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Abstract

We show the formation of slow optical solitons in the asymmetric coupled double quantum-

wells (CQW) via a two-photon Raman resonance. With the consideration of real parameters in

AlGaAs-based CQW, we indicate the possibility to have cancellation of the linear absorption and

giant Kerr nonlinearities. With the controllable balance between dispersion and nonlinear effects

in these solid-state based devices, this work may provide a practical platform for nonlinear optical

signal processing.

PACS numbers: 42.50.Gy, 42.65.Tg, 78.67.De

1

http://arXiv.org/abs/0803.1885v1


Third-order Kerr nonlinearities play an important role in nonlinear optics such as cross-

phase modulation (XPM) for optical shutters [1] and generation of optical solitons [2], etc.

It is desirable to achieve giant Kerr nonlinearities with low light powers [3]. In recent years,

both theoretically [4] and experimentally [5], the giant third-order nonlinear susceptibility

with reducing linear absorption has been one of the most extensively studied phenomena.

In addition, retaining the merits of the giant Kerr nonlinearities, Wu and Deng [6] have

theoretically proposed that it is possible to form ultraslow optical bright and dark solitons

for weak light by including the self-phase modulation in cold atomic media.

However, it is more advantageous at least from the view point of practical purposes to

find, solid media that could permit to realize the giant Kerr nonlinearities with low pump

power, low absorptions, and shape-invariant propagation of the optical field instead of the

aforementioned cold atom gases. In fact, we note that, in conduction band of semiconduc-

tor quantum well (QW) structures, there have been studies on the oscillations and wave

propagations such as strong electromagnetically induced transparency (EIT) [7], tunneling-

induced transparency [8], ultrafast all-optical switching[9], slow light propagation[10], etc.

More recently, the enhancement of Kerr nonlinearities based on Fano-interference with in-

tersubband transitions [11] and a large XPM have been studied in an asymmetric QWs

[12].

In this Letter, we show that asymmetric semiconductor coupled double quantum-wells

(CQW) also can support the propagation of optical solitons via a two-photon Raman res-

onance scheme. Besides, under two-photon resonance condition and with appropriate one-

photon detuning, we can obtain the cancellation of the linear absorption, enhancement of

Kerr nonlinearities, and slow group velocity propagation of the weak probe pulse. Since

the conduction subband energy level can be easily tuned by an external bias voltage, the

proposed CQW structure also provide another possibility to realize electrically controlled

phase modulator at low light levels.

Let us consider an asymmetric semiconductor CQW structure consisting of 10 pairs of a

51-monolayer (145Å) thick wide well and a 35-monolayer (100Å) thick narrow well, separated

by a Al0.2Ga0.8As buffer layer[13], as shown in Fig. 1. The energy difference 2δ of the bonding

state |3〉 and anti-bonding state |4〉 is determined by the level splitting in the absence of

tunneling and related tunneling matrix element, which can be controlled by an electric field

applied perpendicularly to CQW.

2



We assume the transitions |2〉 ↔ |4〉 and |2〉 ↔ |3〉 are simultaneously coupled by a strong

coupling field with the respective one-half Rabi frequencies Ωc = µ42Ec/2h̄ and (Ωcµ32)/µ42.

At the same time, a weak probe field is applied to the transitions |1〉 ↔ |4〉 with the

respective Rabi frequencies Ωp. And the transitions |1〉 ↔ |3〉 is dipole forbidden transition

due to selection rules. Ec and Ep are the amplitude of the strong-coupling and weak probe

field, respectively. By adopting the standard approach [14], under the electro-dipole and

rotating-wave approximations the system dynamics can be described by equations of motion

for the probability amplitudes of the electronic wave functions:
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FIG. 1: Conduction subband energy level diagram for an asymmetric coupled quantum wells

consisting of a wide well (WW) and a narrow well (NW).

∂A1

∂t
= iΩ∗

pA4, (1)

∂A2

∂t
= −[γ2 − i(∆p − ∆c)]A2 + iΩ∗

cA4 + iqΩ∗

cA3, (2)

∂A3

∂t
= −[γ3 − i(∆p − δ)]A3 + iqΩcA2 + κA4, (3)

∂A4

∂t
= −(γ4 − i∆p)A4 + iΩpA1 + iΩcA2 + κA3, (4)

where Aj(j = 1, 2, 3) being the amplitudes of subbands |j〉. Here Ωp = µ41Ep/(2h̄) denotes

one half Rabi frequencies for the transition |1〉 ↔ |4〉, the coefficient q = µ42/µ32 describes

the ratio of a pair of dipole moments with µij being the dipole moment for the corresponding

transitions |i〉 ↔ |j〉. 2δ = E4 − E3 is the energy splitting between the upper levels.

