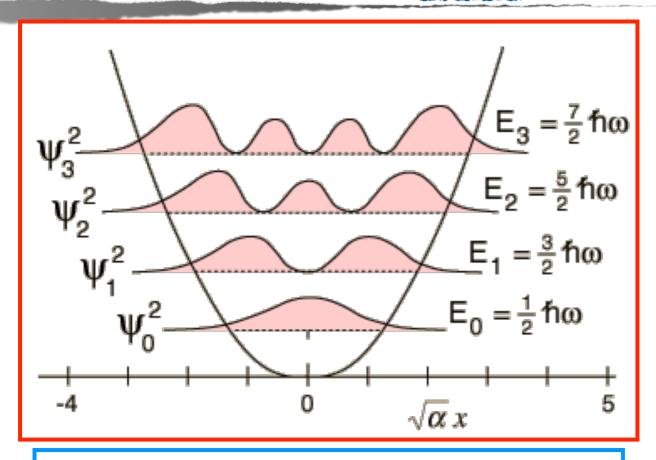
Note: Quantum SHO

- Quantum Simple Harmonic Oscillator, qSHO
- Photons occupy an electromagnetic mode (referred as the modes in quantum optics, typically a plane wave)
 - **Hamiltonian**
 - Number operator
 - ☐ Energy Quantization (equally spacing in energy)
- •The energy in a mode is not continuous but discrete in quanta.
 - ☑ Vacuum state with zero-point energy
- There is a zero point energy inherent to each mode, which is equivalent with fluctuations of the electromagnetic field in vacuum, due to the uncertainty principle.
 - Schrodinger picture
 - ☐ Heisenberg picture
- •The observables are just represented by probabilities as usual in QM.

Note: Quantum Mechanics

- Axioms
- ✓ State
- ☑ Density Matrix
- More on States
- □ Coherent States
- □ Squeezed States
- □ Uncertainty Relation → Minimum Uncertainty States
- Entropy
- Purity
- □ bi-particle States → Entanglement (Schmidt decomposition)
- □ Cat states

Quantum Simple Harmonic Oscillator (SHO)



- Energy quantization
- Equally spacing in energy difference
- Zero-point energy $\neq 0$

$$\psi(\xi) = H_n(\xi) \exp[-\xi^2/2], \qquad \epsilon = 2n+1, \qquad n = 0, 1, 2, 3 \dots$$

$$E = \frac{\hbar \omega}{2} \epsilon = \hbar \omega (n + \frac{1}{2}), \qquad n = 0, 1, 2, 3, \dots$$

$$\hat{H} = \frac{1}{2} \frac{\hat{p}^2}{m} + \frac{1}{2} k \, \hat{x}^2, \ \ [\hat{x}, \hat{p}] = i \hbar.$$

$$\hat{H}=\hbar\omega(\hat{a}^{\dagger}\hat{a}+\frac{1}{2}).\quad [\hat{a},\hat{a}^{\dagger}]=1,$$

$$\hat{N}|n\rangle = n|n\rangle,$$
 $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle,$
 $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle,$
 $E_n = \hbar\omega(n+\frac{1}{2}).$

Poisson Distribution:

$$P(n) = \frac{\bar{n}^n \exp(-\bar{n})}{n!},$$

$$\langle \hat{n} \rangle = \sum_{n} nP(n) = |\alpha|^2 \equiv \bar{n},$$

 $\langle \Delta \hat{n}^2 \rangle = \langle \hat{n}^2 \rangle - \langle \hat{n} \rangle^2 = |\alpha|^2 = \langle \hat{n} \rangle.$

mean = variance

Bose-Einstein Distribution:

