
Ž .Journal of Empirical Finance 8 2001 297–323
www.elsevier.comrlocatereconbase

The joint estimation of term structures and
credit spreads

Patrick Houweling a,), Jaap Hoek b, Frank Kleibergen c

a Central Market Risk, Rabobank International and Tinbergen Institute, Erasmus UniÕersity
Rotterdam, P.O. Box 1738, H16-20, 3000 DR Rotterdam, The Netherlands

b RObeco Center of Knowledge, Robeco Group, The Netherlands
c Department of QuantitatiÕe Economics, UniÕersity of Amsterdam, The Netherlands

Accepted 21 March 2001

Abstract

We present a new framework for the joint estimation of the default-free government
term structure and corporate credit spread curves. By using a data set of liquid, German
mark denominated bonds, we show that this yields more realistic spreads than traditionally
obtained spread curves that result from subtracting independently estimated government and
corporate term structures. The obtained spread curves are smooth functions of time to
maturity, as opposed to the twisting curves one gets from the traditional method, and are
less sensitive to model specifications. To determine the ‘optimal’ model specification, we
use a newly developed test statistic that compares spread curves from competing models.
q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the 1990s we witnessed a wave of new models that take credit risk in
financial instruments into account. Catalysing factors that spurred research in this
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area were the growth of the corporate bond market, the rapid development of the
market for credit derivatives and the growing awareness among investors of credit
risk in derivative products. Many of the new models require an accurate descrip-
tion of the term structures of interest rates of different credit risk classes as input
data. Measuring a term structure for a particular credit rating class amounts to
estimating its credit spread curve relative to the government curve, which proxies
the default-free curve. Traditionally, spread curves are calculated by subtracting
independently estimated government and corporate term structures. In this paper
we present a new framework that jointly estimates the government curve and
credit spread curves. Unlike the twisting curves one gets from the traditional
method, the estimated spread curves are now smooth functions of time to maturity,
and are less sensitive to model settings. Moreover, we develop a novel test statistic
that allows us to determine the ‘optimal’ settings of the new model.

An important application in which accurately estimated term structures of
interest rates are essential inputs is the pricing of defaultable bonds and credit

Ž .derivatives. The leading frameworks are the Jarrow et al. 1997 Markov chain
Ž .model, which extended the work of Litterman and Iben 1991 and Jarrow and

Ž . Ž .Turnbull 1995 to multiple credit ratings, and the Duffie and Singleton 1999
Ž .framework, which can be cast into a defaultable Heath et al. 1992 model. Similar

to the default-free interest rate models developed in the early 1990s—most
Ž . Ž .notably the extended Vasicek 1977 models, such as Hull and White 1990 , the

Ž .lognormal short rate models, like Black et al. 1990 , and the models in the Heath
Ž .et al. 1992 framework—these credit risk models provide an exact fit to today’s

default-free and defaultable term structures of interest rates. Any error in the input
of such models will be amplified in the prices of interest rate and credit derivatives
that are subsequently priced with them.

Interest rates and spread curves are also required for risk management purposes,
for example, in applying the historic simulation method to calculate the Value at

Ž .Risk for a corporate bond portfolio see, e.g. Saunders, 1999, Chapter 11 . Future
scenarios are generated by adding historical day-to-day movements in interest
rates and spread curves to today’s curves. Since in each scenario the bond
portfolio is revalued to obtain the empirical distribution of the future portfolio
value, inaccurate curves may lead to an unnecessarily large Value at Risk and a
too large amount of regulatory capital. Other applications of default-free and
defaultable interest rates include the pricing of new bond issues and assessing

Žcounterpart risk in derivative products see, e.g. Hull and White, 1995; Duffee,
.1996; Caouette et al., 1998, Chapter 21 .

An obstacle in the above mentioned applications is that the term structures are
not directly observable in the market and have to be estimated from market prices
of traded instruments using statistical techniques. Until now, the literature has
primarily focused on the estimation of the default-free term structure from a
sample of government bonds. The standard approach originates from McCulloch
Ž .1971, 1975 , who modelled the discount curve as a linear combination of
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polynomial basis functions. Other approaches include the use of Bernstein polyno-
Ž . Ž .mials Schaefer, 1981 , exponential splines Vasicek and Fong, 1982 , B-splines

Ž . Ž .Shea, 1985; Steeley, 1991 , exponential forms Nelson and Siegel, 1987 or a
bootstrapping procedure as employed on electronic information systems Bloomberg

Ž .and Reuters; Anderson et al. 1996, Chapter 2 provided an extensive overview of
these and other term structure estimation methods. After choosing one of these
methods, we could independently estimate a separate model for each credit class.
We illustrate that these calculations are likely to result in twisting spread curves
that alternately have positively and negatively sloped segments. Moreover, the
level and shape of the spread are shown to be sensitive to model misspecification.

Instead, we jointly estimate the default-free and defaultable interest rate curves.
Our joint estimation is based on the decomposition of a defaultable term structure
into a default-free curve and a credit spread curve. The default-free curve is
estimated from government bonds, so that our model for a corporate term structure
focuses on the credit spread only. Both the government curve and the corporate
spread curve are modelled as B-spline functions and all parameters are jointly
estimated from a combined data set of bonds. We apply the model to a data set of
liquid, German mark denominated bonds, whose credit ratings range from Stan-
dard and Poor’s ratings AAA to B. We obtain smooth and reliably estimated
spread curves that are relatively robust to model misspecification. Moreover, we
demonstrate that these results can be attributed to both the joint and the parsimo-
nious modelling. Independently estimating the government curve and a parsimo-
niously specified corporate curve model does not yield the same results, nor does
jointly estimating the government curve and a richly specified corporate spread
curve.

The remainder of the paper is structured as follows. Section 2 presents the new
framework for the joint estimation of the government term structure and corporate
credit spread curves. The specification of the model is described in Section 3,
whereas Section 4 goes over several methods to choose between competing
models, including a novel statistic that is developed to compare spread curves
obtained from alternative model specifications. Section 5 applies the new model to
our data set and confronts the performance of jointly estimated term structures
with independently estimated term structures. Section 6 concludes the paper.

2. Multi-curve model

Ideally, we would like to use a different spread curve for each firm, reflecting
the uniqueness of a firm’s characteristics that determine its credit risk. Due to data
constraints, however, which are discussed in Section 5, we have to resort to
grouping firms that have similar credit worthiness and face similar operating
environments. A disadvantage of grouping bonds is that a particular type of
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Ž . 1heterogeneity may occur Helwege and Turner, 1999 . Suppose we have created
C categories of bonds, where category 1 corresponds to government bonds and the
other categories are formed by using, e.g. credit rating and industry as criteria. The
purpose is to estimate a spread curve for each category. Instead of independently
estimating term structures, we propose a joint estimation approach. Since a
corporate term structure consists of a default-free curve and a credit spread curve,
it seems natural to only model the spread and take the default-free part from the
government curve. Several representations of the term structure exist, e.g. as
discount factors or spot interest rates, but it is common practice to model the
discount curve. We use the following framework for jointly estimating the
discount curves:

D t sd tŽ . Ž .1

D t sd t qs t , cs2,3, . . . ,C , 1Ž . Ž . Ž . Ž .c c

Ž . Ž .where D P is the discount curve of category c, d P is the model for thec
Ž .government discount curve and s P is the model for the discount spread curve ofc

category c with respect to the government curve. We impose C constraints
Ž .D 0 s1, because a payment due today does not need to be discounted. Allc

parameters in the models for the government curve and the discount spread curves
are jointly estimated from a combined data set of government and corporate bonds.
We refer to this model as the multi-curÕe model as opposed to a single-curÕe
model that independently estimates a single corporate term structure.

