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Uses and Misuses of Measures for 

Credit Rating Accuracy 

 

 

Abstract 

The New Basel Capital Accord will allow the determination of banks’ regulatory capital 

requirements due to default probabilities which are estimated and forecasted from internal 

ratings. External ratings from rating agencies play fundamental roles in capital and credit 

markets. Discriminatory power of internal and external ratings is a key requirement for the 

soundness of a rating system in general and for the acceptation of a bank’s internal rating 

systems under Basel II. Statistics such as the area under a receiver operating characteristic 

or the accuracy ratio, are widely used in practice as measures for the performance. This 

note shows that such measures should only be interpreted with caution. Firstly, the out-

comes of the measures depend not only on the discrimination power of the rating system 

but mainly on the structure of the portfolio under consideration. Thus, the absolute values 

achieved do not measure the performance of a rating system solely. Secondly, comparisons 

of the outcomes between different portfolios, different time periods or both may be mis-

leading. As a positive result we show that the value achieved by a rating system which 

predicts all default probabilities correctly can not be beaten. 
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1 The Problem 

Credit ratings from external rating agencies are widely used in practice as key indicators 

for a borrower’s inherent credit risk. Within the New Basel Capital Accord banks will be 

allowed to determine their regulatory capital requirements due to default probabilities 

which are estimated and forecasted from internal ratings (IRB Approach). Before its ap-

proval by the supervisory authority a bank has to show that its rating system meets the re-

quirements described in §237 ff of the Consultative Document.  

 

One key requirement for a sound rating system in general and for an internal rating in par-

ticular is to “demonstrate an ability to differentiate risk, have predictive and discriminatory 

power […] and ensure that ratings are designed to distinguish risk rather than to minimise 

regulatory capital requirements”1. So far there are no explicit instructions, but in practice 

many banks and rating agencies use so-called Gini curves to indicate the power of their 

ratings to discriminate between “good” and “bad” credits, respective non-defaulters and 

defaulters2. There are several other termini for this methodology of performance measur-

ing. For example Sobehart et al. (2000, 2001) use Cumulative Accuracy Profiles (CAPs) 

and Receiver Operating Characteristics (ROCs), while Liebig/Nyberg (1999) refer to them 

as Power Curves3. Also one-dimensional measures are derived from these graphical illus-

trations, such as Accuracy Ratio (AR) and Area Under a Receiver Operating Characteristic 

(AUROC), in particular when two or more rating systems are compared. Rating systems 

which perfectly discriminate between defaulters and non-defaulters have an AR of 100%. 

                                                 
1 See Basel Committee on Banking Supervision (2001), §264. 
2 See Basel Committee on Banking Supervision (2000a), p. 38. and Blochwitz et al. (2000). 
3 See Basel Committee in Banking Supervision (2000b), p. 121. 
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That means to each borrower who does not default a better rating has been assigned than to 

each defaulter. On the other extreme a completely so-called “non-informative” rating sys-

tem has an AR of 0%. Therefore one might be tempted to postulate cut-offs such as “an 

AR of x%” for ratings to qualify for the IRB Approach or to assess their discriminative 

power in general.  

 

Within this context the purpose of the present paper is to clarify some fundamental inter-

pretations on applications and frontiers of such measures. We interpret the measures within 

the context of Basel II, in that we assume that each borrower exhibits an (unknown) default 

probability. Firstly, we show that the AR is identical to the well established Somers’D 

(1962), known for a long time as a measure of association between two ordinal variables. 

Then we show that outcomes of these performance measures do not measure the discrimi-

nation ability of a rating system solely. Rather they are mainly functions of the underlying 

default probabilities of the borrowers in the portfolio under consideration. Secondly, it is 

then straightforward to indicate when a comparison of rating systems makes sense and 

when it does not. Thirdly, as a positive result we demonstrate that a rater who predicts the 

PDs of the borrowers correctly is expected to achieve the best possible value for the per-

formance measures. These findings are presented in section three. In section four a simple 

example is given for undesirable results of the misuse of accuracy measures regarding the 

approval of the IRB Approach in practice. Section five concludes. 
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2 The Model for the Default Process 

We assume a discrete time hazard rate process for the random default event. The default 

event occurs if the return ntY  on firm n’s assets at time t hits some threshold ntα , given 

that the firm did not default before t (n=1,…,Nt, t=1,…,T). Let *
ntY  be the indicator variable 

with 

 

 




=
else0

 at time defaults borrower 1 tn
Ynt
*  

then  

 1=⇔≤ *
ntntnt YY α  (* 1). 