Boltzmann's law

$$P(n) \propto \exp[-E_n/k_BT],$$

$$P(n) = \frac{\exp[-E_n/k_B T]}{\sum_{n=0}^{\infty} \exp[-E_n/k_B T]},$$

= $\exp[-E_n/k_B T] (1 - \exp[-\hbar\omega/k_B T]); \qquad E_n = n \hbar\omega$

$$\bar{n} = \sum_{n=0}^{\infty} n \, P(n) = \frac{1}{\exp[\hbar \omega/k_B T] - 1},$$
 • average photon number at temperature T

$$P(n) = \frac{1}{\bar{n}+1} (\frac{\bar{n}}{\bar{n}+1})^n,$$

Bose-Einstein Distribution:

thermal state

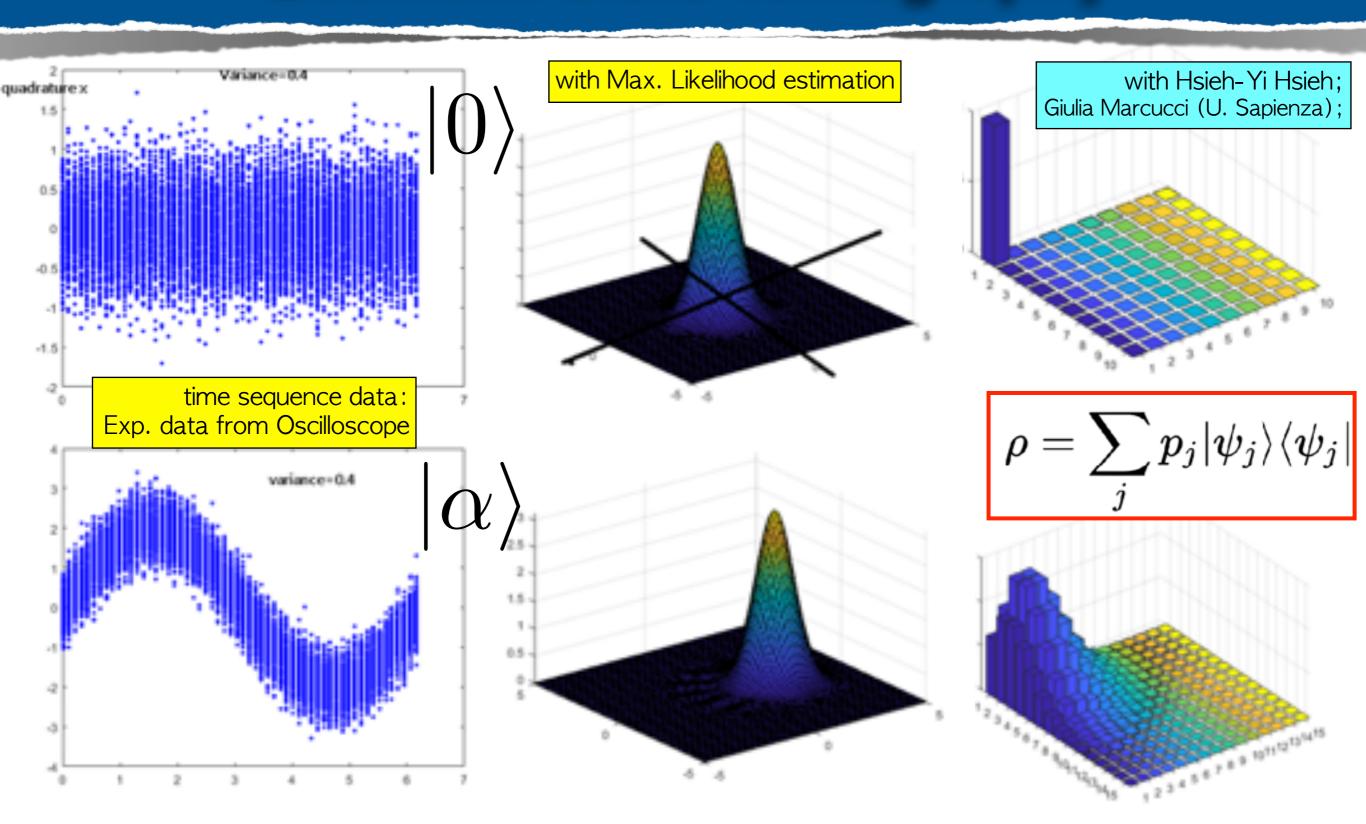
$$\rho_{th} = \sum_{n} = \frac{1}{\bar{n}+1} \left(\frac{\bar{n}}{\bar{n}+1}\right)^{n} |n\rangle\langle n|.$$

