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We propose and analyze an efficient scheme for suppressing the absorption of a weak probe field
based on intersubband transitions in a four-level asymmetric coupled-quantum well (CQW) driven
coherently by a probe laser field and a control laser field. By using the numerical simulation, we
find that the magnitude of the transient absorption of the probe field is smaller than the three-level
system based on the electromagnetically induced transparency (EIT) at line center of the probe
transition, moreover, comparing with the scheme in three-level asymmetric double QW system, the
transparency hole of the present work is much broader. By analyzing the steady-state process ana-
lytically and numerically, our results show that the probe absorption can be completely eliminated
under the condition of Raman resonance (i.e. two-photon detuning is zero). Besides, we can ob-
serve one transparency window without requiring one- or two-photon detuning exactly vanish. This
investigation may provide the possible scheme for EIT in solids by using CQW.

PACS numbers: 42.50.Gy, 42.65.-k, 78.67.De

I. INTRODUCTION

The optical properties of cold atomic gases can be radically modified by laser beams[1]. A strong laser light essen-
tially influences atomic states, quantum coherence and interference between the excitation pathways controlling the
optical response become possible, and the absorption of weak laser light vanishes. This effect was termed electromag-
netically induced transparency (EIT)[2]. The phenomenon of EIT has been deeply studied in atomic physics[1]-[10],
starting from its observation in sodium vapors[11], where the effect of EIT in atomic system has disclosed new possi-
bilities for nonlinear optics and quantum information processing. For example, few works have demonstrated that EIT
can be used to suppress both single-photon and two-photon absorptions in three-level atomic medium[6]. The schemes
for suppressing absorption of the short-wavelength light based on EIT have also been proposed[9]. In particular, few
authors analyzed and discussed suppressed both two- and three-photon absorptions in four-wave mixing (FWM) and
hyper-Raman scattering (HRS) in resonant coherent atomic medium via EIT[7, 8, 9].

As we know, it is easy to implement EIT in optically dense atomic medium in gases phase, but it is more difficult
to observe EIT in solid-state medium due to the short coherence times in solid-state system[1]. Nevertheless, some
investigations have demonstrated EIT effect and ultraslow optical pulse propagation in semiconductor quantum wells
(QW) structure[12]-[16]. For example, Sadeghi et al.[13], in an asymmetric QW, have shown that EIT may be obtained
with appropriate driving fields, provided that the coherence between the intersubbands considered is preserved for a
sufficiently long time. So that quantum coherence and interference in QW structures have also attracted great inter-
esting due to the potentially important applications in optoelectronics and solid-state quantum information science.
In fact, except for the investigations of EIT, Autler-Townes splitting[17], gain without inversion[18], modified Rabi
oscillations and controlled population transfer[19, 20], largely enhanced second harmonic generation[21], controlled
optical bistability[22], ultrafast all-optical switching[23], phase-controlled behavior of absorption and dispersion[24],
coherent population trapping[25], enhanced refraction index without absorption[26], FWM[27], and several other
phenomena[28]-[30], have been theoretically studied and experimentally observed in intersubband transitions of semi-
conductor QW. In addition, we take notice of the calculation of the model for an asymmetric semiconductor coupled
double quantum well[31]-[34], in which the realization of a photon switch and the optical bistability have been studied
based on quantum interference between intersubband transitions in this system[32]. The aim of our current study
is to analyze and discuss the probe absorption properties for the two cases of transient- and steady-state processes
in such system. Different from the intersubband transition in infrared region, we consider such transition in the
ultraviolet or visible region, in which it has very large dipole moment length, so the optoelectonics devices may be
realized with relatively smaller pulse intensity. Besides, Devices based on semiconductor QW structures have many
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FIG. 1: Conduction subband energy level diagram for an asymmetric coupled quantum wells consisting of a wide well (WW)
and a narrow well (NW), as shown in Ref.[33]. (a) Levels |3〉 and |4〉 are the bonding and antibonding electron state of coupled
system and Levels |1〉 and |2〉 are the localized hole states. 2∆, ωc and ωp are the energy splitting between tunnel-coupled
electronic levels, frequency of the strong coupled field and the weak probe field, respectively. (b) Corresponding to the dressed-
state picture for the case ∆c = 0: subband |2〉 couple with subbands |3〉 and |4〉 simultaneously giving rise to the three dressed
states |+〉, |0〉 and |−〉.

inherent advantages, such as large electric dipole moments due to the small effective electron mass, high nonlinear
optical coefficients, and a great flexibility in device design by choosing the materials and structure dimensions.