 

Furthermore let ntλ  denote the probability of default (PD), given that the firm has survived 

until 1−t , i.e.  

 

 




 =≤=





 === −− 001 11

***
ntntntntntnt YYPYYP αλ  (* 2). 

 

Thus, the realization of the random variable “default of firm n at time t” is governed by its 

PD if a firm has survived until 1−t . Therefore ntλ  is the true but unknown probability of 

default of firm n at time t. As Hilden et al. (1978, p. 240) noted: “…[ ntλ ] is an elusive 

concept. However, given that such probabilities are thought to be conceptually well de-

fined, there can be no disagreement that they are the unknown parameters which the as-
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signed probabilities serve to estimate“. This view is also consistent with the New Basel 

Accord. Though a rating system itself may be designed to measure relative risk (i.e. a rank-

ing order), estimates for PDs which measure absolute risk are input quantities for the de-

termination of economic and regulatory capital requirements. Or in the words of the Basel 

Committee (2000b), p. 121: “In practice, we are not able to classify firms into ‘will de-

fault’ and ‘will not default’ categories, we can only hope to estimate probabilities of de-

fault. Therefore, testing the performance of a default model means to investigate its ability 

to discriminate between different levels of default risk.” 

 

 

3 Properties of Performance Measures  

Assume a rater who assigns ratings to all Nt borrowers under consideration in a bank or a 

rating agency due to his information before time t (“out-of-time”). These ratings may be 

ordinal rankings, metric scores or PD forecasts. Next the index “t” is skipped for conven-

ience. Then the borrowers are ordered due to their ratings which can be assumed as ordinal 

numbers KRRR <<< ...21  ( NK ≤ ) in ascending order of their default risk. The default 

event is a dichotomy, so as described in Agresti (1984) the two groups, the defaulters and 

the non-defaulters in the subsequent year are compared and the conditional distributions of 

the ordered labels can be displayed in a K×2  table.  

 

 

[*** Insert Table 1 about here ***] 
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rjπ  denote the joint probabilities of a borrower falling into category r and exhibiting rating 

jR  (r=0,1; j=1,…,K), j+π  denote the percentages of borrowers in the portfolio who ex-

hibit rating jR  (j=1,…,K), and ∑
=

=
N

n
iN 1

1 λλ  is simply the average default probability.  

 

In practice Cumulative Accuracy Profiles (CAPs) are often used to get a visual, qualitative 

assessment of the performance of rating systems (e.g. see Sobehart et al., 2000). The CAP 

is a plot of the fraction of the default rate (Ordinate) which is captured by the according 

fraction of borrowers (Abscissa). Borrowers are ordered in descending order of their de-

fault risk (starting with the riskiest) by their assigned Rating jR . Exhibit 1 shows an illus-

trative CAP (dashed line) and an “ideal line” (dotted line), which would result if all de-

faulters would be arranged primarily to the non-defaulters. A so-called non-informative 

rating system would result in a CAP which is identical to the 45°-diagonal. Thus, the closer 

the empirical CAP is to the “ideal line” the better is the rater’s ability assessed to separate 

defaulters from non-defaulters. 

 

 

[*** Insert Exhibit 1 about here ***] 

 

 

In order to condense the inherent information of the CAP into a one-dimensional measure 

the Accuracy Ratio (AR) is calculated as the ratio of areas: 
BA

AAR
+

= . An illustration of 
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a CAP and AR is displayed in Exhibit 1. In our framework the AR could simply be com-

puted after some geometrical considerations as 
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  (* 3). 

 

Another measure which is often used is the Area Under a Receiver Operating Curve (AU-

ROC). As shown for example in Agresti (1984) or in Engelmann et al. (2002) the statistics 

AUROC and AR are equivalent with respect to their information content. The following 

relation holds 

 

 ( )502 .−= AUROCAR  (* 4). 