$$\Delta n^2 = \bar{n} + \bar{n}^2,$$

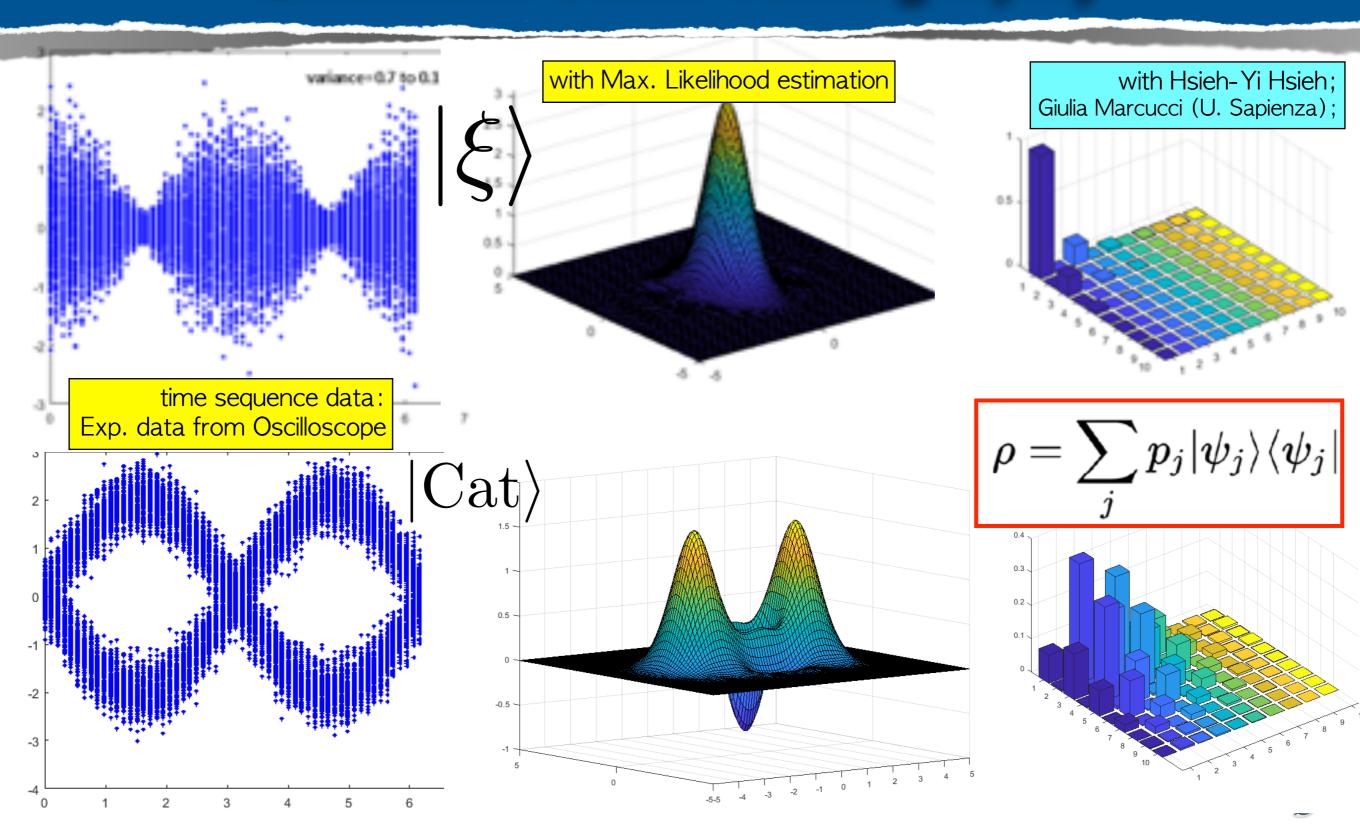
Note: Coherent States (CS)