∆c = ωc − ω42 and ∆p = ωp − ω41 are the probe detunings of the coupling and probe

fields with transitions |2〉 ↔ |4〉 and |1〉 ↔ |4〉. The total decay rates γi are given by

γi = γil +γdph
i , where γdph

i , determined by intrasubband phonon scattering, electron-electron

3



scattering, and inhomogeneous broadening due to scattering on interface roughness, is the

dephasing decay rates. The population decay rates γil, determined by longitudinal optical

(LO) phonon emission events at low temperature, can be calculated by solving the effective

mass Schrödinger equation. For the temperatures up to 10 K, the carrier density smaller

than 1012 cm−2, the dephasing decay rates γdph
i can be estimated according to Ref.[13].

κ =
√

γ3lγ4l represents the cross-coupling of states |3〉 and |4〉 via the LO phonon decay.

Note that a more complete theoretical treatment taking into account these processes for the

dephasing is though interesting [15] but beyond the scope of this work.

Under weak probe approximation ((|Ωp| ≪ |Ωc|)2), almost all the electrons are populated

in the ground state |1〉. The excited state |4〉 can be adiabatically eliminated when the

variation of the probe field’s envelope is slow compared to the excited state lifetime, so there

is no population transfer of the ground state |1〉. With these assumptions, it is can be shown

that |A1|2 ≈ 1, A
(0)
2,3,4 = 0. With two-photon resonance condition (∆p = ∆c = ∆), we obtain

the solutions of Aj to the first order of Ωp from Eqs. (1-4)

A
(1)
2 = − (b − qκ)Ω∗

cΩp

abc − aκ2 + (b + cq2 − 2qκ) |Ωc|2
, (5)

A
(1)
3 = − i(aκ + q |Ωc|2)Ωp

−abc + aκ2 − (b + cq2 − 2qκ) |Ωc|2
, (6)

A
(1)
4 = − i(ab + q2 |Ωc|2)Ωp

abc − aκ2 + (b + cq2 − 2qκ) |Ωc|2
, (7)

with a = −γ2, b = −[γ3− i(∆+ δ)], and c = −(γ4− i∆). The first-order χ(1) and third-order

χ(3) susceptibility of the probe pulse are given by [6, 16]

χ(1) = −N |µ14|2
h̄ε0

A
(1)
4 A

(1)∗
1

Ωp

, (8)

χ(3) = −N |µ14|4

3h̄3ε0

A
(1)
4 (
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+
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∣A
(1)
2

∣
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∣

2
)

|Ωp|2 Ωp

, (9)

where N is the electron volume density. For the CQW structure considered here, we take

γ2 = 0 for the lifetime of level |2〉 by consulting Ref. [17]. Based on Eq. (8), one can

find that the first-order susceptibility is mainly caused by cross coupling of the driving field

Ωc. When probe detuning ∆p = 0, it shows that the absorption Im[χ(1)] and the dispersion

Re[χ(1)] of the probe field do not depend on Ωc. We show in Fig. 2(a) their dependences
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FIG. 2: (a) Dependence of Im[χ(1)] and Re[χ(1)] and (b) dependence of Im[χ(3)] and Re[χ(3)]

versus the probe detuning ∆p. We have set N |µ14|2 /h̄ε0 and N |µ14|4 /3h̄3ε0 as units in plotting,

respectively. The other parameters used are γ3l = 0.7 THz, γ4l = 0.9 THz, γdph
3 = γdph

4 = 0.1 THz,

δ = 5 THz, Ωc = 1 THz, and q = 1.25.

versus the probe detuning ∆p with the same parameter values used in Ref. [13]. One can

clearly see that far away from the point of absorption peak, the linear absorption will be

closed to zero.

