A. Course Description
This course is designed for MS and Ph.D. students that has learned the basic environmental courses, such as organic chemistry, chemical reaction, environmental chemistry, environmental toxicology, environmental microbiology and other related courses.
This course will focus on the environmental molecular science, especially the phase interaction. Fate and reaction of trace recalcitrant toxic chemicals in the environments will be emphasized. Topics selected in this course include adsorption/partition, photolysis, chemical transformation, and biological reaction.
B. Text Books
1. Hemond, H. F. and Fechner, E. J. Chemical Fate and Transport in the Environment. Academic Press.2nd ed.
2. Handout
C. References
Reference books
1. Schwarzenbach, R. P., Gschwend, P. M. and Imboden, D. M. "Environmental
Organic Chemistry", John Wiley & Sons, 1993.
2. Lymn, W. J., Reehl, W. F. and Rosenbatt, D. H. "Handbook of Chemical
Property Estimation Methods", American Chemistry Society, Washington, DC, 1990
3.Larson, R. A. and Weber, E. J. "Reaction Mechanisms in Environmental
Organic Chemistry", CRC Press, Inc., 1994.
Journal papers
1. Basic concept
(1) Miller, C. T and Weber, W. J., Jr. Modeling organic contaminant
partitioning in ground-water systems. Ground Water, 22(5), 584-592, 1984.
(2) Mackay D. M., Roberts, P. V. and Cherry, J. A. Transport of organic
contaminants in groundwater. Environ. Sci. Technol., 19(5), 384-392, 1985.
(3) McCarty, J. F. and Zachara, J. M. Subsurface transport of contaminants.
Environ. Sci. Technol., 23(5), 496-502, 1989.
(4) Nirmalakhandan, N. and Speech, R. E., Structure-activity relationships.
Environ. Sci. Technol., 22(6), 606-615, 1988.
(5) Willett, K. L., Ulrich, E. M. and Hites, R. A. Differential toxicity and
environmental fates hexachlorocyclohexane isomers. Environ. Sci. Technol., 32(15), 2197-2207, 1998.
(6) Alexander, M. How toxic are toxic chemicals in soil? Environ. Sci. Technol.,
29(11), 2713-1717, 1995.
2. Partition
(1) Chiou, C. T., " Adsorption and partition of organic pollutants and pesticide
s on soils". In "Encyclopedia of Environmental Analysis and Remediation",
Meyers R. A. ed. John Wiley and Sons, New York, 1998.
(2) Pignatello, J. A. Soil organic matter as a nanoporous sorbent of organic
pollutants. Advances in Colloid and Interface Surface, 76-77, 445-467, 1998.
(3) Haitzer, M., Hoss, S., Traunspurger, W. and Steinberg, C. Effect of dissolved
organic matter (DOM) on the bioconcentration of organic chemicals in aquatic
organisms- a review. Chemosphere, 37(7), 1335-1362, 1998.
(4) Luthy, R. G., Aiken, G. R., Brusseau, M. L., Cunningham, S. D., Gschwend, P.
M., Pignatello, J. J., Reinhard, M., Traina, S. J., Weber, W. J. Jr. and
Westall, J. C. Sequestration of hydrophobic organic contaminants by geosorbents.
Environ. Sci. Technol., 31(12), 3341-3347, 1997.
(5) Pignatello, J. J. and Xing, B. Mechanisms of slow sorption of organic
chemicals to natural particles. Environ. Sci. Technol., 30(1), 1-11, 1996.
3. Adsorption
(1) Jackson, G. A. and Burd, A. B. Aggregation in the marine environment.
Environ. Sci. Technol., 32(19), 2805-2814, 1998.
(2) Sposito, G. On points of zero charge, Environ. Sci. Technol., 32(19),
2815-2819.
(3) Kraepiel, A. M. L., Keller, K. and Morel, F. M. M. On the acid-base
chemistry of permanently charged minerals. Environ. Sci. Technol., 32(19),
2829-2838, 1998.
(4) Gararini, D. R. and Lion, L. W. influence of the natural soil organics on
the sorption of toluene and trichloroethylene. Environ. Sci. Technol., 20(12),
1263-1269, 1986.
(5) Remacle, J. The removal of dissolved toxic metals by microorganisms.
8th Internal. Biotechnol. Symposium, Paris, 1187-1197, 1988.
(6) Kratochvil, D. and Volesky, B. Advances in the biosorption of heavy metals.
Trends in Biotechnology, 16(7), 291-300, 1998.
4. Photocatalytic degradation
(1) Ollis, D. F. Contaminant degradation in water. Environ. Sci. Technol.,
19(6), 480-484, 1985.
(2) Fax, M. A. and Dulay M. T. Heterogeneous Photocatalysis. Chem. Rev. 1993,
93, 341-357.
(3) Mills, A., Davies, R. H. and Worsley, D. Water purification by semiconductor
photocatalysis. Chem. Soc. Rev. 1993, 417-425.
(4) Dieckmann, M. A. and Gray K. A. A comparison of the degradation of
4-nitrophenol via direct and sensitized photocatalysis in TiO2 slurries.
Wat. Res., 30(5), 1169-1183, 1996.
5. Biodegradation/biotransformation
(1) Kobayashi, H. and Rittmann, B. E. Microbial removal of hazardous organic
compounds. Environ. Sci. Technol., 16(3), 170A-183A, 1982.