- □ Eigenstate of Annihilation operator
- Displacement Operator
- Properties of CS
- Representation of CS
- □ Expectation Value of E-fields
- Generation of CS
- More on States
- Minimum Uncertainty States
- □ Uncertainty Relation → Minimum Uncertainty States
- □ Squeezed States
- □ CS in Phase space
- ¬ Max. Mixed CS
- □ Generalized CS
- □ Spin Coherent States
- — Fermionic Coherent States

Quantum State Tomography



Quantum State Tomography



Poisson Distribution:

$$P(n) = \frac{\bar{n}^n \exp(-\bar{n})}{n!},$$

$$\langle \hat{n} \rangle = \sum_{n} nP(n) = |\alpha|^2 \equiv \bar{n},$$

 $\langle \Delta \hat{n}^2 \rangle = \langle \hat{n}^2 \rangle - \langle \hat{n} \rangle^2 = |\alpha|^2 = \langle \hat{n} \rangle.$

• mean = variance

We introduce the eigenstate of annihilation operator, called the *coherent state*,

$$\hat{a}|\alpha\rangle = \alpha|\alpha\rangle,$$

Eigenstate of \hat{a} :

We introduce the eigenstate of annihilation operator, called the *coherent state*,

$$\hat{a}|\alpha\rangle = \alpha|\alpha\rangle,$$

$$|lpha
angle = e^{-rac{1}{2}|lpha|^2} \sum_{n=0}^{\infty} rac{lpha^n}{\sqrt{n!}} |n
angle.$$

• mean = variance

Displacement Operator:

$$|lpha
angle=\hat{D}(lpha)|0
angle=e^{+lpha\hat{a}^{\dagger}-lpha^{*}\hat{a}}|0
angle,$$

- 1. The probability of finding n photons in $|\alpha\rangle$ is given by a Poisson distribution.
- 2. The coherent state is a minimum-uncertainty states,
- 3. The set of all coherent states $|\alpha\rangle$ is a complete set,

$$\int |\alpha\rangle\langle\alpha|d^2\alpha = \pi \sum_n |n\rangle\langle n|, \quad \text{or} \quad \frac{1}{\pi} \int |\alpha\rangle\langle\alpha|d^2\alpha = 1.$$
 (1)

4. Two coherent states corresponding to different eigenstates α and β are not orthogonal,

$$\langle \alpha | \beta \rangle = \exp(-\frac{1}{2}|\alpha|^2 + \alpha^*\beta - \frac{1}{2}|\beta|^2) = \exp(-\frac{1}{2}|\alpha - \beta|^2). \tag{2}$$

5. Coherent states are approximately orthogonal only in the limit of large separation of the two eigenvalues, $|\alpha - \beta| \to \infty$. Therefore, any coherent state can be expanded using other coherent state,

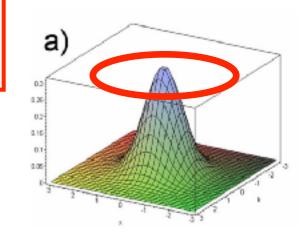
$$|\alpha\rangle = \frac{1}{\pi} \int d^2\beta |\beta\rangle \langle\beta|\alpha\rangle = \frac{1}{\pi} \int d^2\beta e^{-\frac{1}{2}|\beta-\alpha|^2} |\beta\rangle.$$
 (3)

This means that a coherent state forms an overcomplete set.

6. The simultaneous measurement of \hat{a}_1 and \hat{a}_2 , represented by the projection operator $|\alpha\rangle\langle\alpha|$, is not an exact measurement but instead an approximate measurement with a finite measurement error.