With two-photon Raman resonance condition, the coupling of the driving field with tran-

sition |2〉 ↔ |3〉 destroy the coherence between state |1〉 and |2〉, which causes the linear

absorption of the probe field and also leads to the nonlinear effect. As a result, q 6= 0 indi-

cates constructive interference in XPM nonlinearities. We perform a numerical calculation

of the third-order nonlinear susceptibility in Eq. (9). As shown in Fig. 2(b), for a certain

probe detuning, for example, at the marker B in Fig. 2(b) (corresponds to the marker

A in Fig. 2(a) at the same detuning frequency), linear absorption is vanished while the

strength of XPM is large, which suggests that large XPM can be achieved with vanishing

linear absorption. This interesting result is produced by the cross coupling in the nonlinear

susceptibility associated with XPM. Unlike the cold atomic systems with specific four-level

atoms, the conduction subband energy varies with the bias voltage. When we adjust the

energy level of the bonding state |3〉 and the antibonding state |4〉 at different bias voltages,

different nonlinear phase shifts can be obtained by such giant Kerr nonlinearity. Thus our

proposed CQW structures could be provided as a flexible device to realize voltage control,

solid-based phase modulators at low light powers.

If the losses of the probe pulse are small enough to be neglected, the balance between

the nonlinear self-phase modulation and group velocity dispersion (GVD) may keep a pulse

with shape-invariant propagation. From above discussion, as long as probe detuning ∆p is

far away from the point corresponding to the absorption peak, the linear absorption of the
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probe pulse is negligible and the nonlinear self-phase modulation is enhanced. In the slowly

varying amplitude approximation, the wave equation of the slowly varying envelope Ep(z, t)

of the probe pulse along z-axis is given by [16]

(
∂

∂z
+

1

vg

∂

∂t
)Ep +

iβ

2

∂2

∂t2
Ep =

2iωp

c
n |Ep|2 Ep, (10)

together with vg = c/Re[n0 + ωpdn0/dω], n0 =
√

1 + 4πχ(1), β = d2k/dω2, n = 3πχ(3)/n0,

and k = ωpn0/c being the group velocity, linear index of refraction, GVD, Kerr-nonlinear

refractive index, and wave vector, respectively, where c is the light velocity in vacuum. vg

and β are mainly determined by Re[dχ(1)/dωp] and Re[d2χ(1)/dω2
p], respectively. We get the

transformation of Eq. (10) by defining ξ = z and τ = t − z/vg,

∂Ωp

∂ξ
+

iβ

2

∂2Ωp

∂τ 2
= iW |Ωp|2 Ωp, (11)

with W = −2πωpχ
(3)/cn0, from Eq.(9). We can choose reasonable and realistic set of

parameters to satisfy β = βr + iβi ≃ βr and W = Wr + iWi ≃ Wr, so that Eq. (11) reduced

to a standard nonlinear Schrödinger equation which admits dark (βrWr > 0) and bright

(βrWr < 0) solitons. The fundamental dark soliton takes the form

Ωp = Ωp0tanh(τ/τ0)exp(−iβrξ/2τ 2
0 ). (12)

with |Ωp0τ0|2 = −βr/Wr. As an example, by taking ∆p = 10 THz, we obtain vg = 0.9×10−4c,

|Ωp0τ0| =
√

βr/Wr ≃ 42.8, and the linear absorption coefficient α ≃ 0.0066cm−1. There are

four adjustable parameters in our proposed system, i.e. the intensity of the driving field,

probe detuning ∆p, the energy splitting 2δ between the two upper levels, and the relative

coupling ratioq. From our numerical calculations, we find that decreasing the Rabi frequency

of the control field will decrease the group velocity of the probe pulse and increase the

values of βr, Wr and |Ωp0τ0|. The control field only need to be strong enough to couple two

transitions |2〉 ↔ |4〉 and |2〉 ↔ |3〉, on the other hand relatively lower intensity of driving

field can lead to better effects in formation of slow optical solitons. In addition, we have

used assumption of |Ωp0|2 ≪ |Ωc|2 in our calculations, so the pulse width of the probe field τ0

should be chosen to satisfy |Ωp0τ0|2 = −βr/Wr ≪ |Ωcτ0|2. Fig. 2 shows that the parameter

∆p has a very large range of validity. For the parameters δ and q, smaller separation δ will

be better, which is adjusted and there is no strict requirement for q.
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It is worth noting that the cross coupling of control field may be viewed as the pertur-

bation to the two-photon resonance condition, which comes from the closely separated two

upper levels instead of coming from the perturbation by introducing another laser field or

taking two-photon detuning [6], thus our scheme is a very stable system to form slow optical

solitons.

In conclusion, based on the two-photon Raman resonance scheme in the asymmetric

coupled double quantum-wells, we have shown that the quantum interference caused by

cross coupling of a strong CW laser field not only suppresses linear absorption loss, but also

enhances Kerr nonlinearities of the weak probe pulse. With the unique feature of controllable

balance between linear dispersion and nonlinear effects in these solid-state devices, we also

demonstrate the possibility to form ultraslow optical solitons.
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