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We investigate the propagation of optical solitons interacting with linear defects in the medium. We
show that solitons exhibit a wave-particle dualism versus power, i.e., depending on the relative size of
soliton and defect, responsible for a soliton trajectory dependent on its waist. © 2011 Optical Society of
America
OCIS codes: 190.0190, 190.6135, 260.5950, 260.2710.

The parallelism between optics and other areas of phys-
ics has been addressed in several cases, including fluid
dynamics [1], nonrelativistic [2] and relativistic quantum
mechanics [3], general relativity [4], solid state [5] and
condensed matter physics [6]. In optics, an important
role is played by solitons, i.e., optical wave packets
undergoing transverse confinement via nonlinear effects
in time or space [7]. Spatial [8] and temporal [9] solitons
were first discussed in pure Kerr media, but their exis-
tence and features were later investigated both experi-
mentally and theoretically in materials encompassing
various light-matter nonlinear interactions [7,10,11].
Fundamental solitons often behave in a particlelike
fashion: their transverse field distribution is strongly
peaked in space/time, they are robust to external pertur-
bations and survive as independent entities to a large set
of collisions. Therefore, solitary wave packets are an
ideal bench for investigating the wave-particle duality
in a macroscopic scale [12–14]. Soliton interactions with
inhomogeneities have been studied with reference to
both longitudinally infinite [15–17] and pointlike defects
[18] in refractive index, as well as to pointlike perturba-
tions in nonlinearity [18,19], at the interface between two
nonlinear media [20,21] and across a linear potential bar-
rier [22,23]. In this Letter we try to elucidate the dual nat-
ure of self-trapped optical wave packets by investigating
the interaction of solitons with localized perturbations
(defects) in an otherwise uniform linear refractive index
environment, showing their transition from particle to
wavelike as the defect remains nearly uniform or varies
appreciably across the soliton profile, respectively.
We look for solutions of the well-known one-

dimensional nonlinear Schrödinger equation (NLSE) gov-
erning the nonlinear paraxial propagation of light in the
form of temporal pulses in fibers or of beams in planar
guides. Hereafter, we focus on the latter case, but all the
results remain valid in both cases. We assume a linear
index defect nL (x=wp, z) (wp is its width along x) super-
posed to an isotropic Kerr medium with background in-
dex n0 and intensity-dependent coefficient n2. For an
electric field of amplitude A, the effective potential
VeffðX; ZÞ ¼ −½n2

LðX; ZÞ þ 2n0nLðX; ZÞ�, and the vacuum
wavenumber k0 ¼ 2π=λ (λ is the vacuum wavelength),
light propagation in the scalar approximation is governed
by the modified NLSE

i
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A the normalized field, Z ¼
z=Ld and X ¼ x=wp the dimensionless coordinates
with Ld ¼ k0w2

pn0. We consider solutions of Eq. (1)
when the input is a soliton propagating along Z, i.e.,
uðX; Z ¼ 0Þ ¼ u0sechðu0XÞ. In the limit nL ≪ n0,
Veff ≈ −2n0nL. Defining the normalized intensity
ψ ¼ juj2= R juj2dX , the beam position hXi ¼ R

ψXdX is
known to satisfy the Ehrenfest’s theorem [12]

d2hXi
dZ2 ¼ −p

Z
ψ ∂Veff

∂X
dX: ð2Þ

Expressing Veff in a power series and setting

WmðhXiÞ ¼ − 1
m!

∂mþ1V eff

∂Xmþ1 jX¼hXi, Eq. (2) becomes

d2hXi
dZ2 ¼ p

X∞
m¼0

WmðhXiÞhymiψ ; ð3Þ

with y ¼ X − hXi and hymiψ ¼ R
ψymdX .

Equation (3) determines the effect of the linear defect
on soliton trajectory. If the soliton is much narrower than
wp (i.e., high power), the term W0 is the dominant con-
tribution to the force acting on the beam; hence, the
soliton path changes according to geometrical optics.
Moreover, due to the small difference in defect-induced
phase delay between left and right wings of its profile,
the soliton approximately retains its shape, despite the
defect extension along Z. When the soliton waist in-
creases and becomes comparable towp (i.e., low power),
higher order terms in Eq. (3) yield nonnegligible contri-
butions to the force and the soliton path depends on its
transverse profile. Owing to the large transverse phase
modulation induced on the self-confined beam, the latter
will take a multihump profile, even within the defect in
the case of extended perturbations in Z, eventually gen-
erating a fan of self-localized waves [24]. Thus, at high
power the soliton motion is governed by Newton’s laws,
i.e., it is particlelike, whereas at low excitation the soliton
dynamics is ruled by wave mechanics. In summary,
we expect solitons to undergo a power-dependent transi-
tion from particle- to wavelike as they interact with a
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localized defect. Remarkably, such a qualitative state-
ment holds valid for any cubic nonlinearity, including
saturable [1] and nonlocal responses [21].
Let us take 2pn0nLðX; ZÞ ¼ Δ expð−X2lÞrectdðZ − Z0Þ,

with Δ=ðk20w2
pn0Þ the jump in linear index, d the defect

length along Z, and l a positive integer describing the
abruptness of head and tail in nLðX; ZÞ. Hereby we take
l ¼ 2 (see Fig. 1), leaving other cases to a future extended
publication.
From Eq. (2), the 1=u0 force acting on a narrow soliton

