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We show the possibility to generate bright and dark optical solitons based on bound-to-bound intersubband
transitions in an asymmetric three-coupled quantum well structure. By presenting the concept of detuning
management, we show that the bright optical soliton can evolve into a dark one by adiabatically changing the
corresponding one- and two-photon detunings. With adjustable carrier frequencies within the terahertz regime,
we also demonstrate numerically shape-recovered collisions of two solitons in our proposed quantum wells.
The present investigation may provide research opportunities in nonlinear optical experiments and may have
impact on the technology for the design of semiconductor devices.
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I. INTRODUCTION

Solitons refer to a special kind of waves that can propa-
gate undistorted over a long distance and remain unaffected
after the collision with each other. Solitons have been ob-
served in many fields of physics �1–10�, such as optical fi-
bers �2� and cold-atom media �3–9�. Solitons in the optical
domain are of special interests because of their potential ap-
plications in the information processing and communication.
On the other hand, optical transitions between electronic
states within the conduction bands of semiconductor quan-
tum wells have proved to be a promising candidate for the
realization of optical devices and solid quantum information
sciences �11�, and large number of efforts has been devoted
to the investigations of both linear and nonlinear optical
properties in quantum wells.

Due to strong electron-electron interactions, the two-
dimensional electron gas behaves effectively as a single os-
cillator, with atomiclike intersubband transition �ISBT� re-
sponses �11�. In these solid-state systems, the large intrinsic
dipole matrix elements may give rise to a fast Rabi oscilla-
tion in the time domain, which allow coherent processes to
occur on the time scales shorter than the typical ISBT dipole
dephasing time. Moreover, the ISBT energies and electron
wave-function symmetries can be engineered. Due to this
unique flexibility, which can be hardly found in other sys-
tems, a large number of theoretical schemes have been pro-
posed and some experimental realizations have been re-
ported, such as gain without inversion �12–15�, coherently
controlled photocurrent generation �16�, electromagnetically
induced transparency �17�, slow light �18�, quantum interfer-
ence and coherence �19–22�, optical bistability �23�, and
solitons �24�. More recently, we have also studied the slow
optical soliton formations based on the Fano interference
with a three-level system of electronic subbands in an asym-
metric double quantum well �GaAs/AlGaAs� structure, in
which the interference between the absorption paths through
two resonances to the continuum leads to a linear rapidly
varying refractive index change with a reduction in the group
velocity �25�.

In the soliton community, it is well known that soliton
management plays a crucial role in the control of their dy-
namics and interactions �26�. During the past 10 years, there
have been intensive developments in the soliton manage-
ment, such as the dispersion management in optical fiber
solitons to suppress the Gordon-Haus effect �27,28�, the non-
linear management to provide the compensation of the non-
linear phase shift in soliton fiber lasers �29�, and the
Feshbach-resonance management to stabilize matter-wave
solitons in Bose-Einstein condensates �30�. Here due to the
unique flexibility of coupled quantum wells, we present a
totally different soliton management scheme, coined as de-
tuning management, in our proposed soliton systems by
changing the one- and two-photon detuning frequencies with
a given function of time. In our scheme, we can easily dem-
onstrate that the bright soliton can evolve into a dark soliton
by adiabatically changing the one- and two-photon detunings
�1 and �2. In fact, these two detunings can vary in a wide
range, which in experiments can be controlled by adjusting
the height or width of the barrier through the bias voltage
�31�.

This work is organized as follows. We first show the ex-
istence of optical solitons based on bound-to-bound ISBT in
an asymmetric three-coupled quantum well �TCQW� struc-
ture. For this purpose, we consider a four-subband cascade
configuration by applying a pulsed probe field and two con-
tinuous wave �cw� control laser fields and demonstrate both
analytically and numerically that optical solitons can be in-
deed formed in this TCQW system under appropriate condi-
tions. The formation of optical solitons is mainly a result of
the balance between the Kerr nonlinearity induced by the
two cw control fields and the dispersion of our proposed
system. Subsequently, we study the stability of solitons and
show that a robust recovery of shapes occurs after solitons
collision. To further confirm the optical soliton obtained and
check their stability, we also perform additional numerical
simulations starting directly from the density-matrix method
without using any approximation. With controllable reso-
nance frequencies, we present the concept of detuning man-
agement for optical solitons in coupled quantum wells. Un-
like other soliton managements, such as those in optical
fibers and ultracold atomic systems, the adiabatic condition
to evolve a bright optical soliton into a dark one is given. We*wenxingyang2@126.com
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also show that in our TCQW scheme the carrier frequencies
are adjustable in the ranges of the terahertz frequencies,
which should be important for chemical detections and bio-
logical and medical imaging applications.