II. THE PHYSICAL MODEL AND EQUATIONS OF MOTION

Let us consider the asymmetric semiconductor coupled double quantum well structure consisting of 10 pairs of a
51-monolayer (145Å) thick wide well and a 35-monolayer (100Å)thick narrow well, separated by a Al0.2Ga0.8As buffer
layer[33, 34], as shown in Fig. 1. In this quantum well structure, the first (n = 1) electron level in the wide well and
the narrow well can be energetically aligned with each other by applying a static electric field, while the corresponding
n = 1 hole levels are never aligned for this polarity of the field. For transitions from the wide well and the narrow well,
the Coulomb interaction between electron and the hole downshifts the value of the electric field where the resonance
condition is fulfilled to that corresponding to the built-in field. Level |3〉 and level |4〉, respectively corresponding the
bonding state and the anti-bonding state, are tunnel-coupled new states of the first (n = 1) electron level in the wide
well and the narrow well. The energy difference 2∆ of the bonding state and anti-bonding state is determined by
the level splitting in the absence of tunneling and the tunneling matrix element, and can be controlled by an electric
field applied perpendicularly to coupled-quantum wells. Level |1〉 in the narrow well and level |2〉 in the wide well are
localized hole states.

We assume the transitions |2〉 ↔ |4〉 and |2〉 ↔ |3〉 are simultaneously driven by a strong coupling field with
the respective one-half Rabi frequencies Ωc = µ42Ec/2~ and (Ωcµ32)/µ42. At the same time, a weak probe field is
applied to the transitions |1〉 ↔ |4〉 and |1〉 ↔ |3〉 simultaneously with the respective Rabi frequencies Ωp = µ41Ep/2~

and (Ωpµ31)/µ41. Ec and Ep are the amplitude of the strong-coupling field and the weak probe field, respectively.
µij = µij ·êL is the dipole moment for the transition between levels |i〉 and |j〉 with êL being the unit polarization vector
of the corresponding laser field. In schrödinger picture and in rotating-wave approximation (RWA), the semiclassical
Hamiltonian describing the system under study can present as

H =

4∑

j=1

Ej |j〉 〈j| − ~(kΩce
−iωct |3〉 〈2| + Ωce

−iωct |4〉 〈2| + qΩpe
−iωpt |3〉 〈1| + Ωpe

−iωpt |4〉 〈1| + H.c.). (1)

Here Ej = ~ωj is the energy of the subband level |j〉 (j = 1, 2, 3, 4), and the parameters k = µ32/µ42, q = µ31/µ41
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represent the ratios between the dipole moments of the subband transitions. Working in the interaction picture,
utilizing RWA and the electric-dipole approximation (EDA), we derive the interaction Hamiltonian for the system as
(assuming ~ = 1)

HI = (∆c−∆p) |2〉 〈2|−(∆p +∆) |3〉 〈3|+(∆−∆p) |4〉 〈4|+(Ωc |4〉 〈2|+kΩc |3〉 〈2|+Ωp |4〉 〈1|+qΩp |3〉 〈1|+H.c.), (2)

with H0 = (ωp − ωc) |2〉 〈2| + ωp |3〉 〈3| + ωp |4〉 〈4|, ∆c = ωc + ω2 − ω0, ∆p = ωp − ω0, ω0 = 1
2
(ω4 + ω3) and

∆ = (E4 − E3)/2. ∆p is the detuning between the frequency of the probe field and the average transition frequency
ω0, ∆c is the detuning between the frequency of the strong-coupling field and the average frequency. It should be
emphasized that the electron sheet density of the quantum well structure is such that electron-electron effects have
very small influence in our results. Therefore, the effects of electron-electron interactions are not considered in this
present work. Besides, we have regarded the E1 as the energy origin. For simplicity, we assume that the Rabi
frequency of external field Ωc and Ωp are real. Based on the equation of motion for density operator in the interaction
picture (∂ρ/∂t = −i[HI , ρ] + Λρ), we can easily derive the density matrix equations of motion as follows