is maximum when the beam is centered on the largest
gradient in nLðXÞ [Figs. 1(a) and 1(b)], i.e., jhXij ≈ 1 in
our case (the lines in Fig. 1 are graphed for hXi > 0,
as nL is symmetric across X ¼ 0). For broad solitons
the peak force decreases and moves toward larger hXi
[Fig. 1(b)], as the soliton is wide enough to overlap
significantly with both maxima in j∂nL=∂X j [Fig. 1(a)].
Figure 1(c) plots the force versus soliton position hXi
in three regimes: for solitons much narrower than
∂nL=∂X , the force given by Eq. (3) is well approximated
by the W 0 term only [bottom curve in Fig. 1(c), the
dashed curve perfectly overlaps with the solid one],
whereas for wider solitons the terms depending on W2
and Wm with m > 2 become nonnegligible [middle and
top curves in Fig. 1(c), respectively].

To confirm our results, we integrated Eq. (1) with a
standard beam propagation method (BPM) code, using
a soliton input of the form u0sech½u0ðX − hXi0Þ�, with a
nonzero linear index defect nLðX; ZÞ in a narrow region
ranging from Z ¼ 2 to Z ¼ 2:5, i.e., d ¼ 0:5 and Z0 ¼ 2:25.
We studied soliton dynamics for various amplitudes u0 by
varying the initial beam position hXi0 as well as the
heightΔ of the defect potential. As predicted, by increas-
ing u0 (i.e., decreasing the soliton waist), the beam inter-
acting with the defect undergoes a behavior transition
from wavelike to particlelike. In fact, for 1=u0 compar-
able with 1, i.e., broad solitons, the profile is strongly
phase modulated and exhibits a distinct interference
pattern with fringes; their number (shown for Z ¼ 20
in Fig. 2) increases with the size of the potential. Note-
worthy, after the interaction region each fringe under-
goes self-focusing, the main peak always turning into a
soliton generally noncollinear with z and wider than
the input owing to the power fraction channeled in other
fringes or radiated away [24]. Increasing the power, the
soliton behaves as a particle, retaining its bell-shaped
profile even after collision with the defect due to the
small gradient in the impressed phase (inset in Fig. 2).
Figure 3 shows transverse profiles in XZ for Δ ¼ −1:
at low power (wave behavior), the formation of fringes
due to the nL-induced phase modulation is apparent; at
higher power, in agreement with inverse scattering [7,19],
small breathing oscillations arise in soliton evolution,
which eventually disappear at large powers (particle
behavior). When hXi0 ¼ 0 (first row in Fig. 3) the soliton
does not undergo any deflection in agreement with
Eq. (2) (for large perturbations it splits into two sym-
metric beams [19]), whereas for hXi0 ≠ 0 (second row in
Fig. 3) the soliton is pushed sideways and steered in
angle. To quantify the soliton angular deviation, we
considered five input positions for the beam and plotted
the computed results for γ ¼ arctan½ðhXi − hXi0Þ=Z� (the
propagation angle θ in the physical environment reads
θ ¼ arctan½tan γ=ðk0n0wpÞ�) versus power in Fig. 4. The
angle γ depends on both the input beam position hXi0
and the height Δ of the potential, in agreement with
Eq. (3). γ initially increases with power, but then de-
creases or saturates depending on hXi0. These results
perfectly agree with Fig. 1(b): for hXi0 close to the peak

Fig. 1. (Color online) (a) Soliton profiles for u0 ¼ 1 (blue solid
curve), nL (red dashes), and ∂nL=∂X (dashed-dotted black
curve) versus X . (b) Force acting on soliton versus hXi and
1=u0 computed from Eq. (2). (c) Force versus soliton position
hXi (solid and dashed curves correspond to all terms and terms
up to m ¼ 2 in Eq. (3), respectively) for soliton widths
1=u0 ¼ 0:01, 0.17 and 0.37, with narrower soliton corresponding
to larger forces (in modulus). Here Δ ¼ 1.

Fig. 2. (Color online) Number of interference fringes in the
soliton profile versus input for Δ ¼ −1 (blue stars), −2 (green
squares), −3 (red crosses) for hXi0 ¼ 2. The insets show the cor-
responding profiles at Z ¼ 20 for u0 ¼ 0:1 (left) and 2.5 (right),
respectively.

Fig. 3. (Color online) Evolution in XZ for various input
powers (legends) and beam positions hXi0 ¼ 0 (first row)
and hXi0 ¼ 0:5 (second row), with Δ ¼ −1. The white rectan-
gles indicate the defect location.
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of the index gradient (in modulus), the force monotoni-
cally grows with u0 (power), whereas a relative maxi-
mum occurs as the soliton moves away from this point
in either direction. Remarkably, for a given u0 the effec-
tive (transverse) force is invariant with propagation dis-
tance within a short defect due to the nonspreading
nature of solitons, or it can be computed at a fixed
abscissa in Fig. 1(b) if variations of transverse beam
position hXi within the defect are not negligible.
In conclusion, we investigated the interaction between

solitons and localized linear defects, elucidating the dual
nature of self-trapped waves: solitons behave like waves
or particles depending on their own power.
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Fig. 4. (Color online) Soliton deflection versus power for
hXi0 ¼ 0 (blue stars), 0.5 (black crosses), 1 (magenta circles),
1.5 (green squares), 2 (red diamonds) andΔ ¼ −1 (solid curve),
−2 (dashed curve), −3 (dash-dots).
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