

Merton Toft Schwartz and Goldstein

Book leverage 2.95 3.03 1.91 2.88 3.06

Market leverage 6.47 6.35 2.04 6.23 5.76

abs(Market leverage - Book leverage) -4.28 -4.06 -0.33 -4.12 -3.39

10-yr mean of leverage 5.28 5.12 1.84 4.90 4.48

Current leverage - 10-yr mean 1.62 1.69 0.37 1.83 1.81

Long-term debt/total liability 2.16 1.03 -1.31 0.73 1.16

Bond rating 4.85 4.00 -0.78 2.41 2.84

Difference in ratings 0.22 0.00 -1.30 0.00 0.22

Total assets (book) 0.18 0.82 1.61 1.32 1.09

Total assets (market) -1.73 -0.82 1.79 -0.62 -0.74

Asset growth rate 1.43 1.28 -0.14 0.36 2.70

Market/book -5.90 -5.29 -0.30 -5.47 -4.52

150-day equity volatility 7.99 7.65 -0.05 5.13 4.90

150-day asset volatility 6.70 6.23 -1.68 4.02 3.69

Years to maturity 4.16 2.61 -0.64 2.46 1.07

Amount of outstanding -1.47 -1.05 1.69 -0.14 0.02

Coupon 2.84 3.30 4.10 3.54 1.93

PPE/assets 3.12 2.40 0.49 1.80 1.37

R&D/assets -0.77 0.02 0.13 -1.08 -2.41

Cap. Exp./assets 2.34 2.06 -0.69 1.64 1.68

Payout 2.81 3.04 3.86 3.68 0.81

Corr. with 3m T-bills 1.26 0.78 -0.03 2.87 3.76

Interest rate volatility 0.10 -0.03 -3.51 6.49 4.09

Old bond 0.29 0.29 3.74 2.01 0.86

Two bonds 1.28 1.61 1.61 1.28 0.96

Below par 0.32 0.97 6.17 1.62 1.62

Table 4 reports t-statistics for the difference between the average values for the variables reported. The
t-test compares bonds with spread prediction errors that are above the median for bond pricing models,
with bonds whose prediction errors are below the median. Each column reports t-statistics for a model.
Prediction errors used are percentage errors in predicted spreads using 150-day historical asset volatility.
Bond rating is the average bond rating where AAA is 1, AA+ is 2 etc. Amount outstanding is the amount
owed on the bond. PPE/assets is plant, property and equipment over assets. Cap exp./assets is capital
expenditures divided by assets. Payout is a weighted average of the share-repurchased adjusted dividend
yield and the bond coupon. Correlation with 3 month T-bills is the correlation of returns on equity and
interest rates over the previous five years. Interest rate volatility is estimated using the Vasicek model. Old
bond is a bond that was issued five or more years ago. Two bonds indicates that a firm has two public bonds
in the sample. Below par means the flat price of the bond was below $100.
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Table 5: Regression of Model Prediction Errors on Firm and Bond Characteristics

Dependent variables: prediction errors of the bond pricing model

Independent Regression model 1 Regression model 2
variables M G LT LS CDG M G LT LS CDG
Intercept -3.02 -2.89 1.653 -5.44 -3.97 -2.03 -1.78 3.206 -3.58 -0.11

(-9.05) (-7.92) (0.43) (-6.80) (-1.55) (-5.47) (-4.53) (0.71) (-3.90) (-0.04)
Debt issuance 0.001 -0.002 -0.017 -0.031 -0.030 -0.006 -0.011 -0.032 -0.045 -0.052

(0.09) (-0.30) (-0.20) (-1.70) (-0.52) (-0.83) (-1.36) (-0.35) (-2.44) (-0.88)
Term structure 0.080 0.106 0.482 0.450 0.907 -0.06 -0.07 0.164 0.160 0.483

(1.48) (1.80) (0.77) (3.46) (2.17) (-1.12) (-1.07) (0.22) (1.05) (0.98)
Interest rate 0.081 0.091 -0.49 0.489 0.754 -0.04 -0.04 -0.55 0.236 0.313

(1.51) (1.56) (-0.79) (3.78) (1.82) (-0.72) (-0.73) (-0.79) (1.67) (0.68)
Interest rate vol -0.25 -0.26 -1.10 1.421 2.597 -0.25 -0.26 -1.23 1.466 2.681