Ž . Ž .To model d P and s P , we use spline functions, as introduced to the termc
Ž .structure estimation literature by McCulloch 1971 . Some commonly used spline

Ž .models are the exponential splines, by Vasicek and Fong 1982 , and the B-splines,
Ž . Ž .as discussed by Shea 1985 and Steeley 1991 . Splines are tailored to approxi-

mate a scatter of data points by a continuous and preferably smooth function.
Their main advantage is their flexibility: there is no need to a priori impose a
particular curvature, because the shape of the curve is determined by the data.

Ž .Bliss 1997 compared several non-parametric term structure estimation models
and found that spline models perform at least as good as competing models, and
outperform the other considered models if the data contains longer maturity bonds
Ž .over 5 years .

2 w xSplines are basically piecewise polynomials. The approximation interval a, b
w x w x w xis divided into n subintervals t , t , t , t , . . . , t , t , where the knots t0 1 1 2 ny1 n i

are chosen such that ast -t - . . . -t sb. The data points in each subinter-0 1 n

1 Within a data set of bonds of the same rating, the longest maturity bonds usually have been issued
by the relatively most credit worthy firms. Therefore, credit spreads may decrease for the longest
maturities in such a data set. We are grateful to an anonymous referee for bringing this to our attention.

2 With term structure estimation the approximation interval runs from 0 to the longest bond maturity
in the sample.
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val are modelled as a k th degree polynomial. The n polynomials are constrained
by the condition that the spline has to be ky1 times continuously differentiable.
This is a restriction at the knots t , t , . . . , t only, and imposes k constraints1 2 ny1

Ž .on the coefficients of two adjacent polynomials. In sum, we have n kq1
Ž .coefficients minus ny1 k constraints, leaving only nqk degrees of freedom. A

more parsimonious way of representing splines is by means of basis functions; see,
Ž . Ž .e.g. Powell 1981, p. 228 . Any k th degree spline function S P with knots t can

Ž . � Ž .be expressed as a linear combination of nqk basis functions f P s f P ,1
Ž . Ž .4f P , . . . , f P :2 nqk

nqk
X

S t s a f t s f t a .Ž . Ž . Ž .Ý s s
ss1

Once the basis is chosen and the degree k and the knots t are set, the basis
functions are fully specified. The spline weights a , however, are unknown and

Ž .have to be estimated from the data. Powell 1981 recommended the use of a basis
of B-spline functions, because of their efficiency and numerical stability. Steeley
Ž .1991 applied B-splines to term structure estimation. See Appendix A for a

Ž .concise description of constructing a basis of B-splines, or consult Powell 1981
for more details.

We use B-splines to model the government discount curve and corporate
Ž . Ž . Ž .X Ž . Ž .Xdiscount spread curves in Eq. 1 . We set d t sg t b and s t sg t b ,1 1 c c c

Ž .where g P contains n qk B-spline basis functions that span a spline of k thi i i i

degree with knots t ; Section 3 discusses the specification of the degrees andi
Ž Ž ..knots. Using B-spline basis functions, the multi-curve model Eq. 1 is rewritten

as:
X

D t sg t b 2aŽ . Ž . Ž .1 1 1
X X

D t sg t b yg t b , cs2,3, . . . ,C. 2bŽ . Ž . Ž . Ž .c 1 1 c c

To estimate the unknown spline weights b , b , . . . , b , we construct a data1 2 C
Ž .set, consisting of B bonds of category c, and use the discounted cash flow DCFc

principle to link the bond prices to a discount curve. According to the DCF
principle, the price that an investor is willing to pay for the bth bond of category c
equals the sum of the present values of the cash flows:

Ncb

P s CF D t , 3Ž . Ž .ÝDCF ,cb cb i c cb i
is1

where P is the DCF bond price, N is the number of remaining cash flowsDCF,cb cb

and CF is the ith cash flow that is paid at time t . By using the DCF equationcb i cb i

as the theoretical bond price model, we have to confine our data set to fixed-in-
come bonds with known redemptions and exclude any bonds with optional
elements—such as callable and puttable bonds—and bonds with floating or
index-linked coupons. The DCF method is valid if we assume a perfectly
competitive capital market, i.e. if all relevant information is widely and freely
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Žavailable and no barriers, frictions and taxes exist. Brealey and Meyers 1991, p.
.20 stated that Aeven though these conditions are not fully satisfied, there is

considerable evidence that security prices behave almost as if they were.B
Ž . Ž .For category 1, i.e. for government bonds, we substitute Eq. 2a into Eq. 3 ,

yielding,
N n qk n qk N1b 1 1 1 1 1 b

P s CF b g t s b CF g tŽ . Ž .Ý Ý Ý ÝDCF ,1b 1b i 1 s 1 s 1b i 1 s 1b i 1 s 1b iž / ž /
is1 ss1 ss1 is1

n qk1 1
X

' x b sx b , 4aŽ .Ý 1b s 1 s 1b 1
ss1

Ž . Ž .whereas for categories 2, 3, . . . , C, substitution of Eq. 2b into Eq. 3 results in,
n qk N n qk N1 1 cb c c cb

P s b CF g t q b CF g tŽ . Ž .Ý Ý Ý ÝDCF ,cb 1 s cb i 1 s cb i cs cb i cs cb iž / ž /
ss1 is1 ss1 is1

n qk n qk1 1 c c
X X

' x b q y b sx b qy b . 4bŽ .Ý Ýcb s 1 s cb s cs cb 1 cb c
ss1 ss1

Note that these equations for the theoretical bond price are linear in the
unknown parameters, because all terms in x and y are either known from the
characteristics of the bond or the specification of the spline models. Also, the

Ž .constraints D 0 s1 on the discount functions are linear restrictions on the splinec
Ž . Ž .weights; see Eqs. 2a and 2b .