∂ρ44

∂t
= iΩc(ρ24 − ρ42) + iΩp(ρ14 − ρ41) − (2γ41 + 2γ42)ρ44 −

κ

2
(ρ34 + ρ43), (3)

∂ρ33

∂t
= ikΩc(ρ23 − ρ32) + iqΩp(ρ13 − ρ31) − (2γ31 + 2γ32)ρ33 −

κ

2
(ρ34 + ρ43), (4)

∂ρ22

∂t
= ikΩc(ρ32 − ρ23) + iΩp(ρ42 − ρ24) − 2γ21ρ22 + 2γ32ρ33 + 2γ42ρ44, (5)

∂ρ34

∂t
= iωsρ34 + ikΩcρ24 + iqΩpρ14 − iΩcρ32 − iΩpρ31 − Γ34ρ34 −

κ

2
(ρ44 + ρ33), (6)

∂ρ24

∂t
= i(∆ − ∆c)ρ24 + iΩc(ρ44 − ρ22) + ikΩcρ34 − iΩpρ21 − Γ24ρ24 −

κ

2
ρ23, (7)

∂ρ14

∂t
= i(∆ − ∆p)ρ14 + iΩp(ρ44 − ρ11) + iqΩpρ34 − iΩcρ12 − Γ14ρ14 −−κ

2
ρ13, (8)

∂ρ23

∂t
= −i(∆ + ∆c)ρ23 − iqΩpρ21 + iΩcρ43 + ikΩc(ρ33 − ρ22) − Γ23ρ23 −

κ

2
ρ13, (9)

∂ρ13

∂t
= −i(∆ + ∆p)ρ13 + iΩpρ43 − ikΩcρ12 + iqΩp(ρ33 − ρ11) − Γ13ρ13 −

κ

2
ρ24, (10)

∂ρ12

∂t
= i(∆c − ∆p)ρ12 − ikΩcρ13 + iqΩpρ32 − iΩcρ14 + iΩpρ42 − Γ12ρ12 −

κ

2
ρ14, (11)

together with ρij = ρ∗ji and the carrier conservation condition ρ11 + ρ22 + ρ33 + ρ44 = 1. Here the population

decay rates γil (life broadening) and the dephasing decay rates γdph
ij (dephasing line width corresponding to the

respective transitions) are added phenomenologically in the above equations with the total decay rates (line width)

being Γ12 = γdph
12 + γ2l

2
, Γ13 = γdph

13 + γ3l

2
, Γ14 = γdph

14 + γ4l

2
, Γ23 = γdph

23 + γ2l+γ3l

2
, Γ24 = γdph

24 + γ2l+γ4l

2
, and

Γ34 = γdph
34 + γ3l+γ4l

2
, where γil is determined by longitudinal optical (LO) phonon emission events at low temperature,

the γdph
ij is determined by electron-electron, interface roughness, and phonon scattering processes[16]. The population

decay rates can be calculated, and as we know, the initially nonthermal carrier distribution is quickly broadened
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FIG. 2: Transient absorption and amplification response for a probe laser field with parameters being Ωp = 0.01γ, ∆ = γ,

∆c = ∆p = 0, γ3l = γ4l = 0.4γ, γdph
14

= γdph
24

= γdph
13

= γdph
23

= 0.1γ.

due to inelastic carrier-carrier scattering, with the broadening rate increasing as carrier density is increased. For the

temperatures up to 10 K, the carrier density smaller than 1011 cm−2, the dephasing decay rates γdph
ij can be estimated

according to Ref.[23]. Besides, the dephasing-type broadening κ =
√

γ3lγ4l denotes the cross coupling of states |4〉
and |3〉 via the LO phonon decay. A more complete theoretical treatment taking into account these process for the
dephasing rates is though interesting but beyond the scope of this paper.

In the following analysis, we choose the parameters are set to be µ32 = µ42 = µc and µ31 = µ41 = µp (i.e. k = 1
and q = 1); and we take Γ12 = 0 for the lifetime of levels |2〉 and |1〉 according to the Ref.[35]. By a straightforward
semiclassical analysis, the above matrix elements can be used to calculate the total linear complex susceptibility χ of
the probe transitions |1〉 → |3〉 and |1〉 → |4〉, i.e.