II. MASTER EQUATIONS AND LINEAR DYNAMICS OF
THE MODEL

We consider an asymmetric semiconductor quantum well
structure with four energy levels that forms the well-known
cascade configuration �11,32�, as shown in Fig. 1, where all
possible transitions are dipole allowed. �21, �32, and �43
present the energy differences of �1�↔ �2�, �2�↔ �3�, and
�3�↔ �4�, respectively. Such structures have been already
studied for high-order nonlinear optical properties �32�. As
an example, our TCQW samples can consist of 40 coupled-
well periods with the material Al0.48In0.52As /Ga0.47In0.53As
grown by the molecular-beam epitaxy lattice matched to a
semi-insulating �100� InP substrate and separated from each
other by a 150-Å undoped AlInAs barrier. Only the thickest
wells are n-type doped with silicon in the structures
�1�1018 cm−3�. Undoped 100-Å GaInAs spacer layers
separate the multiquantum well structure from n+

4000-Å-thick GaInAs contact layers. The layer thicknesses
can be verified by a transmission electron microscopy. Com-
pared with AlGaAs/GaAs quantum well structures, our struc-
ture has a number of advantages for which concerns the
physics of intersubband transitions: �i� the effective mass in
the barrier material �AlInAs� is significantly smaller than that
in the high Al concentration compositions of AlGaAs. The
latter one is required to confine four equally spaced bound
states, so that the coupling barrier does not need to be prob-
lematically thin ��10 Å� and �ii� the electron effective mass
in GaInAs has the advantage of larger dipole matrix elements

for the same intersubband transition energies. The sample
considered here can be designed to have the energy
levels as �1=151 meV, �2=270 meV, �3=386 meV, and
�4=506 meV, respectively �33�. As shown in Fig. 1�c�, all
the lights propagate along the z axis �parallel to the plane of
the TCQW� within our TCQW sample, and we consider a
transverse magnetically �TM� polarized probe field incident
with respect to the growth direction �y axis�. This configura-
tion is preferred due to a relatively long propagation dis-
tance, on the order of millimeters, to observe the soliton
formation. The electric field of the system can be written

as E� =e�pEp exp�−i�pt+ ik�p ·r��+e�cEc exp�−i�ct+ ik�c ·r��
+e�bEb exp�−i�bt+ ik�b ·r��+c.c., where e� j and k� j are the related
unit vector of the field and the wave vector with the slowly
varying envelope Ej, respectively.

In the present analysis we assume that the semiconductor
quantum wells with low dopings are designed such that
electron-electron effects have very small influences in our
results. Many-body effects �for example, the depolarization
effect, which renormalizes the free-carrier and carrier-field
contributions� are not included in our study �34�. In
Schrödinger’s picture with the rotating-wave approximation,
the semiclassical Hamiltonian describing the system under
study can be written as

H = �
j=2

4

� j�j��j� − ���ce
−i�ct�3��2� + �be−i�bt�4��3�

+ �pe−i�pt�2��1� + H.c.� , �1�

where �p= ��� 12·e�p�Ep /�, �c= ��� 23·e�c�Ec /�, and �b
= ��� 34·e�b�Eb /� are the corresponding half Rabi frequencies
with �� ij being the dipole moment for the relevant intersub-
band transition. For simplicity, we have taken �1 for the
ground-state level �1� as the energy origin. Turning to the
interaction picture, the above Hamiltonian can be rewritten
as follows:

H0

�
= �p�2��2� + ��p + �c��3��3� + ��p + �c + �b��4��4� ,

�2�

HI

�
= − �1�2��2� − �2�3��3� − �3�4��4� − ��c�3��2� + �b�4��3�

+ �p�2��1� + H.c.� , �3�

where the ISBT detunings of three optical fields
are defined by �1=�p−�2 /� �single-photon detuning�,
�2=�p+�c−�3 /� �two-photon detuning�, and �3
=�p+�c+�b−�4 /� �three-photon detuning�, respectively.
The density-matrix equations of motion for the system can
be written as follows:

	̇11 = i�p
�	21 − i�p	12, �4�

	̇22 = − 
2	22 + i�p	12 + i�c
�	32 − i�p

�	21 − i�c	23, �5�

	̇33 = − 
3	33 + i�c	23 + i�b
�	43 − i�c

�	32 − i�b	34, �6�

FIG. 1. �Color online� �a� Conduction-band energy diagrams for
a single period of the three-coupled quantum well nonlinear optical
structure. The GaInAs wells have thicknesses of 42, 20, and 18 Å
�from left to right�, respectively, and are separated by a 16 Å
AlInAs barrier. The dashed curves represent the corresponding
wave functions. �b� Schematic of the energy-level arrangement for
the quantum wells under the consideration here. Subband levels are
labeled as �1�, �2�, �3�, and �4�, respectively. The subband transition
�1�↔ �2� is driven by a weak probe field with the half Rabi fre-
quency �p, while the subband transitions �2�↔ �3� and �3�↔ �4� are
coupled by two control fields with the half Rabi frequencies �c and
�b, respectively. �c� Possible launching geometry. Lights are in-
jected with the wave vectors k �kp,b,c� parallel to the plane of the
TCQW �z axis� and y direction denotes the growth axis. The polar-
ization state of the field �TM� is also indicated. This configuration is
preferred due to a relatively long propagation distance, on the order
of millimeters, to observe the soliton formation.
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	̇44 = − 
4	44 + i�b	34 − i�b
�	43, �7�

	̇21 = id21	21 + i�p�	11 − 	22� + i�c
�	31, �8�

	̇31 = id31	31 + i�c	21 + i�b
�	41 − i�p	32, �9�

	̇41 = id41	41 + i�b	31 − i�p	42, �10�

	̇32 = id32	32 + i�c�	22 − 	33� + i�b
�	42 − i�p

�	31, �11�

	̇42 = id42	42 + i�b	32 − i�c	43 − i�p
�	41, �12�

	̇43 = id43	43 + i�b�	33 − 	44� − i�c
�	42 �13�

with d21=�1+ i
21, d31=�2+ i
31, d41=�3+ i
41, d32
=�2−�1+ i
32, d42=�3−�1+ i
42, d43=�3−�2+ i
43, and
	nm=	mn

� . Actually, these density-matrix equations �4�–�13�
are to be supplemented by the population conservation con-
dition 	11+	22+	33+	44=1. The decay and dephasing rates
are included phenomenologically in the above equations. The
population scattering rates 
i are primarily due to the
longitudinal optical-phonon emission events at low tempera-
ture �35,36�. The total dephasing rates 
ij �i� j� are given by

21= �
2+
21

dph� /2, 
32= �
2+
3+
32
dph� /2, 
31= �
3+
31

dph� /2,

41= �
4+
41

dph� /2, 
42= �
2+
4+
42
dph� /2, and 
43

= �
3+
4+
43
dph� /2, where the pure dipole dephasing rates


ij
dph are assumed to be a combination of quasielastic inter-

face roughness scattering or acoustic-phonon scattering
�15,21,37�. A comprehensive treatment of the decay rates
would involve incorporation of the decay mechanisms into
the Hamiltonian of the system. However, we have adopted
the phenomenological approach of treating the decay mecha-
nisms just as done in the literature. �14,19–23,25,37,38�. A
more fully two-dimensional treatment taking into account of
these processes has been investigated quite thoroughly by
some authors �see, for example, �17,24,39,40��.

The electric-field evolution is governed by the Maxwell
equation

�2E� −
1

c2

�2E�

�t2 =
1

�0c2

�2P�

�t2 �14�

with

P� = N	�� 12	21 exp�i�k�p · r� − �pt�� + �� 23	32 exp�i�k�c · r� − �ct��

+ �� 34	43 exp�i�k�b · r� − �bt�� + c.c.
 , �15�

where N, c, and �0 being the concentration, velocity of light
in vacuum, and vacuum dielectric constant, respectively. Un-
der the slowly varying envelope approximation �41�, the
Maxwell equation can be reduced to the first-order equation.
Thus we can obtain the slowly varying envelope equation for
describing the probe field evolution, i.e.,

��p�z,t�
�z

+
1

c

��p�z,t�
�t

= i�	21, �16�

where �=N�p�e�p ·�� 12�2 / �2�0�c�. For simplicity, we have as-
sumed k�p=e�zkp.

Before solving the nonlinear coupled equations �4�–�13�
and �16�, let us first examine the linear excitations of the
system, which may provide useful hints of the weak nonlin-
ear theory developed in the following. We assume that the
half Rabi frequency �p of probe field is much smaller than
that of the control fields �c,b, so that the initial population in
the ground state �1� are not depleted; therefore, 	11�1
while 	22�	33�	44�0. Then under the perturbation expan-
sion 	ij =
k	ij

�k�, where 	ij
�k� is the kth-order part of 	ij in terms

of �p, it can be shown that 	ij
�0�=0 �i� j� and 	22

�k�=	33
�k�

=	44
�k�=0. Considering the first order of the pulsed probe field

and taking time Fourier transform of Eqs. �8�–�13� and �16�,

	 jk
�1��t� =

1
�2�



−�

�

� jk
�1����exp�− i�t�d�, j,k = 1,2,3,4,

�17�

�p�t� =
1

�2�



−�

�

�p���exp�− i�t�d� �18�

with � being the Fourier-transform variable, we have

�� + d21��21
�1� + �p + �c

��31
�1� = 0, �19�

�� + d31��31
�1� + �c�21

�1� + �b
��41

�1� − �p�32
�0� = 0, �20�

�� + d41��41
�1� + �b�31

�1� − �p�42
�0� = 0, �21�

�� + d32��32
�1� + �b

��42
�1� − �p

��31
�0� = 0, �22�

�� + d42��42
�1� + �b�32

�1� − �c�43
�1� − �p

��41
�0� = 0, �23�

�� + d43��43
�1� − �c

��42
�1� = 0, �24�

and

��p

�z
− i

�

c
�p = i��21

�1�. �25�

With the help of Eqs. �19�–�24�, Eq. �25� can be solved ana-
lytically, yielding

�p�z,�� = �p�0,��exp�iK���z� , �26�

where K��� is the linear dispersion relation for the probe
field. In typical operation conditions K��� can be expanded
into a rapidly conversion power series around the center fre-
quency �p of the weak probe field, i.e., �=0. We thus have

K��� =
�

c
+ �

Dp���
D���

= K0 + K1� + K2�2 + O��3� �27�

with Dp���= ��+d31���+d41�− ��b�2 and D���= ��c�2��
+d31�+ ��b�2��+d21�− ��+d21���+d31���+d41�. The physi-
cal interpretation of the dispersion coefficient in Eq. �25� is
clear. K0=�+ i� /2 describes the linear absorption coefficient
� and the phase shift � per unit length of the probe field.
K1=dK��� /d� ��=0 gives the propagation group velocity and
K2=d2K��� /d�2 ��=0 represents the group-velocity disper-
sion that contributes to the shape change and additional loss
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of field intensity. We note that there exist parameter regimes
in which the absorptions of the probe field can be signifi-
cantly suppressed due to the interference produced from the
contribution of two control fields by choosing appropriate
conditions in the present system.

It should be noted that Eq. �25� is obtained in the linear
regime of the system under the weak-field and adiabatic ap-
proximations by ignoring higher-order terms of the probe
field. In order to preserve the shape of probe field, we need to
include the self-phase modulation �SPM� effect which may
balance the spread effect due to the group-velocity dispersion
�describing by the K2 coefficient�. In Sec. III, we will explore
the higher-order terms of �p with systematically keeping
terms up to �2 in Eq. �27� for the purpose of demonstrating
the formation of temporal optical solitons in our TCQW
system.

III. NONLINEAR DYNAMICS AND OPTICAL SOLITONS

With the dispersion coefficients obtained, we now inves-
tigate the nonlinear evolution of the probe field. We first
show that it is indeed possible to obtain a set of rather clean
and reasonable parameters that will lead to the formation of
optical solitons. By substituting a trial function ��z ,��
=��z ,��exp�iK0z� into the wave equation �25�, we obtain

���z,��
�z

eiK0z = i�K1� + K2�2���z,��eiK0z. �28�

Here we only keep terms up to the order �2 in expanding the
propagation constant K���. In order to balance the interplay
between group-velocity dispersion and nonlinear effect, it is
necessary for us to consider the nonlinear polarization on the
right-hand sides of Eq. �16�,

i�	21 � i�	21
�1� + iNLT, �29�

where the nonlinear term “NLT” is denoted by
NLT=−�	21

�1�e−iK0z��	21
�1��2+ �	31

�1��2+ �	41
�1��2� and 	21

�1�, 	31
�1�, and

	41
�1� can be obtained by solving Eqs. �19�–�24�, i.e.,

	21
�1� =

d31d41 − ��b�2

D�0�
�p, �30�

	31
�1� =

d41�c

D�0�
�p, �31�

	41
�1� =

�b�c

D�0�
�p �32�

with D�0�= ��c�2d31+ ��b�2d21−d21d31d41. With the help of
nonlinear polarization term, we now turn to the investigation
of the nonlinear dynamics in the present system. Taking the
inverse Fourier transformation of Eq. �28�, we can have the
nonlinear wave equation for the slow varying envelope
�p�z , t�,

i
��p�z,t�

�z
−

K2

2

�2�p�z,t�
�t2 − W exp�− �z���p�z,t��2�p�z,t�

= 0, �33�

where absorption coefficients �=2 Im�K0�. The coefficients
K2 and W characterize the group-velocity dispersion and the
nonlinearity of probe field, respectively, with the formalisms
given by

W =
�Dp�0���Dp�0��2 + ��c�2���b�2 + �3

2 + 
4
2��

D�0��D�0��2
, �34�

K2 = −
2Dp�0��C + �d21 + d31 + d41�D�0�� + C�d31 + d41�D�0� + D�0�2

D�0�3 , �35�

where Dp�0�=d31d41− ��b�2 and C= ��b�2+ ��c�2−d21d31
−d21d41−d31d41. Equation �33� has complex coefficients and
in general does not allow soliton solutions. However, as we
show below, if a reasonable and realistic set of parameters
can be found so that exp�−�l��1, i.e., the losses of the
probe pulse are small enough to be neglected, then the bal-
ance between the nonlinear SPM and the group-velocity dis-
persion may sustain a pulse with a shape-invariant propaga-
tion, which yields K2=K2r+ iK2i�K2r and W=Wr+ iWi
�Wr. By defining �=z / �2LD� and �= �t−z /Vg� /�0, then Eq.
�33� can be rewritten in the dimensionless form correspond-
ing to the standard nonlinear Schrödinger equation governing
the pulsed probe field evolution,

i
�u

��
+

�2u

��2 + 2u�u�2 = 0, �36�

where u=�p /U0, LD=�0
2 / �K2r� is the characteristic dispersion

length, and LNL=1 / �U0
2Wr� is the nonlinear length. In Eq.

�36� we have assumed that the characteristic dispersion
length LD is equal to the characteristic nonlinear length LNL
of the system and U0= �1 /�0���K2r� /Wr�1/2 is the typical Rabi
frequency of the probe field. Equation �36� supports the ex-
act bright soliton solutions as

u = 2� sech�2��� − �0 + 4����e−2i��−4i��2−�2�� �37�

with �, �, and �0 being real parameters which determine the
amplitude, propagating velocity, and initial position of the
soliton, respectively. By taking �=1 /2 and �=�0=�0=0,
Eq. �37� can be reduced to u=sech���exp�i�� or, in terms of
the probe field,

�p = U0 sech��t − z/Vg�/�0�eiz/�2LD�. �38�

In fact, Eq. �37� admits solutions of bright and dark solitons
depending on the sign of the product K2rWr �42�. The single
soliton solution �38� is called as the fundamental soliton and
N soliton �N=2,3 , . . .� is named as the higher-order soliton
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�breathers�. After returning to original variables, the bright
two-soliton �bright soliton of second order� solution of Eq.
�36� reads

�p = U0
4�cosh�3�� + 3 exp�8iz/LD�cosh����exp�iz/LD�

cosh�4�� + 4 cosh�2�� + 3 cos�8z/LD�
.

�39�

Checking our assumption that leads to Eqs. �33�–�36� is in-
deed practical. Below we give a practical example for a re-
alistic TCQW system, with the population scattering rates


2=
3=
4=0.24 ps−1 and the total dephasing rates 
21
=4.8 ps−1, 
31=
32=1.9 ps−1, and 
41=
42=
43=1.4 ps−1

�all the decay rates are estimated from Refs. �11,32��. Be-
sides, taking �b=�c=2 ps−1, �1=−3.5 ps−1, �2=−6 ps−1,
�3=8 ps−1, �0=300 fs, and ��2.4 ps−1 �m−1, we have
K2��−1.54−0.075i��10−26 �m−1 s2 and W��−1.17
+0.069i��10−24 �m−1 s2. Clearly, for all complex coeffi-
cients the imaginary parts are indeed much smaller than their
corresponding real parts. At the same time, we obtain �
�0.0036 �m−1, LD=LNL=5.8 �m, and U0=0.38 ps−1.
With these parameters, the standard nonlinear Schrödinger
equation in Eq. �36� with K2rWr�0 is well characterized,
and hence the existence of bright solitons in the TCQW
structures is supported. In Fig. 2, we show the result of nu-
merical simulation on the soliton wave shape ��p /U0� versus
dimensionless time t /�0 and distance z / �2LD� with the full
complex coefficients by taking Eq. �38� as an initial condi-
tion. One can find that in this case the soliton is fairly stable
during propagation, which is mainly produced from the bal-
ance between dispersion and nonlinearity. Thus the result of
numerical simulation shows excellent agreement with the ex-
act soliton solution in Eq. �38�. We also show that a particu-
lar interesting phenomenon in Fig. 3 about the bright two-
soliton solution. We see that a bright two-soliton solution can
survive even with a certain small attenuation.

The collision property between two solitons is one of the
most intriguing aspects in soliton dynamics. By using nu-
merical simulations we have also investigated the collision
feature between two bright optical solitons in the present
TCQW system. Figure 4 shows the wave forms for two dif-
ferent solitons, in which one soliton is obtained by taking
�=0.3, �=0, and �0=1.0, whereas the other is obtained by
taking �=0.4, �=−0.2, and �0=−2.0 in Eq. �37�. One can
find that both solitons have resumed their original shapes

FIG. 2. �Color online� Surface plot of the probe intensity
��p /U0�2 versus dimensionless time t /�0 and distance z / �2LD� ob-
tained by numerically solving Eq. �33� without neglecting the
imaginary part of coefficients with the initial condition given in Eq.
�38�.

FIG. 3. �Color online� Surface
plot of the probe intensity
��p /U0�2 versus dimensionless
time t /�0 and distance z / �2LD�
obtained by numerically solving
Eq. �33� without neglecting the
imaginary part of coefficients with
the initial condition given in Eq.
�39�. Here, we have chosen the
same parameters as in Fig. 2.
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after the collision, indicating that the optical solitons pro-
duced in the present system are stable during the collision.
More interestingly, as the chosen different phase �position�, a
repulsive or absorptive interaction can be realized in the col-
lision �1,2�, leading to a modulation or switching in a Mach-
Zehnder configuration when the phase-shifted soliton inter-
feres with another reference soliton �43�. Thus we may
provide more practical opportunities to implement all-optical
switching and electro-optical modulated solid-state devices
due to the flexibility in the semiconductor quantum struc-
tures.

To make a further confirmation on the optical soliton so-
lutions obtained above and check their stability, we also per-
form additional numerical simulations starting directly from

Eqs. �4�–�13� and �16� without using any approximation.
Figure 5�a� is the propagation of z=8 �m for the probe field
intensity ��p /U0�2, with Eq. �38� as the input condition. One
can find that, except for small ripples appearing on its peak
due to higher-order dispersions and higher-order nonlinear
effects that have not been included, the optical solitons pro-
duced here is rather stable as expected. We also show in Fig.
5�b� the simulation result of the collision between two bright
optical solitons with the same initial condition as in Fig. 4.
One can see again that the result is in a great agreement with
the results shown in Fig. 4, and thus the full model in Eqs.
�4�–�13� and �16� supports nearly shape-preserving soliton
propagation.

IV. ADIABATIC CONDITIONS FOR THE DETUNING
MANAGEMENT

In the following, we consider the case of dark solitons.
We take �1=3.5 ps−1 and �2=6 ps−1, along with all other
parameters given above unchanged. In this case we obtain
��0.0036 �m−1, K2��1.63−0.026i��10−26 �m−1 s2, and
W��−1.21−0.068i��10−24 �m−1 s2. With these param-
eters, one has the product K2rWr�0. Hence we can obtain
dark solitons that travel in the TCQW system. With the origi-
nal variable, the fundamental dark soliton solution of Eq.
�36� is given by

�p = U0 tanh��t − z/Vg�/�0�eiz/�2LD�, �40�

where the amplitude U0 and width �0 are arbitrary constants
and subjected only to the constraint �U0��2= �K2r� /Wr �or LD
=LNL�. This indicates again that the formation of the optical
solitons given above is due to the balance between the
group-velocity dispersion and nonlinearity �i.e., SPM effect�.
Equation �40� gives the so-called “black” dark soliton �42�.
Compared to the bright solitons, here we only need to change
the one- and two-photon detunings in the proposed TCQW
structure for dark soliton solutions.

FIG. 4. �Color online� Surface plot of the solitary wave intensity
��p /U0�2 versus dimensionless time t /�0 and distance z / �2LD� for
the collision between two solitons by solving Eq. �33�. The initial
condition is given in the main text and other parameters are the
same as in Fig. 2.

FIG. 5. �Color online� �a� Surface plot of the solitary wave intensity ��p /U0�2 versus dimensionless time t /�0 and distance z / �2LD� for
the collision between two solitons by numerically integrating Eqs. �4�–�13� and �16� with the initial condition given in Eq. �38�. �b� Collision
between two solitons and other parameters are the same as in Fig. 3.
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In the fiber optic telecommunications, dispersion manage-
ment is introduced by applying a long fiber link consisting of
periodically alternating segments of fibers with opposite
signs of the group-velocity dispersions �26�. Here with the
existences of optical bright and dark solitons and the unique
tunability in our proposed TCQW structure, one can vary the
corresponding resonance conditions of input optical fields by
a given specific time-dependent function for the detuning
frequencies. As a simple example, we shall demonstrate the
evolution from a bright soliton into a dark one by adiabati-
cally changing the one- and two-photon detunings �1 and �2.
This interesting result is produced from that the signs of the
dispersion and nonlinear coefficients are dependent upon the
signs of one- and two-photon detunings, which can provide
another soliton management scheme for another possible
soliton switching �bright↔dark�. Without loss of generality,
we suppose the parameters change as a function of the time t,
i.e.,

�1�t� = �1
�0� + b1t , �41�

�2�t� = �2
�0� + b2t , �42�

where �1
�0�=−3.5 ps−1 and �2

�0�=−6 ps−1. b1 and b2 are as-
sumed to be positive constants. When the detuning �1 varies
from −3.5 to 3.5 ps−1 and �2 varies from −6 to 6 ps−1,
which can realized by changing the energy levels of the
quantum well through the applied bias voltage, the evolution
of the bright soliton to the dark soliton is achieved. The
adiabatic condition required for such a simple detuning man-
agement is

� �n�
�

�t
�m�

En − Em
� � 1 �43�

for n�m. It is easy to testify that

�n�
�

�t
�m� =

�n� � HQW�t�/�t�m�
Em − En

, �44�

where HQW=
 j=2
4 Ej�j��j� is the Hamiltonian of quantum well.