In order to estimate the spline weights, we substitute the theoretical prices
P by observed market prices P and add an error term ´ to the equations.DCF,cb cb cb

The error term is necessary, because due to market imperfections the DCF method
is not able to perfectly explain bond prices.3 Using matrix notation, we obtain the
following linear regression model:

P X 0 0 . . . 0 b ´1 1 1 1

P X Y 0 . . . 0 b ´2 2 2 2 2

2P X 0 Y . . . 0 b ´s q , ´ ; i.i.d. 0,s ,3 3 3 3 Ž .3 C c. . . . . .. .. . . . . . . ... . . . . . .
´P X 0 0 . . . Y b CC C C C

5Ž .
Ž . � X X X 4where X is a B = n qk matrix with rows x , x , . . . , x and Y is ac c 1 1 c1 c2 c B cc

Ž Ž .. � X X X 4B = n qk matrix with rows y , y , . . . , y . We allow the disturbancesc c c c1 c2 c Bc

3 It is possible to obtain an arbitrary high goodness of fit by increasing the number of parameters.
However, the resulting term structures are likely to have twisting shapes and wide confidence intervals.
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to have different variances for each category, because prices of lower rated bonds
are generally more noisy due to lower liquidity and a higher uncertainty about
their perceived credit worthiness. Also, the residuals of independently estimated
single-curve models can be shown to have significantly different variances using a

ˆ ˆ ˆheteroscedasticity test. Estimates b , b , . . . , b of the spline weights are readily1 2 C

obtained by applying Restricted Feasible Generalised Least Squares estimation to
Ž . Ž .Eq. 5 ; see, e.g. Greene 2000, p. 473 . Once we have estimated the spline

ˆ Ž .weights, we can evaluate D t for any maturity t. It is important to emphasise,c

however, that discount factors for maturities beyond the maximum maturity bond
become unreliable.

3. Model settings

Ž .Before we are able to estimate the regression model in Eq. 5 , we have to
specify the exact form of the basis functions. The functional form of the basis
functions follows by choosing the degree of the splines and the number and
location of the knots. These choices reflect the familiar trade-off between flexibil-
ity and smoothness. The degree of the splines should not be chosen too high, to
preclude the problems of higher order polynomials.4 If the order is too low,
however, the estimated curve will not fit the data very well, and thus will not
reflect the interest rates that are prevalent in the market. Similarly, if the number
of knots is chosen too low, the model will not be able to fit term structures with
difficult shapes. On the other hand, if it is too high, the estimated curve is
sensitive to outliers.

For the spline model for the government discount curve, we can use results
from the term structure estimation literature. Almost all studies that employ spline
functions to model the discount curve use third degree splines. Only McCulloch
Ž .1971 used quadratic splines in his pioneering study, resulting in ‘knuckles’ in the
forward curve, which made him switch to cubic splines in his follow-up paper
Ž . Ž .McCulloch, 1975 . Beim 1992 conducted a simulation study and concluded that

Ž .cubic splines are preferable. Poirier 1976, p. 49 demonstrated that fitting a cubic
spline minimises the integral of the square of the second derivative, which is an
approximation of a function’s smoothness; see also Adams and van Deventer
Ž .1994 . Consequently, cubic splines are a convenient compromise between high
goodness of fit and smooth curves.

4 Using higher order polynomials often results in spurious curvature between the data points, see,
Ž .e.g. Shea 1984, p. 255 . This is especially true if such polynomials are fitted to data that are not

uniformly distributed over the approximation interval, as is the case with term structure estimation, see
Fig. 1 in Section 5.
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With regard to the specification of the knots, there is less agreement. McCul-
Ž .loch 1971 proposed to set the number of knots equal to the integer nearest to the

square root of the number of bonds in the sample. The knots are then located such
that an approximately equal number of bonds is placed in each segment. Litzen-

Ž .berger and Rolfo 1984 stated that the McCulloch scheme is likely to result in a
poor fit for longer maturities due to the larger number of shorter maturity bonds.
As an alternative, they suggested to exogenously place the knots at 1, 5 and 10
years, roughly corresponding to an economic segmentation into short, medium and

Ž .long maturities. Langetieg and Smoot 1989 tested the McCulloch knot placement
scheme against the economic scheme and found that the latter typically performed

Ž .better. Steeley 1991 experimented with the specification of the knots and
recommended placing knots at 5 and 10 years as a starting point for future

Ž .research. The simulation study by Beim 1992 revealed that cubic splines with
two knots minimised the standard error of fit between the estimated and the
simulated ‘true’ discount curves.

We also use spline functions to model discount spread curves, but there is no
prior evidence available on the specification of the degree and the knots. Given the
disagreement in the literature on the specification of the default-free discount
curve, our task of specifying the splines of the spread curve is not an easy one.
Our choices are guided by the observation that a spread curve generally has a less
complicated shape than a term structure. Therefore, we reduce the flexibility of the
spline model for the spread curve by reducing the degrees of freedom. Compared
to the spline for the discount curve of category c in a single-curve model, we

Ž .specify the discount spread curve s P in the multi-curve model as a lower degreec

spline with a smaller number of knots. That is, we use a quadratic spline function
and the knots are chosen to be a subset of the knots of the single-curve spline
model. This still leaves us with several competing degree–knot combinations. To
choose the ‘optimal’ combination, we use a newly developed test statistic that
allows us to compare spot spread curves that are obtained from competing
multi-curve models. We describe this curÕe similarity test in the next section and
apply it in Section 5.

4. Model comparison

A problem in comparing different single-and multi-curve models among and
against one another is that there is no general estimable model that encompasses
all other models. Therefore, we cannot use standard econometric testing proce-
dures. Moreover, most econometric tests only focus on goodness of fit, i.e. the
ability of a model to fit the data. In term structure estimation, however, practition-
ers are additionally interested in other features of the models, such as smoothness
and statistical reliability. For these reasons, we compare single-and multi-curve
models in three ways.
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Ž .a Usage of statistics that reflect the goodness of fit, smoothness and reliabil-
ity, such that models can be compared by confronting these statistics, though
without being able to determine the statistical significance of possible differences.

Ž .b Usage of a newly developed test statistic that allows two curves from two
different multi-curve models to be compared to one another. We focus here on
spot spread curves, because of their importance as inputs for pricing and risk
management models, but the statistic may also be employed to compare other
curves that can be calculated from the multi-curve models.

Ž .c Visual inspection of the estimated term structures, most notably the spot
curves and the spot spread curves. Desirable features are smoothness and mono-
tonicity.

Issues a and b will be discussed in more detail in the remainder of this section.

4.1. Statistics

Since interest rates are the main determinants of bond prices, any term structure
model should be able to explain market prices fairly accurately. Therefore,
goodness of fit is a useful criterion to compare models. We measure the fit as the
Root Mean Squared Error of the residuals:

1r2Bc1
2RMSE s e ,Ýc cbž /Bc bs1

where RMSE denotes the Root of Mean Squared Error for category c, B thec c

number of category c bonds and e the residual of the bth category c-bond,cb

which is calculated as the market price of the bond minus its theoretical DCF price
Ž . Ž .4a or 4b .