χ =
N |µp|2 (ρ13 + ρ14)

2~ε0Ωp

, (12)

where N is the electron number density in the medium and ε0 is the permittivity of free space. Based on the
Eq. (12), one can find that the gain-absorption coefficient for the probe field coupled to the transitions |1〉 ↔ |3〉
(|4〉) is proportional to the term Im(ρ13 + ρ14) in the limit of a weak probe field. Im(ρ13 + ρ14) > 0 presents the
absorption of the probe field, Im(ρ13 + ρ14) < 0 presents the amplified of the probe field. In the following, we
investigate the absorption properties of such a weak probe field for the transient- and steady-state processes. We
begin by solving numerically the time-dependent differential equations (3)-(11) by using Runge-Kutta algorithm with
the initial conditions ρ11(0) = 1, ρ22(0) = ρ33(0) = ρ44(0) = 0 and ρij(0) = 0 for i 6= j (i, j = 1, 2, 3, 4). Note that,

the parameters Ωc, Ωp, ∆c, ∆p, ∆, γij , γdph
ij are defined as units of γ in this present paper.

III. THE PROBE ABSORPTION UNDER THE TRANSIENT-STATE PROCESS

Firstly, we examined the probe absorption under the transient-state process by using different sets of parameters.
We show in Fig.2 the time evolution of the absorption coefficient Im(ρ13 +ρ14) under the Raman resonant condition

∆c = ∆p with the parameters-value Ωp = 0.01γ, Ωc = 4γ, ∆ = γ, γ3l = γ4l = 0.4γ and γdph
14 = γdph

24 = γdph
13 = γdph

23 =
0.1γ. The probe field shows the oscillatory behavior versus the time before reaching the steady state, which just like
in high density atomic system. The probe absorption increases rapidly to a maximum peak value, then it decreases
gradually to a peak value and again increases with increase of the evolution time, up to a negative large steady-state
value below the zero-absorption line. Comparing with the three-level EIT system, the transient behavior of the probe
field can be tuned by adjusting the coherent tuneling (coupling) between the two upper levels |3〉 and |4〉 across a
thin barrier, we can expect that the coupling strength, i.e., the energy splitting 2∆, must play an important role in
controlling the transient behavior of the probe field in such an asymmetric double QW system.

We show in Fig.3 the magnitudes of the transient absorption of the probe field versus the probe detuning ∆p/γ. At
the line center of the probe transition ∆p = 0, the magnitude of the transient absorption of the probe field at point A
corresponding to the splitting 2∆ is much smaller than the magnitude of the probe field at point B for the three-level
EIT corresponding to ∆ = 0. With appropriate values of parameters we obtain the absorption spectra shown in Fig.4
for different intensities of the strong-coupling field. With the increasing the intensity of the strong-coupling field, the
absorption deep of the probe field moves small accordingly, as expected for coherent EIT. At the same time, with a
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FIG. 3: The probe absorption as a function of dimensionless probe detuning ∆p/γ for the transition under the condition
of transient-state process. Solid red curve: ∆ = 0; dot green curve: ∆ = γ. Other fitting parameters used are Ωc = 2γ,
Ωp = 0.01γ, ∆c = 0, γ3l = γ4l = 0.4γ, γdph

14
= γdph

24
= γdph

13
= γdph

23
= 0.1γ.
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FIG. 4: Imaginary part of the susceptibility of the probe transition as a function of dimensionless detuning ∆p/γ under the
condition of transient-state process with Ωc = 1.5γ (blue line), Ωc = 2γ (green line) and Ωc = 1γ (red line). Other parameters

are Ωp = 0.01γ, ∆ = γ, ∆c = 0, γ3l = γ4l = 0.4γ, γdph
14

= γdph
24

= γdph
13

= γdph
23

= 0.1γ.

larger intensity of the control field the transparency width increases, which corresponds to the splitting between the
two upper levels |3〉 and |4〉. From the above analysis, we can conclude that the probe absorption at the line center
(∆p = 0) can be considerably suppressed due to the fact of the splitting 2∆.