 

If one has a sample of rated borrowers and realized defaults the calculated CAP, the AR 

and AUROC from the empirical data are outcomes of random variables. As shown in 

Engelmann et al. (2002) a sample U-statistic due to Mann-Whitney is equivalent to the 

sample AUROC and is an unbiased estimator for the population AUROC. Thus in princi-

ple, using the sample data, confidence intervals for the expectation can be computed and 

tests can be conducted. As we show below these expectations exhibit some special proper-

ties.  
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The above measures can be alternatively expressed within well-known measures of asso-

ciation, see e.g. Agresti (1984). Let 0X  and 1X  be the column numbers of the rating of 

borrowers selected randomly from the non-defaulters and the defaulters, independently 

from each other. Within the default-mode framework it is interesting to check if 1X  tends 

to be larger than 0X . Then AR can be written as 
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Since the denominator of the sum in (* 5) is simply ( )λλ −1  the AR can be rewritten as 

(see the Appendix for details) 
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which is known as Somers’ D due to Somers (1962) if the rows are interpreted as ordered 

variables. The first term in the brackets of the nominator in (* 6) is usually called the prob-

ability of concordance, the second term is called the probability of discordance.  
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Proposition 1:  

If each borrower possesses a default probability, AUROC and AR depend on the true un-

derlying PDs of the borrowers in the portfolio under consideration. 

 

To see this, define the random variable R~  as the column number of the rating of a bor-

rower selected randomly from the whole distribution, write the joint probabilities in (* 5) 

and (* 6) as  
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and insert these expressions into (* 6). The AR then becomes 
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where λ is the a priori average default probability. ( )jRP =~  is simply the percentage of 

borrowers who are assigned to rating jR  (j=1,…,K) and ( )jRDP == ~1  is the average of 

the true default probabilities of all borrowers who are assigned to label jR  (j=1,…,K).  
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A simple example is provided with a portfolio which consists of borrowers who exhibit 

one of two PDs. Let there be 500 borrowers with a PD of =1λ 1% each and 500 borrowers 

with a PD of =2λ 5% each and assume that the rater rates the borrowers due to their true 

PDs. Then the above probabilities are  
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The AR is calculated as 
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and AUROC ≈  0.672. Exhibit 2 contains the values of AR for varying values of 1λ  (PD1) 

and 2λ  (PD2), each between 0.01% and 99% with 21 λλ ≤ . Note that the values of AR 

strongly depend on the difference between the PDs and can take nearly any value between 

0 and 1 – although it is always assumed that the rater knows all PDs and assigns them cor-

rectly! Moreover, in the case that all PDs in the portfolio are equal, the AR is always 0.  

 

 

[*** Insert Exhibit 2 about here ***] 

 

 

Two remarks on proposition 1 should be noted: 

 

• A rater’s attainable discrimination power is predetermined by the structure of 

the portfolio. 

The reason for this lies in the fact that AR and AUROC are measures for the association 

between ordinal responses. Although a rating may be ordinal, the true default probabilities 

of the borrowers are metric and determine the outcome. A rater’s AR can only move be-

tween certain limits which are functions of properties of the portfolio which he rates rather 

than functions of his personal discrimination ability solely.  

 

• In addition, the measures do not indicate the riskiness of the portfolio. 

A bank with a rather homogenous portfolio of high or middle quality loans may exhibit a 

much lower measure than a bank with a high risk portfolio with higher dispersion of de-

fault probabilities. We will provide an example for this in section 4.  
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Proposition 2:  

In general, the discrimination abilities of two raters who rate different portfolios at the 

same time or the same portfolio in different periods, or both, can not be compared by AU-

ROC and AR. 

 

To see this note that AR and AUROC are functions of the individual PDs of all borrowers 

in a portfolio. If this portfolio is compared with another portfolio which differs from the 

first in at least one PD then AR and AUROC will also differ in general. The same is true 

for the comparison between different time periods. Even if the same borrowers are in the 

portfolio, but if at least one default probability of a borrower changes, AR and AUROC 

will also change despite the same discrimination ability.  