Although a low value of the RMSE statistic is desirable, we run the risk of
ending up with a twisting curve. Therefore, we also measure the smoothness of

Ž . Ž .estimated term structures. Following Poirier 1976, p. 49 and Powell 1981 , the
w xsmoothness of a function f over an interval t t is computed as the integral of1, 2

the square of its second derivative:

t2 2Ys f ,t ,t s f t d t .Ž . Ž .H1 2
t1

We evaluate this statistic for both spot curves and spot spread curves.
Finally, we want to judge to what degree deviations between theoretical and

market prices are transformed into uncertainty about estimated interest rates and
Ž .spreads. The reliability of a point maturity on an estimated curve is indicated by

its standard error. The reliability can be evaluated in a number of maturities to
compare different segments of the curve. Appendix B derives the standard errors
for a number of curves: discount curve, discount spread curve, spot curve and spot
spread curve.
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4.2. CurÕe similarity test

The Curve Similarity Test described below helps in choosing between two
curves that are estimated with two different multi-curve models. The test espe-

Žcially guides in striking a balance between goodness of fit and smoothness see
.Section 3 . Given our focus on credit risk models, we describe the construction of

the test for spot spread curves, but the test is suitable for any other curve for which
standard errors and covariances can be computed.

Suppose we estimate a richly specified multi-curve model and compose a
1 Ž .vector s t of spot spread rates of category c evaluated in a q-vector ofˆ r ,c

Ž .maturities ts t , . . . , t . We would like to know to what extent we can reduce1 q

this model to a more parsimonious model, i.e. a smoother curve, without loosing
0 Ž .too much on the goodness of fit criterion. Consider therefore the vector s t thatˆ r ,c

contains spot spread rates—evaluated in the same vector of maturities—that result
from a more parsimonious multi-curve model. This alternative model contains less
parameters due to a lower degree andror less spline knots. The Curve Similarity

Ž . 0 Ž . 1 Ž .Test CST aims to test whether s t lies in the realm of s t .ˆ ˆr ,c r ,c

To compute the CST statistic we weigh differences between the spot spread
1Ž . 1 Ž .vectors with the covariance matrix S t of s t :ˆc r ,c

X y11 0 1 1 0CSTs s t ys t S t s t ys t .Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆŽ . Ž . Ž .r ,c r ,c c r ,c r ,c

The covariance matrix, which is constructed in Appendix B, measures the
uncertainty in the spread estimates, and by using it as weight matrix, we put more
emphasis on the reliable maturities of the spread curve, and vice versa. We
compare the CST value to critical values from a x 2 distribution with q degrees of

0 Ž . 1 Ž .freedom to determine whether s t is approximately equal to s t at theˆ ˆr ,c r ,c

selected maturities. The testing procedure can only be applied to spot spread
vectors from multi-curve models. Spread curves from single-curve models are
obtained by subtracting independently estimated term structures, so that we are

1 Ž .unable to construct the covariance matrix of a spread vector. As s t curve weˆ r ,c

choose the multi-curve model with the same degree–knot settings as the single-
curve model, because its spread curve resembles the spread curves obtained from

Ž . 0 Ž .single-curve models the most see Section 5 . As s t curves we consider severalˆ r ,c

more parsimonious multi-curve models, i.e. with a lower degree andror less
knots. These different parsimonious models are all compared to the most richly
specified model. The results that stem from such a model comparison should be
interpreted with care as the testing procedure is conceptually different from
standard econometric testing procedures. For example, the test statistic may prefer
a model with low order splines that has appropriately selected knots to a
high-order model with badly located knots. Therefore, the test may reject a model
that has a larger number of parameters than a competing model that is not rejected;
this outcome is not possible with traditional econometric tests that compare nested
models.
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To make the test operational, we have to specify the maturity vector t. Since
1 Ž .the covariance matrix of the spot spread vector s t is derived from theˆ r ,c

ˆ 1 ˆ 1Ž .covariance matrix of the estimators b , b of the richly specified model, we1 c

cannot construct the covariance matrix for an arbitrarily chosen maturity vector t.
For example, if the number of maturities q exceeds the number of parameters in

1 Ž .the underlying regression model, the covariance matrix of s t becomes singular.ˆ r ,c

Another issue is the location of the maturities. Because of the smoothness of the
curve, spreads for two adjacent maturities cannot be very different from each
other. Therefore, the grid points should not be chosen too close to each other to
preclude a near-singular covariance matrix. A final consideration is the location of
the maturities relative to the spline knots. Since each spline interval corresponds to
an extra parameter, we cannot place too much grid points of the test in one spline
interval. Again, doing so would lead to a near-singular matrix. In practice, the
above mentioned conditions on the maturity vector t imply that we can only
conduct a joint comparison of the spot spreads at a limited number of maturities,
which lie reasonably far apart. To determine the robustness of the results from the
testing procedure, we can vary the maturity vector t while satisfying the condi-
tions.

5. Results

5.1. Data

To appraise the performance of the proposed multi-curve model and compare it
to independently estimated single-curve models, we use a data set of German mark
Ž .DEM denominated bonds. Their characteristics like maturity dates, coupon
percentages and credit ratings, are obtained from Bloomberg, whereas bond quotes
are retrieved daily at 4:00 pm from Reuters’ TREASURY and EUROBOND
pages. These Reuters pages are connected to broker pages, and each time a broker
updates a quote for a bond, that quote is also refreshed on the Reuters page.
Therefore, the TREASURY and EUROBOND pages provide a good representa-
tion of the market for German mark denominated bonds.

For illustration, we present the results for the trading days of June 1998,
yielding a total of 1291 quoted bonds. To estimate the term structures, we
construct a sample of fixed-coupon, bullet bonds, and to ensure their liquidity, we
only use bonds that are quoted on at least 18 of the 20 trading days of June 1998.
There are 624 bonds that satisfy these conditions. In estimating the term structure
on a particular trading day, we also consistently exclude all bonds with a
remaining maturity of less than 1 year. Unlike the US and UK Treasury Bills,
short-term German government bonds and short-term discount bonds of other
credit ratings typically have low liquidity. In our data set, such bonds showed
constant prices or they were not quoted at all for several consecutive days.
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Since we cannot use short-term bonds, we add four synthetic zero-coupon
bonds to the sample, whose prices correspond to 1-, 3-, 6- and 12-month

Ž .money-market rates, respectively see also Buhler et al., 1999 . We use Frankfurt¨
Ž .Interbank Offered Rates FIBORs as money-market rates, but since most com-

mercial banks have an AA rating, these rates are not straightly applicable to other
rating classes. Therefore, we correct the FIBORs by adding or subtracting a
category-and maturity-dependent spread. The price P of a synthetic bond forct

category c of maturity t is thus computed as:

1
P s .ct 1qFIBOR qcorrection tŽ .t c t

Note that we do not constrain the curves to pass exactly through the corrected
FIBORs; the synthetic bonds are just additional data points to support the curve in
a sparse data segment. Due to the subjectivity of corrections, however, care must
be taken in using rates from the short end of the estimated term structures.