The calculated probe absorption coefficient of such a weak probe laser versus the splitting (2∆) between |3〉 and
|4〉 for the probe and coupling laser detunings ∆p = ∆c = 0 is shown in Fig.5, in which the dashed red line stands
for the magnitude of the probe absorption for the standard three-level EIT and the positions C and D correspond to
the minimum of the probe absorption. We observe that the magnitude of the transient absorption of the probe field
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FIG. 5: The probe absorption as a function of dimensionless splitting ∆/γ between |3〉 and |4〉 under the condition of
transient-state process (green curve). The dashed red line stands for the magnitude of the probe absorption for the three-
level EIT at ∆p = ∆c = 0. Other fitting parameters used are ∆p = 0, ∆c = 0,Ωp = 0.01γ, Ωc = 2γ γ3l = γ4l = 0.4γ,

γdph
14

= γdph
24

= γdph
13

= γdph
23

= 0.1γ.
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FIG. 6: The probe transition as a function of dimensionless detuning ∆p/γ under the condition of transient-state process
for the Ramman resonance ∆c = ∆p (green curve). The dashed line stands for the magnitude of the probe absorption
for three-level EIT at ∆c = ∆p = 0. Other fitting parameters being Ωp = 0.01γ, Ωc = 2γ, ∆ = γ, γ3l = γ4l = 0.4γ,

γdph
14

= γdph
24

= γdph
13

= γdph
23

= 0.1γ.

with the inclusion of the splitting 2∆ is almost lower than the magnitude of the probe absorption with the three level
EIT at ∆p = ∆c = 0. As shown in Fig.6, we plot absorption profiles versus the probe detuning ∆p in the case of
two-photon Raman resonance ∆p = ∆c. For this case, we find that the maximal absorption peak is always located
below the the probe absorption of the standard three-level EIT.

IV. THE PROBE ABSORPTION UNDER STEADY-STATE CONDITION

Then we examined the probe absorption under the steady-state condition, i.e., ∂ρij/∂t = 0. The general steady-
state solutions for Eqs. (3)-(11) can be derived analytically (analyzing with two resonant coupling and probe fields),
but the tedious and intricate expressions for the solutions corresponding to the situation of an off-resonant coupling
field offers no clear physical sight. So we performance the numerical calculation here. The present process is most
clearly understood according to the dressed states produced by the strong coupling field ωc as shown in Fig. 1(b),
i.e., the transitions |2〉 ↔ |3〉 and |2〉 ↔ |4〉 together with the coupling field are treated as a total system forming the
dressed states. Under the action of the strong coherent coupling field, levels |3〉 and |4〉 should be split into three
dressed-state levels |±〉 and |0〉. The energy eigenstates of the dressed states for the ∆c = 0 case are written as follows

|+〉 = − Ωc√
∆2 + 2Ω2

c

|2〉 − 1

2

∆ −
√

∆2 + 2Ω2
c√

∆2 + 2Ω2
c

|3〉 +
1

2

∆ +
√

∆2 + 2Ω2
c√

∆2 + 2Ω2
c

|4〉 , (13)

|0〉 =
∆√

∆2 + 2Ω2
c

|2〉 − Ωc√
∆2 + 2Ω2

c

|3〉 +
Ωc√

∆2 + 2Ω2
c

|4〉 , (14)

|−〉 =
Ωc√

∆2 + 2Ω2
c

|2〉 +
1

2

∆ +
√

∆2 + 2Ω2
c√

∆2 + 2Ω2
c

|3〉 − 1

2

∆ −
√

∆2 + 2Ω2
c√

∆2 + 2Ω2
c

|4〉 . (15)

The corresponding energy eigenvalues are given by λ0 = 0 and λ± = ±
√

∆2 + 2Ω2
c . And the dressed-state transition

dipole moments can be derived as: µ+1 = 〈+|P |1〉 = µp, µ01 = 〈0|P |1〉 = 0, µ−1 = 〈−|P |1〉 = µp, where
P = µp(|3〉 〈1| + |4〉 〈1|) represents the polarization operator of the probe transition.

Based on the above analysis, it is straightforwardly shown that the transition between dressed-levels |0〉 and |1〉
is forbidden due to the couplings of |1〉 ↔ |3〉 and |1〉 ↔ |4〉. As shown in Fig.7, we can observe two symmetric
absorption peaks with same amplitude on the probe spectra in the case of ∆c = 0 because of the relation µ+1 = µ−1.
The two absorption peaks correspond respectively to the dressed-state transitions |1〉 ↔ |+〉 and |1〉 ↔ |−〉, so the

peaks are always located at ∆p = ±
√

∆2 + 2Ω2
c , and the difference between them becomes larger with increasing Ωc.