(-2.08) (-1.97) (-0.78) (4.83) (2.75) (-2.14) (-2.16) (-0.86) (5.06) (2.85)
Yrs to maturity 0.0104 0.0128 -0.107 0.0087 0.0052 0.0034 0.0056 -0.100 -0.003 -0.008

(2.35) (2.66) (-2.09) (0.83) (0.15) (0.75) (1.18) (-1.82) (-0.32) (-0.22)
Market leverage 2.694 2.910 6.151 5.617 8.816 3.663 4.083 8.110 7.619 13.36

(11.16) (11.03) (2.20) (9.72) (4.76) (11.54) (12.13) (2.09) (9.72) (5.25)
Asset volatility 5.112 4.541 -8.22 5.260 10.64 6.510 6.189 -4.81 7.736 17.60

(13.19) (10.73) (-1.83) (5.67) (3.58) (13.97) (12.52) (-0.85) (6.72) (4.71)
Payout 11.217 10.376 -19.61 17.032 -11.86 10.182 9.4402 -21.13 14.746 -9.392

(6.68) (5.66) (-1.01) (4.24) (-0.92) (6.07) (5.31) (-1.03) (3.56) (-0.70)
Coupon -0.080 -0.069 0.5693 -0.205 -0.478 -0.072 -0.071 0.3531 -0.179 -0.538

(-3.27) (-2.59) (2.00) (-3.49) (-2.53) (-2.68) (-2.49) (1.07) (-2.69) (-2.49)
corr. w/ 3m T-bills -1.26 -1.37 6.758 -0.84 4.903 -0.28 -0.03 13.24 1.240 9.077

(-1.66) (-1.66) (0.77) (-0.46) (0.84) (-0.37) (-0.04) (1.42) (0.66) (1.48)
Cur. lev - LT lev -0.33 -0.44 1.416 -0.57 -3.21

(-0.93) (-1.16) (0.32) (-0.64) (-1.10)
Bond rating -0.09 -0.10 -0.21 -0.17 -0.35

(-5.23) (-5.74) (-0.99) (-3.94) (-2.52)
Size -1e-05 -9e-06 2e-05 -9e-06 -5e-05

(-2.20) (-1.69) (0.26) (-0.69) (-1.22)
Two bonds 0.078 0.147 1.314 -0.00 0.799

(1.16) (2.07) (1.60) (-0.02) (1.49)
PPE/assets 0.057 0.092 0.984 0.091 -2.18

(0.36) (0.54) (0.50) (0.23) (-1.68)
Old bond -0.00 0.123 3.410 -0.02 0.541

(-0.06) (0.91) (2.17) (-0.09) (0.53)
Adj Rsq 0.683 0.644 0.089 0.679 0.299 0.720 0.704 0.105 0.698 0.324

Table 5 reports regression coefficients and their t-values (in parentheses) where the dependent variable is the (signed)
spread prediction error (in percentage terms) based on the 150-day historical volatility. Debt issuance is the residual
from a regression of aggregate debt issuance against a time trend. Term structure is the difference between 10-year and
2-year Treasury yields. Interest rate is the average of the constant maturity Treasury rates. Interest rate volatility is
estimated using the Vasicek model on the day the bond price is observed. Market leverage is total liabilities divided by
market value of assets. Asset volatility is calculated using equity returns over the previous 150 trading days. Payout is
a weighted average of the share-repurchased adjusted dividend yield and the bond coupon. Correlation with 3 month
T-bills is the correlation of returns on equity and interest rates over the previous five years. Current leverage minus
LT leverage is leverage in the year of the bond price observation less the average leverage over the previous ten years.
Bond rating is the average bond rating where AAA is 1, AA+ is 2 etc. Size is the market value of assets. Two bonds
indicates that a firm has two public bonds in the sample. PPE/assets is plant, property and equipment over assets.
Old bond is a bond that was issued five or more years ago.
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Figure 1: Predicted and Actual Spreads vs. Years to Maturity: The Merton Model
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Figure 2: Predicted and Actual Spreads vs. Years to Maturity: The Geske Model
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Figure 3: Predicted and Actual Spreads vs. Years to Maturity: The LT Model
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Figure 4: Predicted and Actual Spreads vs. Years to Maturity: The LS Model
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Figure 5: Predicted and Actual Spreads vs. Years to Maturity: The CDG Model
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