For our scheme, from Eqs. �41� and �42�, we obtain the adia-
batic condition as follows:

�b1,�b2 �
�Ei − Ej�

�
�45�

for i , j=1,2 ,3 and i� j. This adiabatic condition implies that
the change rate for the corresponding eigenenergy in our
quantum wells should be slow enough to not raise the tran-
sition between different states. Like dispersion-managed sys-
tems, in our proposed TCQW structure various detuning
management schemes should also have a strong impact on
the stability and noise of optical solitons. But here we only
give the necessary condition to perform such a totally differ-
ent soliton management.

V. DISCUSSION AND CONCLUSION

Before conclusion, we give a brief discussion on the re-
quired threshold optical power density to support stable soli-
ton propagation �44�. In the parameter regime for the funda-
mental bright soliton discussed above, the flux of energy of
the probe optical field associated with a single soliton is
given by the Poynting vector integrated over the cross sec-

tion of the quantum well sample: P=�dS�E� p�H� p� ·e�z, where
e�z is the unit vector in the propagation direction. Assuming
that the polarized direction of the probe field is unchanged,

we have E� p= �Ep ,0 ,0� and H� p= �0,Hp ,0�, where Hp
=�0cnpEp with np=1+c Re�K� /�p being the refractive index
of the probe field. Note that Ep= �� / ��12���p exp�i��pz /c
−�pt��+c.c., then we can obtain the average flux of the
probe field energy over the carrier-wave period as

P̄ =
2�0cnpS0��/��12��2K2r

�0
2Wr

sech2��t − z/vg�/�0� , �46�

where the first term 2�0cnpS0�� / ��12��2K2r /�0
2Wr in Eq. �46�

is the peak power, with S0 being the cross-section area of the
probe laser beam. We can see that the peak power is directly
proportional to the dispersion coefficient K2r and inversely
proportional to the square of the pulse width �0 as well as the
SPM coefficient Wr. Using the parameters in our numerical
simulations for the fundamental bright soliton and taking
S0=��10−4 cm2, we found that the required peak power is
about 37 mW. Thus we argue that very low input power is
needed for generating optical solitons using our proposed
TCQW system.

In addition, with the parameters provided there, the dis-
persion length of our system is about LD=5.8 �m, which is
long enough for the observation of optical solitons with our
proposed coupled geometry as shown in Fig. 1�c�. It is worth
to point out that there are some relevant works on optical
solitons and optical breathers in semiconductor devices. For
example in Ref. �45�, Adamashvili et al. considered the con-
dition of self-induced transparency �SIT� in multilevel quan-
tum dots, in which a single optical field with 2� or 0� area
is needed to induce the required coherent pulse propagation,
while here we use three input optical fields, i.e., two cw
control and one probe fields, which construct the quantum
interference channels and lead to a giant suppression of the
linear absorption and simultaneously an enhancement of
SPM coefficient for the probe field. Besides, our proposed
cascade quantum structure supports stable soliton propaga-
tion not only on the nanoscales but also at very low input
light power levels.

In conclusion, we have shown that it is possible to support
a stable propagation of optical solitons by using the density-
matrix equations in a four-level cascade electronic subband
system. We also demonstrated that under realistic physical
conditions stable optical solitons can form and propagate un-
distorted in our TCQW system. With the well-known flex-
ibilities in solid-state systems, we also present the concept of
detuning management scheme for optical solitons in quan-
tum wells. We analyze the adiabatic condition to perform
such another soliton management and demonstrate the evo-
lution from a bright soliton into a dark one. Besides, the
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carrier frequencies of the solitons obtained here are on the
order of �21= ��2−�1� /��28 THz. If one applied the differ-
ent electric bias voltage �for example, −20 kV /cm� to the
structure, the transition frequency between the bands 2 and 1
can be changed to about 21 THz �32�. In other words, the
carrier frequencies of the bright and dark solitons are adjust-
able via varying the external bias voltage within the terahertz
frequency regimes, which should be useful to the community
of terahertz technologies.
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