Since the transition |1〉 ↔ |0〉 in the dressed-state picture is interference-cancelled out and this interference always
makes a negative contribution to the probe absorption, thus it is easy to understand that the probe absorption at
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FIG. 7: Imaginary part of the susceptibility of the probe transition as a function of dimensionless detuning ∆p/γ under the
condition of steady-state process with Ωc = 2γ (blue curve), Ωc = 3γ (green curve) and Ωc = 4γ (red curve). Other parameters

used are Ωp = 0.01γ, ∆ = γ, ∆c = 0, γ3l = γ4l = 0.4γ, γdph
14

= γdph
24

= γdph
13

= γdph
23

= 0.1γ.
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FIG. 8: Imaginary part of the susceptibility of the probe transition as a function of dimensionless detuning ∆p/γ under the
condition of steady-state process for the Raman resonance (∆c = ∆p) with the parameters being Ωp = 0.01γ, Ωc = 4γ, ∆ = γ,

γ3l = γ4l = 0.4γ, γdph
14

= γdph
24

= γdph
13

= γdph
23

= 0.1γ.

the line center can be approximately equal to zero, i.e., the probe absorption can be completely suppressed, so that
the absorption peak at the line center is too small to be observed. As shown in Fig.8, we plot the probe absorption
profile versus the probe detuning ∆p. One can find that the probe absorption spectra are always approximately equal
to zero within the range of the splitting 2∆ between two tunnel-coupled levels (|3〉 and |4〉). This means that if the
two-photon Raman resonance is satisfied (∆p = ∆c), we can observe the transparency window without requiring one-
or two-photon detunings exactly vanish.

V. DISCUSSIONS AND CONCLUSION

We now give a brief discussion on the practical setup. The asymmetric semiconductor coupled double QW structure,
considered here, consists of 10 pairs of a 51-monolayer (145Å) thick wide well and a 35-monolayer (100Å)thick
narrow well, separated by a Al0.2Ga0.8 As buffer layer, as shown in Fig. 1. The probe field propagates in the
polarization direction. As in the report in Ref.[33], we consider a transverse magnetic polarized probe incident at

an angle of 45 degrees with respect to the growth axis so that all transition dipole moments include a factor 1/
√

2
as subband transitions are polarized along the growth axis. In the sections III and IV, all the calculations have

assumed that the parameters Ωc, Ωp, ∆c, ∆p, ∆, γij , γdph
ij are defined as units of γ in this present paper. By setting

γ = 1.25THz, the corresponding parameters value in the present paper are respectively as γ3l = γ4l = 0.5THz,

γdph
14 = γdph

24 = γdph
13 = γdph

23 = 0.125THz, Ωp = 0.0125THz, The maximal value of Ωc is about 5THz, which can be
realized with current experimental technology [33].

In conclusion, in the present paper, we have analyzed and discussed the probe absorption properties in a tunnel-
coupled double quantum wells under the conditions for the transient regime and the steady-state process by using the
detailed numerical simulations based on the density matrix equations (3)-(11). Besides, we analytically analyze probe
absorption mechanism for the steady-state process in the dressed-state picture. In the steady-state process, we show
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that the probe absorption can be largely suppressed with the coupling field resonance (∆c = 0), and be eliminated
completely under the condition of Raman resonance (∆p = ∆c) within the range of the 2∆. In the transient-state
process, we show that the magnitude of the probe absorption at the line center of the probe transition ∆p = 0 can be
greatly suppressed. Comparing with the EIT scheme in the three-Level QW structures[12]-[14], our results show that
the transparency hole is much broader due to the fact that the existence of the tunnel-coupling splitting 2∆. Besides,
we do not require that the one- or two-photon detunings is exactly zero. As a result, the present investigation confirm
the possibility of obtaining EIT in solids by using asymmetric tunnel-coupled QW. Our calculations also provide a
guideline for the optimal design to achieve very fast and low-threshold all-optical switches in such semiconductor
systems which is much more practical than that in atomic system because of its flexible design and the controllable
coherent coupling strength.
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