(2) Simkins, S. and Alexander, M. Models for mineralization kinetics with the
variables of substrate concentration and population density. Appl. Environ.
Microbiol., 47(6), 1299-1306, 1984
(3) Schmidt, S. K., Simkins, S. and Alexander, M. Models for the kinetics of
biodegradation of organic compounds not supporting growth. Appl. Environ.
Microbiol., 50, 323-331, 1985.
(4) Alexander, M. Biodegradation of organic chemicals. Environ. Sci. Technol.,
18(2), 106-111, 1985.
(5) Berry, D. F., Francis, A. J. and Bollag, J. M. Microbial metabolism of
homocyclic and heterocyclic aromatic compounds under anaerobic condition.
Microbiol. Rev., 51(1), 43-59, 1987.
(6) Evans, W. C. and Fuchs, G. Anaerobic degradation of aromatic compounds,
Ann. Rev. Microbiol. 42, 289-317, 1988.
(7) Alexander, M. Research needs in bioremediation. Environ. Sci. Technol.,
25(12), 1972-1973, 1991.
(8) Rittmann, B. E., Smets, B. E. and Stahl D. A. The role of genes in
biological processes. Environ. Sci. Technol., 24(1), 23-29, 1990.
(9) Olson, B. H. Tracking and using genes in the environment. Environ. Sci.
Technol., 25(4), 604-611, 1991.
(10) Kumar, S., Mukerji, K. G. and Lal, R. Molecular aspects of pesticide
degradation by microorganisms. Critical Rev. in Microbiol. 22(1), 1-26, 1996.
6. Chemical transformation
(1) Vogel, T. M., Criddle, C. S. and McCarty, P. L. Transformations of
halogenated aliphatic compounds. Environ. Sci. Technol., 21(8), 722-736.
(2) Assah-anid, N., Haytes, K. F. and Vogel T. M. Reductive dechlorination of
carbopn tetrachloride by cobalamin (II) in the presence of dithiothreitol:
mechanistic study, effect of redox potential and pH. Environ. Sci. Technol.,
28(2), 246-252, 1994.
(3) Matheson, L. J. and Tratnyek, P. G. Reductive dehalogenation of chlorinated
methanes by iron metal. Environ. Sci. Technol., 28(12), 2045-2053, 1994.
(4) Anderson, T. A., Guthrie, E. A. and Walton, B. A. Bioremedation in the
rhizosphere. Environ. Sci. Technol., 27(13), 2630-2636, 1993.
(5) Acar, Y. B. and Alshawabkeh, A. N. Principles of electrokinetic
remediation. Environ. Sci. Technol., 27(13), 2638-2647.
(6) West, C. C. and Harwell, J. H. Surfactants and subsurface remediation.
Environ. Sci. Technol., 26(12), 2324-2330, 1992.
7. Environmental analysis/monitoring
(1) Meulenbegr, E. P., Mulder, W. H. and Stoks, P. G. Immunoassays for
pesticides. Environ. Sci. Technol., 29(3), 553-561, 1995.
(2) Luque de Castro, M. D. and Garcia-Ayuso L. E. Soxhlet extraction of solid
materials: an outdated technique with a promising innovative future. Analytica
Chimica Acta, 369, 1-10, 1998.
(3) Zuloaga, O., Etxebarria, N., Fernandez, L. A. and madariaga, J. M.
Comparison of accelerated solvent extraction with microwave-assisted extraction
and Soxhlet for the extraction of chlorinated biphenyls in the soil samples.
Trends in Ana. Chem. 17(10), 642-647, 1998.
(4) Steinberg, S. M., Poziomek, E. J., Engelmann, W. H. and Rogers, K. R.
A review of environmental applications of bioluminescence measurements.
Chemosphere, 30(11), 2155-2197, 1995.
(5) Keay, p. J. and Wang, Y. Application of flow injection analysis to
analytical biotechnology, Trends in Biotechnology, 15(2), 76-81, 1997.
(6) Luong, J. H. T., Bouvrette, P. and Male, K. B. Developments and
applications of biosensors in food analysis. Trends in Biotechnology, 15,
369-377, 1997.
(7) Rogers, K. R. Biosensors for environmental applications. Biosensors and
Bioelectronics, 10, 533-541, 1995.
(8) Decaprio, A. P. Biomarkers: coming of age for environmental health and
risk assessment. Environ. Sci. Technol., 31(7), 1837-1848, 1997.
(9) Roger, K. R. and Gerlach, C. L. Environmental biosensors: a status report.
Environ. Sci. Technol., 30(11), 486A-491A, 1997.
(10) Ligor, M and Buszewski, B. Solid Phase Microextraction as a method for
preparing environmental samples. J. Environ. Studies. 6(5), 5-12, 1997.
(11) Dean, J. R. Extraction of polycyclic aromatic hydrocarbons from environmental
matrices: practical considerations for supercritical fluid extraction. Analyst, 121, 85R-89R, 1996.
D. Teaching Method
Powerpoint files
E. Syllabus
1. Introduction to fate of contaminants.
2. Partition and sorption.
3. biodegradation and biotransformation.
4. photodegradation.
5. chemical transformation
6. Environmental analysis/monitoring
F. Evaluation)
1. oral presentation. 40 %
2. Term paper. 40 %
3. Homework. 20 %
|