 

While comparisons across portfolios and across time do not seem meaningful, we now ask 

for the upper limit of the outcome within the same portfolio at the same point in time for 

different ranking orders. This is summarized in proposition 3.  

 

 

Proposition 3:  

The AUROC and AR for given PDs within a bank’s portfolio which is achieved by a rater 

who knows all PDs and assigns them correctly can not be beaten.  
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Assume that a rater arranges all borrowers due to their true PDs. In this case the AR can be 

transformed into the Gini coefficient which is known from standard statistic text books. 

The proof is given in the Appendix. There it is shown that 
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1
π  is the cumulative share of borrowers and ∑
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λ

 is the cumula-

tive proportion of the average default probability. Note that the trait is the default probabil-

ity. See for example Lee (1997) for this definition of a Gini coefficient. 

 

Note that AR equals ( ) Gini1 1 ⋅− −λ  by definition only if all borrowers are correctly 

ranked according to their default probabilities.  

 

Another notation of the Gini coefficient in individual form is  

 

 ( ) ( ) ( ) ( )( )NNN
NN

Gini λλλ
λ

++−+−+= ...212
1211  (* 10) 

 

where ( )1λ ,..., ( )Nλ  are the ordered default probabilities from the lowest to the highest. If 

any two of the borrowers are ordered incorrectly, it can be easily seen that the expression 
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(* 10) becomes smaller since the term in brackets becomes larger. Hence, any deviation 

from the correct ordering of the default probabilities diminishes expression (* 10) and thus 

AR. Furthermore (* 10) is no longer a Gini coefficient.  

 

In practice, statistical tests can be employed which compare the discrimination power of 

two rating systems for given sample data, see DeLong et al. (1988) or Engelmann et. al. 

(2002). In statistical terms, this is a test on the equality of two (population) AUROCs. 

Given two rating systems A and B, one tests if the (expected) AUROC of A is different 

from the (expected) AUROC of B. The null hypothesis is  

 

 0:0 =− BA AUROCAUROCH  (* 11) 

 

against the alternative of inequality.  

 

If this kind of test is conducted between different portfolios, or different time periods, or 

both, then proposition 2 holds and the null is generally false by construction whether or not 

the discrimination power is equally good. Thus, the discrimination power can not be as-

sessed by the test result. Only if it is guaranteed that the null is true when the discrimina-

tion power is the same for both rating systems, a meaningful test can be provided. This is 

in general only the case if it is carried out within the same underlying portfolio and time 

period. 
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4 Practical Impacts and Consequences for Approval of the IRB Approach 

In this section some practical impacts and consequences of the preceding theoretical con-

siderations are mentioned. Although no precise guidelines for the approval of the IRB Ap-

proach are determined by the supervisors, one might have in mind postulations such as “a 

rating system has to attain at least an AUROC of – say for example – 65%”. This require-

ment could be senseless, misleading and even result in converse actions as it is demon-

strated in the following simple example. 

 

Consider a bank A with 1000 obligors, 500 with PD of 1%, the other 500 with a PD of 2% 

each. Bank A could be suggested as a “bank with medium quality obligors in its portfolio”. 

Suppose bank A’s rating system orders all borrowers according to their true PD (that is, a 

rating system which orders all borrowers correctly due to their inherent default risk). 

Therefore an AUROC A  ≈  0.585 is calculated. 

 

Another bank B with a “low quality portfolio”, for example 500 obligors with a PD of 

2.5% and 500 obligors with a PD of 20% each, achieves an AUROC B  ≈  0.719, if bank 

B’s rating system also ranked the obligors perfect according to their PD’s.  

 

Now think of a non perfect rating system applied by bank B: 75 obligors with PD 2.5% are 

classified to rating 2R  instead of the “correct” rating 1R , and on the other hand 75 obli-

gors with a PD of 20% are falsely rated into 1R  instead of 2R . Thus, altogether 150 out of 
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1000 Obligors are falsely rated. This non perfect rating system achieves an AU-

ROC f
B  ≈  0.653. 

 

Note that AUROC f
B  > AUROC A . This surplus is due to the structure of the portfolios, 

and is not an indicator for the quality of the rating system! 