The number of suitable bonds of a single corporate debtor is too small to
reliably estimate a separate term structure for each debtor. Our data set comprises
168 unique issuers; only 14 of them have 10 or more suitable bonds outstanding,
and only 2 out of these 14 issued more than 20 suitable bonds. Therefore, we
resort to grouping firms by rating and industry. First we show a division of the
included bonds by rating; see Table 1. We use ratings published by Bloomberg,
which compounds the major ratings of rating agencies Moody’s and Standard and
Poor’s. We consider AAA-rated government bonds as a separate category, indi-
cated by ‘rating’ symbol GOVT. From the table, it is clear that the number of
bonds per rating decreases with credit quality. Therefore, the reliable estimation of
term structures of lower rating categories may be hampered by an insufficient
number of bonds if we were to use a single-curve method. The proposed
multi-curve model offers a solution, because it only focuses on the spread curve
and involves less parameters.

The distribution of the bond’s maturity dates is shown in Fig. 1. For govern-
ment bonds and AAA bonds, large gaps in the maturity distribution are observed
beyond a maturity of 10 years. This is caused by the very infrequent issuance of

Table 1
Distribution of bonds in the data set by rating
All are all German Mark Eurobonds that are quoted at least once in June 1998. Included are
fixed-income, bullet bonds that are quoted on at least 18 days of the 20 trading days of June 1998.
Rating symbols: GOVT : AAA-rated government bonds; NR: not rated; AAA, AA, A, BBB, BB, B:
Standard and Poor’s major rating letters.

GOVT AAA AA A BBB BB B NR Total

All 112 411 329 119 30 53 38 199 1291
Included 93 228 145 53 13 16 16 60 624
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Fig. 1. Distribution of the maturity dates of the bonds in the estimation sample by rating category.

Ž .long-term bonds e.g. 30-year bonds , as opposed to the regular issuance of 5- and
10-year bonds. Therefore, a term structure estimation procedure has few data
points beyond 10 years and identification of that part of the term structure is more
difficult.

For credit classes AAA and AA, there are enough bonds to allow a further
classification by industry, but for the other ratings this is not feasible due to the
limited number of bonds. The included bonds from ratings AAA and AA are
assigned to one of four compounded Reuters industry classifications. According to
Table 2, the majority of the bonds is issued by financial institutions, whereas
supra-national organisations are also well represented.

5.2. Single-curÕe results

Ž .Before we discuss the results of the multi-curve MC model, we first present
Ž .some estimation results of single-curve SC models. We only describe the results

Table 2
Distribution of ‘included’ bonds in the data set by rating and industry
Financials consists of Reuters classifications ‘Banks’ and ‘Financials’, GoÕernment Agencies is made
up by ‘Government National’, ‘Government Regional’ and ‘Government Agency’, Supra-National
consists of ‘Worldbank’, ‘Inter-American Development Bank’ and ‘Supra-National.’ Industrials is
comprised of ‘Gas and Transmission’, ‘Utility and Electricity’, ‘Transport-Nonrail’, ‘Telephone’ and
‘Industrial.’

Financials Government agencies Supra-Nationals Industrials Total

AAA 139 23 59 7 228
AA 99 33 13 145
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for the rating classes in Table 1. The results for the industry classifications of
Table 2 are similar and do not provide additional insights into the performance of
the models. Table 3 summarises the specifications of the SC model. We use third
degree B-splines for all bond categories, but the number and placement of the knot
points differ. For the ratings GOVT, AAA, AA and A, we set the knots at 3 and 9
years, approximately corresponding to a segmentation into short-, medium- and
long-term maturities. For the lower rating classes, BBB, BB and B, we use only
one knot at 5 years, because the number of bonds in these classes is relatively
small. The table also mentions the corrections to be applied to the AA-rated

Ž .Frankfurt Interbank Offered Rates FIBORs in the calculation of the synthetic
bonds’ prices to take credit risk into account. The corrections are taken from
Bloomberg and are inevitably approximations. For simplicity, we apply the same
correction to all four synthetic bonds of a rating. The estimated curves are rather
insensitive to small changes in these corrections, though completely omitting them
is ill advised.

Table 4 summarises the term structure estimations for all 20 trading days of
June 1998 by averaging our evaluation statistics for goodness of fit, smoothness
and reliability. Fig. 2 graphically illustrates the SC estimation results for the first

Ž .day of our data set, June 2nd, 1998, by depicting a spot interest rate curves with
Ž . Ž .their 95% confidence intervals and spot spread curves, b residuals and c

standard errors for the estimated discount curves. Note that we estimate discount
curves and discount spread curves and that the corresponding spot curves and spot
spread curves are subsequently calculated from these estimates.

The residual scatter plots in Fig. 2b show that goodness of fit decreases with
the credit quality of the bonds. The market prices of government bonds are
reasonably approximated by the theoretical DCF prices, since all absolute devia-

Ž .tions, except one, are less than 0.25 basis points bps . The scatters for the bond
categories AAA, AA, A and BBB are more dispersed, but the absolute errors are

Table 3
Model specifications for single-curve and multi-curve models

ŽDegree and knots refer to the specification of the B-splines. FIBOR correction is the spread in basis
. Ž .points applied to Frankfurt Interbank Offered Rates FIBORs in calculating the prices of synthetic

bonds to take credit risk into account.

Single-curve Multi-curve FIBOR correction

Degree Knots Degree Knots

GOVT 3 3,9 3 3,9 y20
AAA 3 3,9 2 9 y10
AA 3 3,9 2 9 0
A 3 3,9 2 9 q10
BBB 3 5 2 5 q20
BB 3 5 2 5 q30
B 3 5 2 5 q40
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Table 4
Ž . Ž .Summary statistics of single-curve SC and multi-curve MC estimates, averaged over all 20 trading

days of June 1998
Ž .Goodness of fit is calculated as the Root Mean Squared Error RMSE of the residuals. Smoothness is

Ž 8 .measured as 10 times the integral of the square of the second derivative, and is calculated for the
Ž 4 .spot curve and the spot spread curve. Reliability is 10 times the standard error of the estimated spot

curve, evaluated at maturities 2, 5 and 10 years.

Goodness Smoothness Reliability
of fit Spot Spread 2 y 5y 10 y

GOVT SC 0.09 4.5 1.5 1.7 4.6
AAA SC 0.32 2.4 2.5 3.2 3.3 6.2

MC 0.33 2.2 0.1 2.0 2.6 5.4
AA SC 0.28 9.1 3.6 3.5 3.9 9.3

MC 0.29 4.5 0.7 2.2 2.9 7.8
A SC 0.32 23 7.5 6.2 6.5 19

MC 0.32 4.6 0.9 3.7 4.7 14
BBB SC 0.47 80 61 23 25

MC 0.52 6.8 1.5 17 19
BB SC 3.5 1049 1076 177 143 186

MC 3.8 31 131 36 30 39
B SC 5.3 689 594 209 383

MC 5.3 829 788 87 110

still smaller than 100 bps. Fitted prices for BB- and B-rated bonds are the least
accurate with the largest residuals being about 1000 bps. Similar conclusions are
drawn from the RMSE statistic in Table 4, which has the lowest value for GOVT
bonds and generally increases for lower rated bonds. Apparently, the bonds in
lower rating categories are increasingly more heterogeneous, which can be at-
tributed to relative differences in perceived default probabilities and recovery rates
of the issuers. Liquidity differences between the bonds may also contribute to the
larger dispersion of pricing errors.