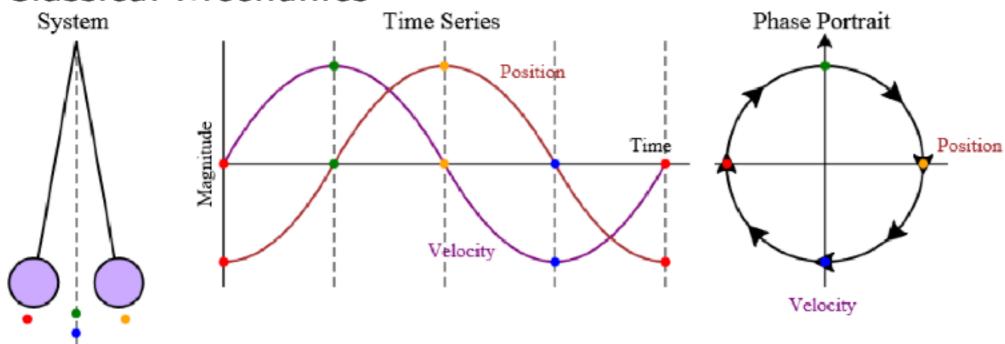
Representation:

$$\langle q | \alpha \rangle = (\frac{\omega}{\pi \hbar})^{1/4} \exp[-\frac{\omega}{2\hbar} (q - \langle q \rangle)^2 + i \frac{\langle p \rangle}{\hbar} q + i\theta],$$



