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Uses and Misuses of Measures for

Credit Rating Accuracy

Abstract
The New Basel Capital Accord will allow the determination of banks’ regulatory capital
requirements due to default probabilities which are estimated and forecasted from internal
ratings. External ratings from rating agencies play fundamental roles in capital and credit
markets. Discriminatory power of internal and external ratings is a key requirement for the
soundness of a rating system in general and for the acceptation of a bank’s internal rating
systems under Basel II. Statistics such as the area under a receiver operating characteristic
or the accuracy ratio, are widely used in practice as measures for the performance. This
note shows that such measures should only be interpreted with caution. Firstly, the out-
comes of the measures depend not only on the discrimination power of the rating system
but mainly on the structure of the portfolio under consideration. Thus, the absolute values
achieved do not measure the performance of a rating system solely. Secondly, comparisons
of the outcomes between different portfolios, different time periods or both may be mis-
leading. As a positive result we show that the value achieved by a rating system which

predicts all default probabilities correctly can not be beaten.



1 The Problem

Credit ratings from external rating agencies are widely used in practice as key indicators
for a borrower’s inherent credit risk. Within the New Basel Capital Accord banks will be
allowed to determine their regulatory capital requirements due to default probabilities
which are estimated and forecasted from internal ratings (IRB Approach). Before its ap-
proval by the supervisory authority a bank has to show that its rating system meets the re-

quirements described in §237 ff of the Consultative Document.

One key requirement for a sound rating system in general and for an internal rating in par-
ticular is to “demonstrate an ability to differentiate risk, have predictive and discriminatory
power [...] and ensure that ratings are designed to distinguish risk rather than to minimise
regulatory capital requirements™'. So far there are no explicit instructions, but in practice
many banks and rating agencies use so-called Gini curves to indicate the power of their
ratings to discriminate between “good” and “bad” credits, respective non-defaulters and
defaulters®. There are several other termini for this methodology of performance measur-
ing. For example Sobehart et al. (2000, 2001) use Cumulative Accuracy Profiles (CAPs)
and Receiver Operating Characteristics (ROCs), while Liebig/Nyberg (1999) refer to them
as Power Curves’. Also one-dimensional measures are derived from these graphical illus-
trations, such as Accuracy Ratio (AR) and Area Under a Receiver Operating Characteristic
(AUROC), in particular when two or more rating systems are compared. Rating systems

which perfectly discriminate between defaulters and non-defaulters have an AR of 100%.

! See Basel Committee on Banking Supervision (2001), §264.
* See Basel Committee on Banking Supervision (2000a), p. 38. and Blochwitz et al. (2000).
3 See Basel Committee in Banking Supervision (2000b), p. 121.



That means to each borrower who does not default a better rating has been assigned than to
each defaulter. On the other extreme a completely so-called “non-informative” rating sys-
tem has an AR of 0%. Therefore one might be tempted to postulate cut-offs such as “an
AR of x%” for ratings to qualify for the IRB Approach or to assess their discriminative

power in general.

Within this context the purpose of the present paper is to clarify some fundamental inter-
pretations on applications and frontiers of such measures. We interpret the measures within
the context of Basel I, in that we assume that each borrower exhibits an (unknown) default
probability. Firstly, we show that the AR is identical to the well established Somers’D
(1962), known for a long time as a measure of association between two ordinal variables.
Then we show that outcomes of these performance measures do not measure the discrimi-
nation ability of a rating system solely. Rather they are mainly functions of the underlying
default probabilities of the borrowers in the portfolio under consideration. Secondly, it is
then straightforward to indicate when a comparison of rating systems makes sense and
when it does not. Thirdly, as a positive result we demonstrate that a rater who predicts the
PDs of the borrowers correctly is expected to achieve the best possible value for the per-
formance measures. These findings are presented in section three. In section four a simple
example is given for undesirable results of the misuse of accuracy measures regarding the

approval of the IRB Approach in practice. Section five concludes.