The extent to which market prices can be fitted accurately, has consequences
for the reliability of the estimated curves. For the GOVT, AAA, AA and A curves,
the confidence bounds in Fig. 2a almost coincide with the spot curve, whereas for
the BBB, BB and B curves the upper and lower bounds are distinctly observable in
the graphs. Therefore, the reliability decreases with credit worthiness. The plotted
standard errors in Fig. 2c and the reliability statistics in Table 4 also show that the
estimation error increases in maturity segments that contain a small number of
bonds.

Most interesting for our purposes are the credit spread curves that can be
obtained by subtracting the estimated corporate spot curve from the estimated
government spot curve. All spot spread curves of June 2nd, 1998 in Fig. 2a have
an unrealistically twisting shape, because they have alternately positively and
negatively sloped segments. Especially the spread curves for investment-grade
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Ž . Ž . ŽFig. 2. Single-curve SC estimates for June 2nd 1998. Graphs a show estimated spot curves with
. Ž . Ž .95% confidence intervals and spot spread curves; graphs b contain residuals; graphs c display

Ž . Ž .1000 times the standard errors s.e. of estimated discount curves.

bonds display twisty behaviour. This can be explained from the relatively small
magnitude of these spreads compared to interest rate levels: spot interest rates for
classes AAA, AA, A and BBB are approximately 3.5–5.5%, whereas spot spreads
range from 0.1% to 0.6%. Therefore, small deviations in either the government or
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the corporate spot curve can result in substantial irregularities in the spread; in
other words, any dissimilarity in the curves’ curvatures implies twists in the spread
curve. These fluctuations are indeed observed in the graphs. The twisting spread
curves are not in line with the smooth spread curves that are predicted by the

Ž .theoretical bond price models of Merton 1974 and Longstaff and Schwartz
Ž .1995 . The curves also contradict the empirical research by Helwege and Turner
Ž .1999 , who found statistically significant evidence for increasing credit spreads
for both investment-grade and speculative-grade issuers. Usage of these spread
curves, e.g. for Value at Risk calculations or credit derivatives pricing, is likely to
result in erroneous outcomes.

5.3. Multi-curÕe results

In the MC model we explicitly and parsimoniously model the spread curve, so
that we hypothesise to obtain smooth spread curves. Since the model for a
corporate bond category now only has to focus on the discount spread relative to
the default-free government discount curve, together with the use of a combined
data set of government and corporate bonds, we expect the parameters to be
estimated more reliably. A consequence of the joint parameter estimation is that
the parameters of the government spline model change somewhat compared to the
SC estimates. Therefore, the government curve obtained from the MC model
differs somewhat from the SC government curve. The changes are very small,
though, and here we are only interested in the corporate curves.

Table 3 shows the specification of the degree and knots for the MC model. For
the government discount curve, we use exactly the same settings as in the SC
model, but for all corporate discount spread curves we lower the degree and for
some curves also the number of knots. Rating categories AAA, AA and A use
quadratic splines with one knot at 9 years, while the BBB, BB and B discount
spread curves are modelled as quadratic splines with one knot at 5 years. Later we
show how these specifications are found, but first we show that they indeed yield
the hypothesised favourable properties of the MC model over its SC competitor.
Note that we use the same corrections to FIBOR to value the synthetic zero-coupon
bonds as in the SC estimations, so that any bias that may be caused by using
incorrect values is equal for the SC and MC models.

Fig. 3 provides a graphical representation of the results of June 2nd, 1998 and
Table 4 again summarises the main characteristics by averaging the goodness of
fit, smoothness and reliability statistics over all 20 trading days of June 1998.

The graphs in Fig. 3a contain the estimated spot spread curves from the MC
model and, for comparison, also the SC spot spreads from Fig. 2a. For all bond
categories, there is a major improvement in the smoothness of the spread curves.
Compared to the fluctuating SC spread curves, the MC spread curves are smooth,
mostly increasing functions of time to maturity. For the longest maturities,
however, all spread curves, except for ratings AA and A, have a negatively sloped
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Ž . Ž . Ž .Fig. 3. Single-curve SC and multi-curve MC estimates for June 2nd, 1998. Graphs a show spot
Ž . Ž . Ž .spread curves with 95% confidence intervals for MC spreads ; graphs b contain residuals; graphs c

Ž . Ž .display 1000 times the standard errors s.e. of estimated discount curves.

segment; this behaviour is likely to be caused by a sampling bias as discussed in
Ž .Helwege and Turner 1999 . Table 4 adds quantitative evidence to these graphical

insights: the smoothness statistic is decimated for all rating categories, except B.
The improvements range from a factor 5 for category A to 40 for BBB-rated
bonds. Corporate spot curves, calculated as the sum of the estimated government
and spread curves, also become smoother, again with category B as the only
exception. Note that the smoothness statistics for the spot spread curves are now
much smaller than for the spot curves, confirming our prior belief in Section 3 that
spreads have a less complicated shape.
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The second advantage of the MC model over independently estimated SC
models resides in the increased reliability of the estimated corporate term struc-
tures.5Fig. 3c and Table 4 show that for all ratings and all maturities the standard
errors of MC curves are lower than those of SC curves. The reliability for the BB
and B categories improves most. For segments with a small number of bonds, such
as the interval 2010–2020 for category AAA and 2004–2006 for AA, the standard
errors become much smaller. This can be attributed to the combination of data
sets, which improves the density of the distribution of maturity dates.

Since the total number of parameters in the MC model is smaller than in the
corresponding SC models, the goodness of fit may be expected to decrease. This is
also ‘predicted’ by the familiar trade-off between flexibility and smoothness.
However, the price that we have to pay for the improvements in smoothness and
reliability is rather modest, because the RMSE statistics in Table 4 are approxi-
mately equal for the SC and MC model for all rating categories. The scatter plots
in Fig. 2b also show about the same dispersion of the residuals and do not reveal
any significant biases. Apparently, the focus on the credit spread and the joint
estimation with the default-free government curve, offset the negative effects of
the imposed parsimonious structure.

5.4. Robustness

In this section we show that the shape of the spread curve in the MC model is
relatively robust to the precise specification of the model, whereas the SC model is
more sensitive to model misspecification. Along the way, we illustrate that the
favourable properties of the MC model cannot be obtained from a parsimoniously
specified corporate SC model or from a richly specified MC model. We show
these results for the AAA-, AA- and A-curves, since for these curves we can
consider more alternative degree and knot settings.