 

Bank A fails the minimum requirement hurdle of an AUROC of 0.65, even though it uses a 

perfect rating system. Bank B achieves an AUROC which exceeds the target of 0.65, even 

though applying the non perfect rating system.4 Therefore bank B gets the approval to use 

the IRB Approach, and bank A does not, albeit bank B should be better off in discriminat-

ing since the PDs in bank B’s portfolio differ more (2.5% and 20%), whereas in bank A’s 

portfolio there is very little discrepancy between the PDs (1% vs. 2%). 

 

The situation may become even more perverse if bank A with its perfect rating system at-

tempts to pass the 0.65 hurdle. Then bank A may accommodate obligors with higher PDs 

which implicitly goes along with reducing the quality of the portfolio, shifting the default 

rate, and increasing risk. Starting from the existing portfolio, bank A could take in another 

500 Obligors with PDs of 4% for example, in order to achieve the threshold of 0.65 for the 

AUROC. 

                                                 
4 In our example the portfolios of banks A and B distinguish in their overall default rate. Examples can be 

constructed where the default rate of bank A’s and bank B’s portfolio are equal and all our statements hold as 

well. 
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5 Conclusion 

The present paper provides some guidelines for uses of measures for the discriminatory 

power of credit rating systems. Three main statements were made: 

 

→ The outcomes of the performance measures strongly depend on the structure of the true 

default probabilities in the underlying portfolio. Thus, the measures AR and AUROC 

are not able to separate properties of the rating system from properties of the rated port-

folio. However, this is a fundamental necessary assumption for the construction of 

measures designated to judge rating systems. As a consequence, their magnitudes are 

not interpretable regarding the discriminatory power of the rating system. 

→ It follows that rating systems generally cannot be compared across time and across 

portfolios. Moreover, the construction of confidence intervals and tests for the expected 

values of the measures applied to different portfolios is not much more than a mathe-

matical exercise, but without significant value for practice. 

→ The highest measure is expected to be earned by a rating system which assesses all true 

PDs correctly. 

 

As a positive result one can conclude that comparisons of ratings at the same point in time 

within one portfolio can be conducted. Then standard tests can be employed using the 

methodology described in DeLong et al. (1988) or applied in Engelmann et. al. (2002).  
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Appendix 

We show that AR can be written as Somers’ D. Starting with (* 3) it results 
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Note that jjj 10 πππ +=+ . Replacing j+π  in (* A1) and rearranging the terms yields to  

 

( )

( ) 










−+++

−
=

=











−++++

−
=

∑∑∑∑∑∑∑∑

∑∑∑∑∑∑∑∑

<≤≤<

<<<

λππππππππ
λλ

λππππππππππ
λλ

i j
ji

i j
ji

i j
ji

i j
ji

i
ii

i
ii

i j
ji

i j
ji

i j
jiAR

11111010

1110111010

1
1

2
1
1

 

(* A2) 

Now transform the last four expressions in (* A2) with some algebra:  
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(* A3) 

Putting this result together with (* A2), we get 
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which is known as the formula for Somers’ D (Agresti, 1984, p. 167). 
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We show that AR can be written in terms of Gini.  

Start with: 
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For convenience substituting i
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Furthermore rewrite i
i

l
l x=∑

=
+

1
π  and note 
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Therefore 
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and the first term in (* A4) can be simplified to 
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Now turn to the second and third term. Again using (* A5) leads to  
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  (* A8) 

 

Rewriting (* A8) extensively reveals that many elements compensate each other. The re-

maining is given by 
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Putting (* A7) and (* A9) together we get 
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Note that 000 == yx  and 1== KK yx . Therefore we can rewrite (* A10) in a very short 

form as  
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Tables 

 

Table 1: Contingency Table with notation for joint and marginal probabilities 

 1R  … KR   

0=D  01π  … K0π  λπ −=+ 10  

1=D  11π  … K1π  λπ =+1  

 1+π  … K+π  1 
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Exhibits 

 

Exhibit 1: 

Illustration of a Cumulative Accuracy Profile (dashed line), “ideal” CAP (dotted line) and 

 Accuracy Ratio  
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Exhibit 2:  

Values of AR for varying default probabilities; portfolio consists of two groups of borrow-

ers with 500 borrowers each 

 