2 The Model for the Default Process

We assume a discrete time hazard rate process for the random default event. The default

event occurs if the return Y,, on firm n’s assets at time ¢ hits some threshold «,,, given

that the firm did not default before ¢ (n=1,...,.N,, =1,...,T). Let ¥, ,Z*t be the indicator variable

with

£ 1 borrower n defaults at time ¢
0 else

then

Y,<a, < Y.=1 (* 1).

Furthermore let 4,;, denote the probability of default (PD), given that the firm has survived

until #—1, i.e.

Ant :P(Ynt =1‘ Y1 :O):P(Ynt Sy | Yo =0j (*2).

Thus, the realization of the random variable “default of firm » at time ¢’ is governed by its
PD if a firm has survived until # —1. Therefore 4, is the true but unknown probability of
default of firm » at time ¢z. As Hilden et al. (1978, p. 240) noted: “...[4,,] is an elusive

concept. However, given that such probabilities are thought to be conceptually well de-

fined, there can be no disagreement that they are the unknown parameters which the as-



signed probabilities serve to estimate®. This view is also consistent with the New Basel
Accord. Though a rating system itself may be designed to measure relative risk (i.e. a rank-
ing order), estimates for PDs which measure absolute risk are input quantities for the de-
termination of economic and regulatory capital requirements. Or in the words of the Basel
Committee (2000b), p. 121: “In practice, we are not able to classify firms into ‘will de-
fault’ and ‘will not default’ categories, we can only hope to estimate probabilities of de-
fault. Therefore, testing the performance of a default model means to investigate its ability

to discriminate between different levels of default risk.”

3 Properties of Performance Measures

Assume a rater who assigns ratings to all N, borrowers under consideration in a bank or a
rating agency due to his information before time ¢ (“out-of-time”). These ratings may be
ordinal rankings, metric scores or PD forecasts. Next the index “#” is skipped for conven-
ience. Then the borrowers are ordered due to their ratings which can be assumed as ordinal
numbers R; < Ry <...< Rg (K £ N) in ascending order of their default risk. The default
event is a dichotomy, so as described in Agresti (1984) the two groups, the defaulters and
the non-defaulters in the subsequent year are compared and the conditional distributions of

the ordered labels can be displayed ina 2x K table.

[*** Insert Table 1 about here ***]



7,; denote the joint probabilities of a borrower falling into category » and exhibiting rating

R; (r=0,1; j=1,....K), 7, ; denote the percentages of borrowers in the portfolio who ex-

N
hibit rating R; (/=1,...,K), and A= % z/ll- is simply the average default probability.

n=1

In practice Cumulative Accuracy Profiles (CAPs) are often used to get a visual, qualitative
assessment of the performance of rating systems (e.g. see Sobehart et al., 2000). The CAP
is a plot of the fraction of the default rate (Ordinate) which is captured by the according
fraction of borrowers (Abscissa). Borrowers are ordered in descending order of their de-

fault risk (starting with the riskiest) by their assigned Rating R ;. Exhibit 1 shows an illus-

trative CAP (dashed line) and an “ideal line” (dotted line), which would result if all de-
faulters would be arranged primarily to the non-defaulters. A so-called non-informative
rating system would result in a CAP which is identical to the 45°-diagonal. Thus, the closer
the empirical CAP is to the “ideal line” the better is the rater’s ability assessed to separate

defaulters from non-defaulters.

[*** Insert Exhibit 1 about here ***]

In order to condense the inherent information of the CAP into a one-dimensional measure

the Accuracy Ratio (AR) is calculated as the ratio of areas: AR = . An illustration of

A+ B



a CAP and AR is displayed in Exhibit 1. In our framework the AR could simply be com-

puted after some geometrical considerations as

1 1K -1
= —| 0.57 2t o —+ 057, -+
0.5(1_1 ){ +K +K-1 +K-1 7
K K ]
Z”lj Z”lj

+7Z'+K_2':T_+O.57Z'+K_2 ﬂl§—2 +...+7Z'+1 jz;_ +0.57Z'+1%—0.5

(*3).

Another measure which is often used is the Area Under a Receiver Operating Curve (AU-
ROC). As shown for example in Agresti (1984) or in Engelmann et al. (2002) the statistics
AUROC and AR are equivalent with respect to their information content. The following

relation holds

AR =2 (AUROC -0.5) (* 4).

If one has a sample of rated borrowers and realized defaults the calculated CAP, the AR
and AUROC from the empirical data are outcomes of random variables. As shown in
Engelmann et al. (2002) a sample U-statistic due to Mann-Whitney is equivalent to the
sample AUROC and is an unbiased estimator for the population AUROC. Thus in princi-
ple, using the sample data, confidence intervals for the expectation can be computed and
tests can be conducted. As we show below these expectations exhibit some special proper-

ties.



The above measures can be alternatively expressed within well-known measures of asso-

ciation, see e.g. Agresti (1984). Let Xy and X| be the column numbers of the rating of

borrowers selected randomly from the non-defaulters and the defaulters, independently

from each other. Within the default-mode framework it is interesting to check if X; tends

to be larger than X ;. Then AR can be written as

AR = P(X| > Xo)-P(X( > X})

oi 1) moi 1)
:ZZ&._J_ZZL._J

i<j7Z0+ T+ i>j7[0+ T+

(*5)

Since the denominator of the sum in (* 5) is simply A4 (1 -1 ) the AR can be rewritten as

(see the Appendix for details)

I
R=T0-7) 22,70 My = 220

i<j i>]

) 1 _)2} 222 70 F1j = 22 D oi 7 (*6)

1—[/TQ+(1—1 i<j i>j

= Somers' D

which is known as Somers’ D due to Somers (1962) if the rows are interpreted as ordered
variables. The first term in the brackets of the nominator in (* 6) is usually called the prob-

ability of concordance, the second term is called the probability of discordance.



Proposition I:
If each borrower possesses a default probability, AUROC and AR depend on the true un-

derlying PDs of the borrowers in the portfolio under consideration.

To see this, define the random variable R as the column number of the rating of a bor-
rower selected randomly from the whole distribution, write the joint probabilities in (* 5)

and (* 6) as

*7)

and insert these expressions into (* 6). The AR then becomes

AR:ﬂll_—/T) ZZP(D:O‘ E:i)-P(E:i)-P(D:l‘ R=j) PR =)

i<j

—ZZP(D=O‘ Ezi)-P(E=i)~P(D=1‘ R=j)PE=))

i>j
(* 8)
where A is the a priori average default probability. P(E = j) is simply the percentage of
borrowers who are assigned to rating R; (/=1.....K) and P(D = 1‘ R= Jj ) is the average of

the true default probabilities of all borrowers who are assigned to label R; (=1,....K). ®

10



A simple example is provided with a portfolio which consists of borrowers who exhibit

one of two PDs. Let there be 500 borrowers with a PD of 4; =1% each and 500 borrowers
with a PD of 1, =5% each and assume that the rater rates the borrowers due to their true

PDs. Then the above probabilities are

Pp=1R =1)=0.01, PlD=0F =1)=0.99
PD=1R =2)=0.05, P[D =0k =2)=0.95.
The AR is calculated as

PD=0R=1) PR = 1) Pp=1R =_2)~P(1? -2)

1-1 )

Plo=1lF=1)-P(R - 1) Plp-off - 2_) P(R=2)

_0.99-0.5 0.05-0.5 0.01-0.5 0.95-0.5
0.97 0.03 0.03 0.97

|

~ (0.344




and AUROC = 0.672. Exhibit 2 contains the values of AR for varying values of 4; (PD1)
and A, (PD2), each between 0.01% and 99% with 4; < A, . Note that the values of AR

strongly depend on the difference between the PDs and can take nearly any value between
0 and 1 — although it is always assumed that the rater knows all PDs and assigns them cor-

rectly! Moreover, in the case that all PDs in the portfolio are equal, the AR is always 0.

[*** Insert Exhibit 2 about here ***]

Two remarks on proposition 1 should be noted:

e A rater’s attainable discrimination power is predetermined by the structure of

the portfolio.

The reason for this lies in the fact that AR and AUROC are measures for the association
between ordinal responses. Although a rating may be ordinal, the true default probabilities
of the borrowers are metric and determine the outcome. A rater’s AR can only move be-
tween certain limits which are functions of properties of the portfolio which he rates rather

than functions of his personal discrimination ability solely.

¢ In addition, the measures do not indicate the riskiness of the portfolio.

A bank with a rather homogenous portfolio of high or middle quality loans may exhibit a
much lower measure than a bank with a high risk portfolio with higher dispersion of de-

fault probabilities. We will provide an example for this in section 4.

12



Proposition 2:
In general, the discrimination abilities of two raters who rate different portfolios at the

same time or the same portfolio in different periods, or both, can not be compared by AU-

ROC and AR.

To see this note that AR and AUROC are functions of the individual PDs of all borrowers
in a portfolio. If this portfolio is compared with another portfolio which differs from the
first in at least one PD then AR and AUROC will also differ in general. The same is true
for the comparison between different time periods. Even if the same borrowers are in the
portfolio, but if at least one default probability of a borrower changes, AR and AUROC

will also change despite the same discrimination ability. B

While comparisons across portfolios and across time do not seem meaningful, we now ask
for the upper limit of the outcome within the same portfolio at the same point in time for

different ranking orders. This is summarized in proposition 3.

Proposition 3:
The AUROC and AR for given PDs within a bank’s portfolio which is achieved by a rater

who knows all PDs and assigns them correctly can not be beaten.

13



Assume that a rater arranges all borrowers due to their true PDs. In this case the AR can be
transformed into the Gini coefficient which is known from standard statistic text books.

The proof is given in the Appendix. There it is shown that

= (*9)

N” —_

where x; = Zﬂ'+ ; 1s the cumulative share of borrowers and y; =

i
Z”l ; 1s the cumula-

tive proportion of the average default probability. Note that the trait is the default probabil-

ity. See for example Lee (1997) for this definition of a Gini coefficient.

Note that AR equals (1—/7 )_1 -Gini by definition only if all borrowers are correctly

ranked according to their default probabilities.
Another notation of the Gini coefficient in individual form is

- 1 2
Gini :1+W_ 7 (N M)+ (N =1) A) + o+ i(N)) (* 10)

where  A(}),..., 4() are the ordered default probabilities from the lowest to the highest. If

any two of the borrowers are ordered incorrectly, it can be easily seen that the expression

14



(* 10) becomes smaller since the term in brackets becomes larger. Hence, any deviation
from the correct ordering of the default probabilities diminishes expression (* 10) and thus

AR. Furthermore (* 10) is no longer a Gini coefficient. B

In practice, statistical tests can be employed which compare the discrimination power of
two rating systems for given sample data, see DelLong et al. (1988) or Engelmann et. al.
(2002). In statistical terms, this is a test on the equality of two (population) AUROCS.
Given two rating systems A and B, one tests if the (expected) AUROC of A is different

from the (expected) AUROC of B. The null hypothesis is

Hy: AUROC 4 — AUROCp =0 (*11)

against the alternative of inequality.

If this kind of test is conducted between different portfolios, or different time periods, or
both, then proposition 2 holds and the null is generally false by construction whether or not
the discrimination power is equally good. Thus, the discrimination power can not be as-
sessed by the test result. Only if it is guaranteed that the null is true when the discrimina-
tion power is the same for both rating systems, a meaningful test can be provided. This is
in general only the case if it is carried out within the same underlying portfolio and time

period.

15



4 Practical Impacts and Consequences for Approval of the IRB Approach

In this section some practical impacts and consequences of the preceding theoretical con-
siderations are mentioned. Although no precise guidelines for the approval of the IRB Ap-
proach are determined by the supervisors, one might have in mind postulations such as “a
rating system has to attain at least an AUROC of — say for example — 65%”. This require-
ment could be senseless, misleading and even result in converse actions as it is demon-

strated in the following simple example.

Consider a bank A with 1000 obligors, 500 with PD of 1%, the other 500 with a PD of 2%
each. Bank A could be suggested as a “bank with medium quality obligors in its portfolio™.
Suppose bank A’s rating system orders all borrowers according to their true PD (that is, a

rating system which orders all borrowers correctly due to their inherent default risk).

Therefore an AUROC N 0.585 is calculated.

Another bank B with a “low quality portfolio”, for example 500 obligors with a PD of
2.5% and 500 obligors with a PD of 20% each, achieves an AUROC 5 ~ 0.719, if bank

B’s rating system also ranked the obligors perfect according to their PD’s.

Now think of a non perfect rating system applied by bank B: 75 obligors with PD 2.5% are

classified to rating R, instead of the “correct” rating R;, and on the other hand 75 obli-

gors with a PD of 20% are falsely rated into R; instead of R, . Thus, altogether 150 out of

16



1000 Obligors are falsely rated. This non perfect rating system achieves an AU-

ROCE =~ 0.653.

Note that AUROCfB > AUROC , . This surplus is due to the structure of the portfolios,

and is not an indicator for the quality of the rating system!

Bank A fails the minimum requirement hurdle of an AUROC of 0.65, even though it uses a
perfect rating system. Bank B achieves an AUROC which exceeds the target of 0.65, even
though applying the non perfect rating system.* Therefore bank B gets the approval to use
the IRB Approach, and bank A does not, albeit bank B should be better off in discriminat-
ing since the PDs in bank B’s portfolio differ more (2.5% and 20%), whereas in bank A’s

portfolio there is very little discrepancy between the PDs (1% vs. 2%).

The situation may become even more perverse if bank A with its perfect rating system at-
tempts to pass the 0.65 hurdle. Then bank A may accommodate obligors with higher PDs
which implicitly goes along with reducing the quality of the portfolio, shifting the default
rate, and increasing risk. Starting from the existing portfolio, bank A could take in another
500 Obligors with PDs of 4% for example, in order to achieve the threshold of 0.65 for the

AUROC.

* In our example the portfolios of banks A and B distinguish in their overall default rate. Examples can be
constructed where the default rate of bank A’s and bank B’s portfolio are equal and all our statements hold as

well.



5 Conclusion

The present paper provides some guidelines for uses of measures for the discriminatory

power of credit rating systems. Three main statements were made:

— The outcomes of the performance measures strongly depend on the structure of the true
default probabilities in the underlying portfolio. Thus, the measures AR and AUROC
are not able to separate properties of the rating system from properties of the rated port-
folio. However, this is a fundamental necessary assumption for the construction of
measures designated to judge rating systems. As a consequence, their magnitudes are

not interpretable regarding the discriminatory power of the rating system.

— It follows that rating systems generally cannot be compared across time and across
portfolios. Moreover, the construction of confidence intervals and tests for the expected
values of the measures applied to different portfolios is not much more than a mathe-

matical exercise, but without significant value for practice.

— The highest measure is expected to be earned by a rating system which assesses all true

PDs correctly.

As a positive result one can conclude that comparisons of ratings at the same point in time
within one portfolio can be conducted. Then standard tests can be employed using the

methodology described in DeLong et al. (1988) or applied in Engelmann et. al. (2002).

18
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Appendix

We show that AR can be written as Somers’ D. Starting with (* 3) it results

1 TIK -1

7Z'1K MK
0,57 =+ = +057r
05(1 Z){ +K "5 7 +K-1"5 7 +K-1
K
zﬂlj 2”1/

+

=K -1 Tk —
+7Z'+K_2JT+O,57Z'+K_2 Hiz-l- ..+7Z'+1J +057Z'+IT—05:|
1 K K
:/T]—ﬂ_, 7Z'+172'11+27Z'+1 Zﬂ'lj + T T D +27Z'+2 Zﬂ'lj +...+
j=2 j=3

+ LK1k -1 T2 Kk K YLK K /1]

(* Al)

Note that 7, ; = 7 ; + 71 ;. Replacing 7z, ; in (* Al) and rearranging the terms yields to

1
AR = =——— ZZHOIITU +ZZ7T017T1] +ZZZ”11”U "‘Z”Oz”lz "‘Z”lz”lz -2 |=

| i<]j i<j i<j

1 i —
== DD IO QLD G+ D D A D, D Wi — A

il_’i_iq i<j i<j i<j

(* A2)

Now transform the last four expressions in (* A2) with some algebra:



2O QLD A Y Y M — A =

i<j i<j i<j
=Zz7f0i”1j +ZZ(7T+1' —”Oi)”lj +Zz7f1i(77+j —”0]')—2”11' =
i< i< i<j i
=ZZﬂ+iﬂ1j +Zzﬂli”+j —zzﬂliﬂoj' —Zﬂli =
i<j i<j i<j i

=7Z+1(7Z11 + 72 +...+7Z’1K)+7Z'+2(7Z'12 +...+7Z’1K)+...+7Z'+K7T1K +

t (T 4o g ) F (s b ) g g -
—[m11(mop + 73 + ...+ o )+ 2 (03 + ..+ Tk )+ -+ Tk 170K |-
TN TR A3 T T K S

=T+ 7 ot g )F A (T g g )+
+ 71k (B + g+ T g )= A~ A - g -

—[”01{(”11 + 72 +---+7T1K—1)+7T0K—1(7T11 + 72 +---+7T1K—2)+---+7f027f01]=

==, 2 70i7;

i>]j
(* A3)

Putting this result together with (* A2), we get

1
AR:m DD 0L~ DL D i (* 6)

i<j i>]

which is known as the formula for Somers’ D (Agresti, 1984, p. 167).
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We show that AR can be written in terms of Gini.

Start with:

1 Toi 71y 7Toi "7 *
AR—W ZZ 7 ZZ 7 (* 6)

i<j i>j

. ST . .
For convenience substituting — Z”ll = y; in (* 6) results in
/=1

1 K-1 K
AR == D 7i(1=y;)= D 7oivic1 |=
i i=2

1-4
(* Ad)
1 K-1 K-1 K
-7 Z”Oi - zﬂoﬂ/i - Z”Oiyi—l
i=1 i=1 i=2
i
Furthermore rewrite Zﬂ+ ; = x; and note
/=1
wo; = (% =xi_1)= A = yio1) (* A5)
Therefore
70; + o1 = (x; = xi21) = 2 Wi = i)+ (i1 = %)= 2 (i = vi) =
(* A6)

= (xi+l _xi—l)_ /T(ym _yi—l)

and the first term in (* A4) can be simplified to
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K-1 B
> moi =(xx_1—x0)-A(vk_1 - 0) (* A7)
i-1

Now turn to the second and third term. Again using (* AS5) leads to

—Iilﬂoﬂ/i - i”Oiyi—l =
= —KZ_‘,I[(xi —Xi-1 )— Z(yi —Vi-1 )]Yz - i [(xi —Xi-1 )— Z(J’i —Vi-1 )]Yi—l

1=

—_—

i=2
(* A8)

Rewriting (* A8) extensively reveals that many elements compensate each other. The re-

maining is given by

[(xoyl TX )yt XK _2VK -1 )— (xzyl TX3Yy F. XK VK] )]— /Tylyo + IJ’K)’K—I

(* A9)

Putting (* A7) and (* A9) together we get

1 —
AR :m[xK_l — X _Z(YK—I —yo)+

tXo + X1 Y2+ XK VK1 T (xzyl tX3yy +...+ XKk VK1 )—

— 1yo+ Ak VK1)
(* A10)
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Note that xy = yy =0 and xg = yg =1. Therefore we can rewrite (* A10) in a very short

form as

1 1
AR = m[g (-1 = Xivi-1 )} = mﬁini (*9)

—_
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Tables

Table 1: Contingency Table with notation for joint and marginal probabilities
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Exhibits

Exhibit 1:
Hllustration of a Cumulative Accuracy Profile (dashed line), “ideal” CAP (dotted line) and

Accuracy Ratio

Fraction of default rate

0% 50 % 100 %

Fraction of ordered borrowers
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Exhibit 2:

Values of AR for varying default probabilities, portfolio consists of two groups of borrow-

ers with 500 borrowers each

0.230
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