As starting point for the specification of the discount spread curves of AAA,
AA and A in the MC model, we choose the specification of their discount curves

� 4in the SC model, i.e. a cubic spline with knot scheme 3, 9 . Subsequently, we
reduce the flexibility of the spline model by lowering the degree or the number of

Ž .knots or both . Including the initial combination, this yields 6 alternative specifi-
� 4 � 4 � 4 � 4 � 4 � 4cations: degree 3 and knots 3,9 ; 3, 3 ; 3, 9 ; 2, 3,9 ; 2, 3 and 2, 9 . The

specification for the government curve is unchanged as a cubic spline with knots
� 43, 9 . Fig. 4 shows estimated spot spread curves for the three ratings using MC
models with the six degree–knots combinations. For comparison, the figure also

5 Note that we cannot judge the change in reliability of the spread curves, because we are unable to
calculate standard errors of estimated spreads for the SC case. With SC models, the parameters of the
government and corporate term structure models are estimated independently, so that we do not get the
required covariances.
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Fig. 4. Spot spread curves estimates for June 2nd, 1998 for ratings AAA, AA and A, estimated with
Ž . w Ž .x Ž . w Ž .xsingle-curve SC models graphs a and multi-curve MC models graphs b with different degree

and knot settings.

contains spot spread curves that are calculated from independently estimated SC
models, where the specification of the GOVT discount curve is unchanged and the
AAA-, AA- and A-discount curves are specified according to one of the six
degree–knots combinations.

The bold lines in Fig. 4 depict the estimated SC and MC spreads for the first
combination. The shape of the MC spreads are just as twisty as those of the SC
models. It is therefore clear that an MC model with the same number of
parameters as an SC model, does not yield the described favourable results of a
parsimoniously specified MC model. We can smooth the spread curve by decreas-
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ing the spline degree and reducing the set of knots. We apply this idea for both the
corporate discount curves in the SC model and the corporate discount spread
curves in the MC model. The graphs in Fig. 4 reveal that the shapes of the SC spot
spread curves calculated with these new settings vary considerably. This shows
that estimating a parsimoniously specified SC model does not yield smooth and
intuitively shaped spread curves. The spread curves obtained from the MC model,
however, stiffen and are not as sensitive to different degree–knot settings.
Particularly for AA and A, there is much less variation in shape and curvature of
the curves. This robustness to model specification is a distinct advantage of the
MC model over its SC competitor.

5.5. Spread curÕe specification

To choose between the competing parsimonious MC models of the previous
section, we apply the Curve Similarity Test of Section 4. The most richly specified
MC models, i.e. with the highest degree and the largest number of knots, are used
as base case. These models are restricted by lowering the degree andror reducing
the number of knots. The null hypothesis in each CST claims that the spot spread
curve of a restricted model is equal to the curve of the largest model if evaluated
in a prespecified maturity vector. Section 4 discussed several criteria on the
dimension and the spacing of this maturity vector; one choice that satisfies these
criteria is to set the maturities at the spline knots and at maturities exactly between
these knots. For rating AAA, for example, the knots of the largest MC model are

� 4 Ž .set at 0, 3, 9, 25 including the end points , so that we specify the maturities of
� 4the CST as 1.5, 3, 6, 9, 17 . Table 5 shows the maturity vectors for the other

Table 5
Results of Curve Similarity Tests applied to spot spread curves obtained from multi-curve models with
different degree and knot settings
Maturities are the maturities in which the test statistic is evaluated; H shows the degree and knots of1

the most richly specified multi-curve model that is used as alternative hypothesis; H lists the0

restricted models and the average p-values of the test over all trading days of June 1998.

Maturities H H1 0

� 4 � 4 � 4 � 4 � 4 � 42, 3,9 3, 9 2, 9 3, 3 2, 3 2, 5

� 4AAA 1.5, 3, 6, 9, 17 3, 3,9 0.00 0.16 0.00 0.00 0.00
� 4AA 1.5, 3, 6, 9, 10 3, 3,9 0.92 1.00 0.09 0.76 0.93
� 4A 1.5, 3, 6, 9, 10.5 3, 3,9 0.37 0.87 0.07 0.85 0.49
� 4BBB 2.5, 5, 6.5 3, 5 0.07
� 4BB 2.5, 5, 8 3, 5 0.04
� 4B 2.5, 5, 7.5 3, 5 0.50
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rating classes,6 as well as the settings of the most richly specified MC model and
of the restricted MC models.

For each trading day of June 1998, we calculate the CST statistic and confront
the test statistics with critical values from a x 2-distribition to obtain 20 p-values
for each rating and model specification. The averages of these p-values are
reported in Table 5. We first consider the results of AA, a case where the CST is
indeed helpful in the specification process. All alternative degree–knot combina-

� 4tions, except degree 2 with knot 9 , yield average p-values well in excess of any
reasonable confidence level. This means that the spot spread curves corresponding
to these combinations are—on average—not significantly different from the most
richly specified MC model. In other words, these combinations result in spreads
that are just as twisting as those from the SC model of Section 5.2. The model
with degree 2 and one knot at 9, on the other hand, delivers spread curves that are
on the edge of the rejectionrnon-rejection interval with an average p-value of
0.09. In the sense of Section 4, this model strikes the optimal balance between
goodness of fit and smoothness. A similar conclusion may be drawn for ratings A,
BBB and B, whose p-values range from 0.04 to 0.07.

� 4For AAA-rated bonds, all models, except 3, 9 , are significantly different from
the largest MC model. Taking into account the very twisting nature of the spread
curve in Fig. 4b, this is hardly surprising. In this case, we feel that visual
inspection of the estimated spread curves has to take prevalence over the use of
the CST statistic. Thus, any of the four rejected degree–knots combinations may
be used and for consistency with AA and A, we choose the model with degree 2
and one knot at 9. Likewise, for rating class B we use the same settings as for
BBB and BB.

6. Conclusions

We present a new framework for the joint estimation of term structures and
credit spreads. By decomposing a corporate term structure in a default-free curve
and a credit spread curve, we can use a parsimoniously specified model for the
spread curve and take the default-free part from the government curve. Both the
government and the spread curve are modelled as B-splines and their parameters
are jointly estimated from a combined data set.

We use a data set of liquid, German mark denominated bonds, with Standard
and Poor’s ratings ranging from AAA to B. For comparison, we first indepen-
dently estimate separate single-curÕe term structure models for each of the rating

6 We also conducted the test with other maturity vectors, where all maturities were either decreased
Ž .or increased by 0.25 years. Since the results which are available on request from the authors were

about the same, the CST statistic is fairly robust to the precise choice of the maturity vector.
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classes. Spread curves that are obtained by subtracting the estimated government
and corporate curves have unrealistically twisting shapes, and we argue that this
can be attributed to the relatively small magnitude of spreads compared to interest
rates. Therefore, any dissimilarity in the curvatures of the government and
corporate curves implies twists in the spread curve.

Next we apply the proposed multi-curve model that explicitly and parsimo-
niously models the spread curve and jointly estimates it with the government
curve. We illustrate that the model yields smooth spread curves that are more in
line with the theoretical bond price models. Because the parameters are estimated
from a combined data set of government and corporate bonds, the reliability of
estimated term structures improves considerably. This effect is strongest for those
maturity segments of a term structure that contain only a small number of bonds
for that particular rating class. The ability of the multi-curve model to accurately
fit market prices of bonds is hardly affected, in spite of the smaller number of
parameters. We find that the favourable results of the model can be attributed to
both the joint and the parsimonious modelling of the spread curves. To determine
the optimal settings of the spline model for the spread curve, we use a newly
developed test statistic that allows us to compare spot spread curves that are
calculated from competing multi-curve models.

The new term structure estimation framework is valuable for each model that
requires accurately estimated term structures for different credit risk classes.
Examples are Value at Risk calculations for bond portfolios, pricing models for
corporate bonds, models that value credit derivatives and models that asses credit
risk in derivative products.
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Appendix A. B-splines

Below we give a brief description of the construction of a basis of B-splines;
Ž . Ž .see Powell 1981 for a more elaborate discussion and Steeley 1991 for an

application of B-splines to term structure estimation.
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Given nq1 knots t -t - . . . -t , the k th degree B-spline basis function0 1 n

is defined as:

sqkq1 sqkq1 1 kkB t s max tyt ,0 ,Ž . Ž .Ý Łs l
t ythss ,h/l h llss

w xwhere subscript s denotes that this B-spline is only non-zero if t is in t , t .s sqkq1
Ž .Powell 1981, p. 234 provided an efficient recurrence relation to evaluate the

spline functions,

tyt B ky1 t q t y t B ky1 tŽ . Ž . Ž . Ž .s s sqkq1 sq1kB t s ,Ž .s
t ytsqkq1 s

with start conditions,

t y t° iq1
if js iy1

t yt t ytŽ . Ž .iq1 iy1 iq1 i

1 ~ tytB t s .Ž . ij if js i
t yt t ytŽ . Ž .iq1 i iy2 i¢0 if j/ iy1, j/ i

To construct a basis, we need nqk linearly independent B-splines. Because a
wk th order B-spline is only non-zero in kq1 subintervals, within the interval t ,0

xt only nyk B-splines are defined. To construct a basis of nqk functions,n
Ž . Ž .another nqk y nyk s2k splines are required. A convenient way of choos-

�ing them so that they are also B-splines is to introduce extra knots t ; isyk,i
4 � 4 wykq1, . . . , y1 and t ; isnq1, nq2, . . . , nqk outside the interval t ,i 0

x � Ž .t . Commonly, these auxiliary knots are set as t st q i t yt ; isyk,n i 0 1 0
4 � Ž .Ž . 4ykq1, . . . , y1 and t st q iyn t yt ; isnq1, nq2, . . . , nqk .i n n ny1

� kThen we construct a basis of nqk B-splines consisting of B ; ssyk, ykqs
41, . . . , ny1 .

Appendix B. Variances and covariances

With spline estimation it is straightforward to calculate the variance of an
ˆ Ž .estimated discount factor for a specific maturity t. Since the estimate D t of thec

discount factor for maturity t is a linear combination of the parameter estimates,
we can apply the result that the variance of a linear combination aXj of a vector of

Ž .random variables j with covariance matrix cov j is given by the quadratic form:

var aXj saXcov j a.Ž . Ž .
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Hence,

Xˆ ˆvar D t sg t cov b g t ,Ž . Ž . Ž .Ž . Ž .1 1 1 1

and

Xˆ ˆ ˆvar D t s g t ,g t cov b ,b g t ,g t , cs2,3, . . . ,C.Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž . ž /c 1 c 1 c 1 c

ˆ ˆŽ . Ž . Ž .Similarly, the variance of an estimated discount spread s t sD t yD tˆ c c 1

equals:

X ˆvar s t sg t cov b g t , cs2,3, . . . ,C.Ž . Ž . Ž .Ž .ˆ Ž .c c c c

Because the spot curves and spot spread curves depend non-linearly on the
estimated parameters, their variances are not straightforwardly computed. A useful

Ž .approximation is given by the delta method Greene, 2000, p. 118 : the variance of
Ž .a function f P of j is approximated by the quadratic form:

X
Ef j Ef jŽ . Ž .

var f j f cov j . B.1Ž . Ž . Ž .Ž . ž / ž /Ej Ej

ˆŽ . Ž .The estimated spot rate r t is a function of the estimated discount factor D t ,ĉ c

ˆln D tŽ .cˆr t sf D t sy ,Ž . Ž .ˆ Ž .c 1 c t

so that its variance is approximately,

ˆy1 y1 var D tŽ .Ž .cˆvar r t f var D t s .Ž . Ž .Ž .ˆ Ž .c c 2ž / ž /ˆ ˆtD t tD tŽ . Ž . ˆc c tD tŽ .Ž .c

To construct the variance for an estimated spot spread curve,

ˆ ˆln d t qs t lnd tŽ . Ž . Ž .ˆŽ .c
s t sr t yr t sy q , B.2Ž . Ž . Ž . Ž .ˆ ˆ ˆr ,c c 1 t t

ˆ ˆwe write it explicitly as a function of the estimated parameters b and b ,1 c

X X Xˆ ˆ ˆln g t b qg t b ln g t bŽ . Ž . Ž .Ž . Ž .1 1 c c 1 1ˆ ˆs t sf b ,b sy q .Ž .ˆ ž /r ,c 2 1 c t t

Ž .Using Eq. B.1 , the variance is then approximated as:
X

Es t Es t Es t Es tŽ . Ž . Ž . Ž .ˆ ˆ ˆ ˆr ,c r ,c r ,c r ,cˆ ˆvar s t f , cov b ,b , ,Ž .Ž .ˆ ž /r ,c 1 cž / ž /ˆ ˆ ˆ ˆEb Eb Eb Eb1 c 1 c

B.3Ž .



( )P. Houweling et al.rJournal of Empirical Finance 8 2001 297–323322

where

Es t yg t g tŽ . Ž . Ž .ˆ r ,c 1 1
s q B.4aŽ .XX Xˆ ˆˆ ˆEb tg t bt g t b qg t b Ž .Ž . Ž .Ž .1 1 11 1 c c

and

Es t yg tŽ . Ž .ˆ r ,c c
s . B.4bŽ .X Xˆ ˆ ˆEb t g t b qg t bŽ . Ž .Ž .c 1 1 c c

The idea of a variance of a spot spread at a single maturity can be extended to a
full covariance matrix of a vector containing spreads for several maturities. Let

Ž . Ž .Xs t be a vector function of the maturity vector ts t , . . . , t ,where the i-thˆ r ,c 1 q
Ž Ž ..element is given by the spot spread function Eq. B.2 evaluated in maturity t .i

Ž .Then we can apply a vector version of Eq. B.1 to obtain a result similar to Eq.
Ž .B.3 :

X

Es t Es tŽ . Ž .ˆ ˆr ,c r ,c1 ˆ ˆS t scov s t f cov b ,b ,Ž . Ž .Ž .ˆ ž /c r ,c 1 cž / ž /ˆ ˆ ˆ ˆE b ,b E b ,bž / ž /1 c 1 c

ˆ ˆŽ . Ž . Ž .where Es t rE b ,b is a q= n qk qn qk matrix with the i-th rowˆ r ,c 1 c 1 1 c c
Ž . Ž .equal to Eqs. B.4a and B.4b evaluated in t .i
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