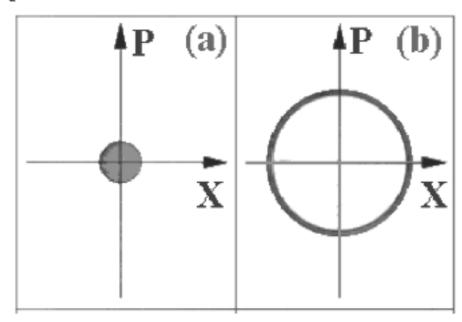
Phase space

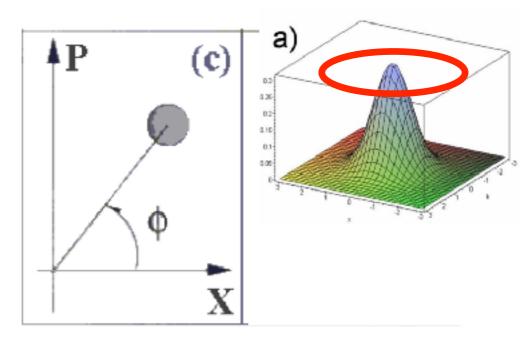
Classical Mechanics

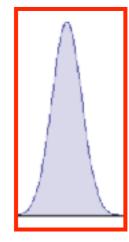


wave-nature

Quantum Mechanics

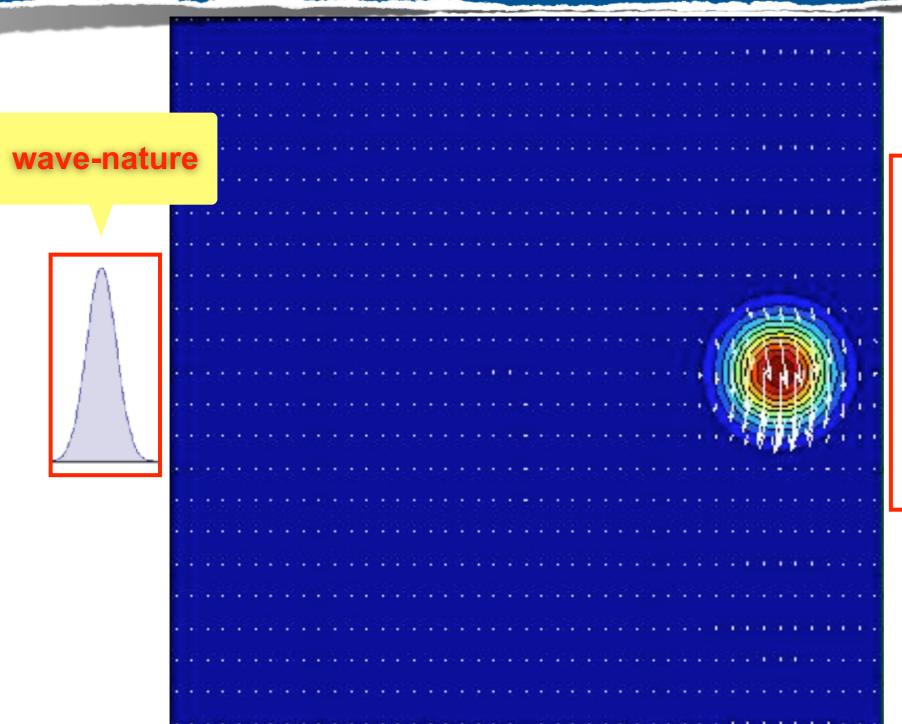


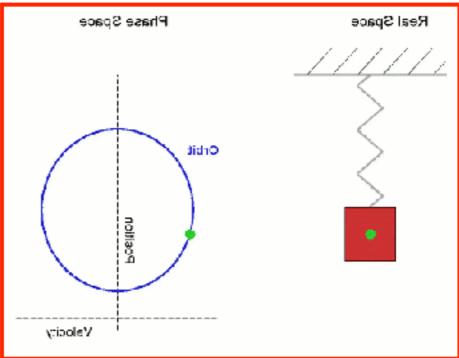




from Wiki

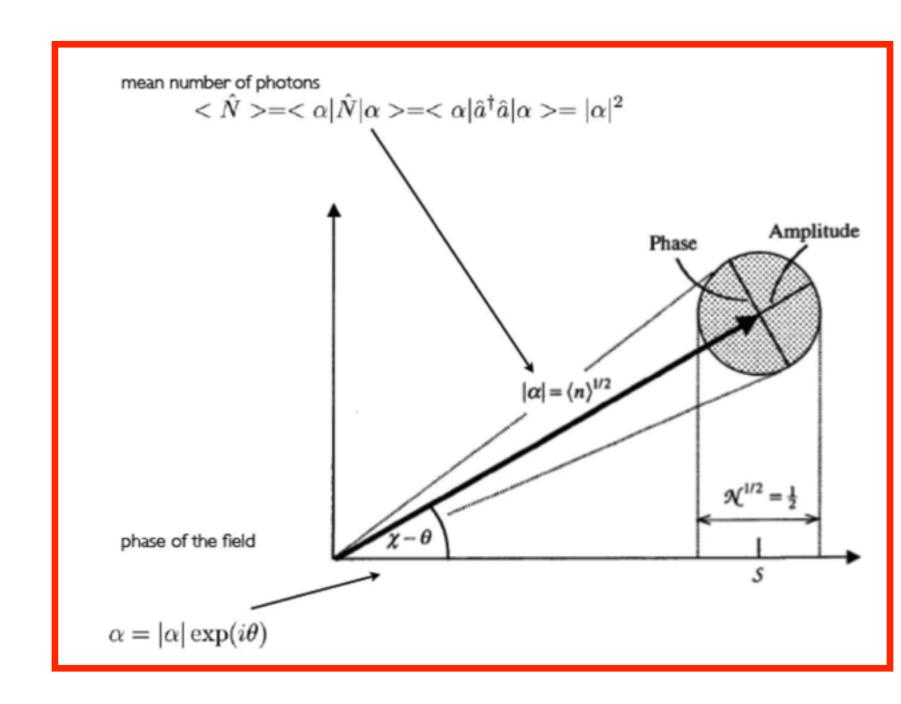
Coherent states





with Popo Yang

Expectation value of E-fields:



Generation of CS: