1703.09890v1 [quant-ph] 29 Mar 2017

arXiv

Optical Density-Enhanced Squeezed Light Generation without Optical Cavities

You-Lin Chuang,!'? Ray-Kuang Lee,1*2>3*4ﬁ and Tte A. Yu?ff
! Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan
2 Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 300183, Taiwan
3 Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
4 Frontier Research Center on Fundamental and Applied Sciences of Matters,
National Tsing Hua University, Hsinchu 30013, Taiwan

To achieve high degree of quantum noise squeezing, an optical cavity is often employed to enhance
the interaction time between light and matter. Here, we propose to utilize the effect of coherent
population trapping (CPT) to directly generate squeezed light without any optical cavity. Combined
with the slow propagation speed of light in a CPT medium, a coherent state passing through an
atomic ensemble with a high optical density (OD) can evolve into a highly squeezed state even in
a single passage. Our study reveals that noise squeezing of more than 10 dB can be achieved with
an OD of 1,000, which is currently available in experiments. A larger OD can further increase the
degree of squeezing. As the light intensity and two-photon detuning are key factors in the CPT
interaction, we also demonstrate that the minimum variance at a given OD can be reached for a
wide range of these two factors, showing the proposed scheme is flexible and robust. Furthermore,
there is no need to consider the phase-matching condition in the CPT scheme. Our introduction of
high OD in atomic media not only brings a long light-matter interaction time comparable to optical
cavities, but also opens new avenue in the generation of squeezed light for quantum interface.

Even though Heisenberg uncertainty relation sets a
fundamental limit on the quantum fluctuations, the noise
of light at certain phases can be squeezed to fall below
that of the vacuum state ﬂ] Generation of squeezed
light has provided the platform to test quantum physics
from the very beginning E] Now as true applications,
this non-classical state has also been used to enhance
quantum metrology E, @] and future gravitational wave
detection ﬂa, ] Quantum noise squeezing has been re-
alized in a variety of physical settings from optical para-
metric process ﬂg—@], four-wave mixin 13], cavity-
QED ﬂﬂ], soliton propagation ﬂﬁ, ﬁ], Bose-Einstein
condensate ﬂﬂ], and optomechanical system HE, ]

With the process of degenerate parametric down-
conversion in a nonlinear crystal placed inside an optical
cavity, optical parametric oscillator (OPO) and optical
parametric amplification (OPA) have provided efficient
routines to produce high degree of squeezing. In partic-
ular, 12.7 dB squeezing below vacuum fluctuation with
a zero-area Sagnac interferometer was implemented, and
may lead to advanced gravitational-wave detectors ﬂa]
Assisted by a doubly resonant, nonmonolithic OPA cav-
ity, up to 15 dB squeezing was observed as the state-
of-the-art technology B] Further enhancement on the
degree of squeezing can be achieved with periodically
poled nonlinear crystals, via the time-delayed coherent
feedback ﬂﬂ], or by using periodically modulated driving
fields [10].

Before being produced with the optical parametric pro-
cess in a nonlinear crystal ﬂ], squeezed light was first re-
alized through the four-wave mixing process in an atomic
vapor ﬂﬂ] Although merely 0.3 dB squeezing was de-
tected at that time, by considering twin-beam squeezing
in the double-A transition scheme, 8 dB squeezing was
achieved with a vapor of rubidium atoms later ﬂj In
the system of electromagnetically induced transparency
(EIT), not only slowing down but also storing and re-
trieving squeezed-state light pulses have been studied
theoretically and experimentally m—lﬂ] The EIT sys-

tem plays a unique role as the quantum interface, because
of its long-lived atomic ground states associate with the
spin coherence @, @] However, it is not favorable for
the direct generation of squeezed light due to its lack of
nonlinear interaction between slow light and the medium.

Inspired by the recent experimental advance of high op-
tical density or depth (OD) in atomic ensembles [30-132],
in this Letter, we study the direct generation of squeezed
light under the coherent population trapping (CPT) con-
dition ﬂﬁ, @] The CPT system is very similar to the
EIT system, formed by the A-type transition scheme as
shown in Fig. 1, except that its two optical fields have
compatible intensities. Without any optical cavity, we
show that a large OD in the CPT system not only results
in a very long light-matter interaction time arising from
the slow-light effect, but also benefits to the generation
of highly-squeezed light induced by the two-photon de-
tuning in the system. Compatible to optical parametric
processes, an enhancement of more than 10 dB squeez-
ing is exhibited at the output fields with an OD of 1,000.
Moreover, the obtained squeezing is available for a wide
range of input light intensity and two-photon detuning,
and does not require the consideration of phase-matching
condition. With such highly-squeezed light generated at
the output fields, combined with the inherent capability
of storage and retrieval of quantum information carried
by light, our work may open a renewed interest in quan-
tum noise reduction, quantum memory, and quantum in-
formation manipulation with atomic ensembles.

The CPT system consists of two optical fields interact-
ing with a three-level A-type system as shown in Fig. 1.
The two fields, named probe and coupling, drive the tran-
sitions of |1) — |3) and |2) — |3), respectively. Under
the rotating-wave approximation, the interaction Hamil-
tonian of the system is

H = —h[Apb3s(z,t) + (Ap — A)daa(2,1)]
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FIG. 1: Energy levels and excitations in the CPT system. |1)
and |2) are ground states; |3) is an excited state. The probe
and coupling fields have the compatible Rabi frequencies of
Qp and Q., and the detunings of A, and A.. They propagate
in the same direction and interact with an atomic ensemble.

where A, and A, are the probe and coupling detun-
ings, ;5 = |i){j] (4,7 = 1,2,3) is the atomic operator
whose expectation value corresponds to an element of
the density-matrix operator, and €, (z,t) and Q.(z, t) are
the field operators whose expectation values correspond
to the probe and coupling Rabi frequencies, respectively.
We define 6 (= A, — A.) as the two-photon detuning.

According to the Hamiltonian in Eq. (), we can write
down the corresponding Heisenberg-Langevin equations
for atomic operators as follows.

0 . R 1 7. . .
EUML = —Tuoss+ ih [UuwH} + Fup, (2)
o . R 1 7. . .
&U,uu = YO + E |:O',uu;H:| “"F,ul/v (,LL 7£ V) (3)

where v, (¢, v = 1,2,3) is the relaxation rate of the
coherence between states |u) and [v), T'), is the decay
rate of the population, and F;w is the Langevin noise
operator obtained by taking the fluctuation-dissipation
theorem into consideration. In this work, we consider
Y12 is negligible ﬂﬁ] Since I' represents the spontaneous
decay rate of the excited state |3), I's = T' and o3 =
~v3 = I'/2. The decay rates of |3) — |1) and [3) — |2)
are set the same and, consequently, —I'y = —T'y = T'/2.
The complete equations can be found in Sec. I of the
Supplemental Material.

The propagations of the probe and coupling fields fol-
low the Maxwell-Schrodinger equations given by

10 0\ 4 Ta) .

(cat—’—&)g = (2L) 013, (4)
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where a and L are the OD and length of the medium.
For simplicity, we use the same OD in the above two
equations under the assumption that the electric dipole
moments of probe and coupling transitions are equal.

To calculate the variances of output fields, we apply
the mean-field expansion to operators, i.e., each opera-
tor A is divided into two parts as A = A + a, where
A represents the mean-field value and a corresponds to

the fluctuation operator. Then, one can linearize Egs. (2)
and (B) to arrive at the following equations for the atomic

fluctuation operators.
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where 3;;, 1, and 7, are the fluctuations of &;;, Q, and
., respectively. Similarly, from Eqs. @) and (B) we can
have the equations for the fluctuation operators of probe

and coupling fields as follows.
Ta
( 2L) 813, (12)
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When steady-state or continuous-wave cases are con-
sidered, all the time derivative terms in Eqs. (@)-(I3) are
dropped in the calculation. The procedure of solving
these coupled equations is described in Secs. IIT and IV
of the Supplemental Material. After obtaining the solu-
tion of Egs. ([@)-(I3]), we focus on the quadrature variance
(AX?) of the output probe field, where

X(0) =e "?a, + e’ T (14)

In the above expression, 6 is the quadrature angle and
ap, = Up/g (with g being the single-photon Rabi fre-
quency) is the dimensionless fluctuation operator of the
probe field. By scanning all quadrature angles, one can
find an optimum quadrature angle, f,p¢, which minimizes
the quadrature variance. The variance at O,p¢, i.e. degree
of squeezing or simply squeezing, is given by

V = (AX?(0opr)) = —l{ap)| = [(a}?)] +2(a}ay) +1, (15)

= Arg[(az)]/2.

It is known that OD of the system («), two-photon de-
tuning (¢), and input Rabi frequencies of the light fields
(Q, and Q) are the key factors for the CPT nonlinear-
ity. Consequently, the output squeezings of probe and
coupling fields are the functions of these three physical
parameters. Since the output squeezings depend signifi-
cantly on the two-photon detuning of two fields but neg-
ligibly on the one-photon detuning of individual field (A,

while fop
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FIG. 2: Output variance V, defined in Eq. (IH), as functions
of input Rabi frequency €2 and two-photon detuning 6. In
(a), a (i.e. OD) = 1,000 and § = 0.02T'; in (b), a = 1,000
and 2 = 1.0I". The values of minimum variance or maximum
squeezing in the two plots are nearly the same. Qopt (Or dopt )
is the optimum input Rabi frequency (or the optimum two-
photon detuning) that minimizes V' under a fixed § (or Q).

or A.), we consider an asymmetric detuning setting, i.e.,
A, = —A. = §/2. We also set Q, = Q. = Q, which
makes the output squeezing of two fields the same. This
enables us to report only on the output squeezing of the
probe field.

When OD and two-photon detuning are fixed, there
exists an optimum input Rabi frequency of light fields
to maximize the output squeezing, as demonstrated in
Fig. 2(a). The result can be expected by considering the
competition between the CPT nonlinearity and light at-
tenuation. A smaller Rabi frequency increases the propa-
gation delay time, i.e., the light-matter interaction time,
enhancing nonlinear efficiency to improve the squeezing.
On the other hand, a smaller Rabi frequency also causes
a larger attenuation of the light under a nonzero two-
photon detuning, adding more noises into the system to
undermine the squeezing. Hence, a suitable or an opti-
mum input Rabi frequency Qqp¢ produces a long interac-
tion time while keeping the attenuation low, resulting in
the best squeezing Vi, of the output field.

Similarly, for a given set of OD and input Rabi fre-
quency, there exists an optimum two-photon detuning
to maximize the output squeezing, as demonstrated by
Fig. 2(b). At the zero two-photon detuning, the CPT
medium becomes completely transparent and there is
no nonlinear interaction in the system, resulting in no
squeezing at all. A nonzero two-photon detuning intro-
duces the nonlinear interaction and produces the squeez-
ing. However, the two-photon detuning is also accompa-
nied by the attenuation of light, introducing noise to the
system. A suitable or an optimum two-photon detuning
dopt Produces a large nonlinearity while keeping the at-
tenuation low, resulting in the best squeezing Vipi,s of
the output field.

The arguments in the previous two paragraphs, along
with the results illustrated in Fig. 2, can also be sup-
ported by the equation of field operator. Using Eqs. (@)-
(@), one can achieve

a . X . . . .
a_gap:Pap—i—QaL—i—Rac—f—SaI"i‘fl& (16)

where £ = z/L is the dimensionless length, a. = 4./g is

3

similar to the definition of a,, flg is the corresponding
noise operator, and coefficients P, @), R, and S are func-
tions of OD (), Rabi frequency (), and two-photon
detuning (6). When considering a typical CPT experi-
ment, we have the condition of [§|I" < Q2. Under this
condition, the magnitudes of P, R, and S are small as
compared with that of Q). To estimate the output squeez-
ing, we drop the terms of Pa,, Rac, and Sa! in Eq. (],
and assume the Rabi frequency of light fields is approxi-
mately constant. Then, the estimation of output squeez-
ing is given by

V=209l (17)
T
@l =19l (352)- (18)

One can immediately see that a larger |§| makes |Q| larger
to enhance the squeezing. Since al'/(49?) is just the
propagation delay time of light fields in the CPT system,
the above two equations indicate that a smaller € or a
longer delay time makes a larger |@Q| or a higher degree of
squeezing. To see the effect of light attenuation, we put
back the term of Pa, and obtain the output squeezing as
the following:

V=e29 ¢ (1 - 6_2|Q|) , (19)
r|é
€~ % (20)

Note that €2 is just proportional to the absorption cross
section in the CPT system. Hence, either a smaller (2
or a larger 0 can introduce more dissipation for the light
field, and add more noise into the system to decrease the
squeezing. The analytical expression in Eq. ([[9) quali-
tatively explains the behaviors of the numerical results
shown in Figs. 2(a) and 2(b).

Since available ODs in experiments are various, we are
interested in maximum achievable squeezings at differ-
ent values of OD. Figures 3(a) and 3(c) illustrate Vopt 0
and Qgp¢ as functions of the two-photon detuning, where
Vopt,o is the maximum squeezing obtained by scanning
all input Rabi frequencies. Similarly, Figs. 3(b) and 3(d)
show Vope,s and dopt as functions of the input Rabi fre-
quency, where Vp¢ 5 is the maximum squeezing obtained
by scanning all two-photon detunings. At a given OD,
a rather large range of the value of Rabi frequency or
two-photon detuning can achieve similar squeezing as
shown by Figs. 3(a) and 3(b). This is expected from
Egs. (¥)-@0). Both |Q| and e depend only on §/Q2.
Thus, a fixed ratio of two-photon detuning to Rabi fre-
quency square results in similar squeezing. Furthermore,
the relation between Qgpt and ¢ (or between y/dopt and
) forms a straight line in Fig. 3(c) [or 3(d)], confirming
the above argument. Since the two-photon detuning and
input Rabi frequency are easily tunable in experiments,
our results imply that the proposed single-passage CPT
scheme is very flexible and robust.

A larger OD can always produce smaller variance or
larger squeezing as demonstrated by Figs. 3(a) and 3(b).
Such result can be understood with the help of Eq. (9.
When the squeezing becomes large, |Q] must be large to



T T ] I ARG RERRE AR RAREN
o '5_-.@:2 ....................... = '5—_(@ ..... TSRO RtILL 4
= ] _18 7 .
o i m o= = ] \(2 I = ]
£10- 4 £-10 ]
] P _:
154 ] 154 ]
AL I B < DAL RRARE R AR
153(c) 2 3. 033(d) JASE
8] s 1~ ] R
= 104 ’ 1% 024 oo
[ s 1 5 e i
S 54 - 1€o01d T -7
= -3 ] 2~"- ]
] 152~ ]

0 0.0 e
0.00 0.02 0.04 0.06 0.08 00 05 10 15 20

3/T Q/T

FIG. 3: Optimized squeezing at different ODs. Black dot-
ted, green dashed-dotted, blue solid, and red dashed lines
represent OD’s values of 100, 300, 1,000, and 3,000, respec-
tively. (a) The maximum squeezing obtained by scanning all
input Rabi frequencies, Vipi,0, as a function of two-photon
detuning J; (c) the corresponding Qopt versus 6. (b) The
maximum squeezing obtained by scanning all two-photon de-
tunings, Vopt,s, as a function of input Rabi frequency €2; (d)
the corresponding Jopt versus 2.

make exp(—2|Q|) small, and Eq. (I9) approximates to
V=e?1e¢ (21)

One can set a smaller value of € by using either a larger
input Rabi frequency or a smaller two-photon detuning.
At the same time, one can also make the value of ae
larger or exp(—ae/2) smaller by increasing o (OD). Both
the first and second terms in the above equation become
smaller due to a larger OD and, consequently, the degree
of squeezing is enhanced. This is the underlying mech-
anism of OD-enhanced squeezed light generation. Note
that since € is small and the absorption cross section is
proportional to €? in the CPT system, the probe and
coupling transmissions of the data shown in Figs. 3(a)
and 3(b) are all larger than 88%. With an OD of 1,000,
which is accessible by the current technology @@], we
predict that squeezing of 11 dB can be achieved. This re-
sult demonstrates that the performance of our proposed
single-passage CPT scheme is comparable to the state-
of-the-art schemes with optical cavities ﬂa, ]

It is worth to note that the degree of squeezing is
affected by relative magnitudes of the probe and cou-
pling Rabi frequencies, Q, and .. In the CPT case
of , = Q. = ) discussed here, the squeezing is most
prominent. In the EIT case of 2, < (), the squeezing
disappears.

We have shown the steady-state quantum fluctuation
of output probe field based on the single-passage OD-
enhanced CPT scheme. In general, fluctuation is time-
dependent. We will discuss the frequency spectrum of
output variance under the condition that the squeezing
is maximized at the center frequency of probe field. The
calculation procedure of spectra can be found in Sec. V of
the Supplemental Material. Figures 4(a) and 4(b) show
the spectra of squeezing versus noise frequency (w) at OD
of 1,000, with two sets of the two-photon detuning (§) and
the input Rabi frequency (€2). Both sets are optimum
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FIG. 4: Squeezing spectra of the probe field, i.e. output vari-
ance V as functions of noise frequency w. (a) a (OD) = 1,000,
Q (input Rabi frequency) = 1.0I', and ¢ (two-photon detun-
ing) = 0.01T; (b) a = 1,000, Q = 1.4T", and 6 = 0.019T; (c)
a =300, Q = 1.0I', and § = 0.019T"; (d) o = 300, Q = 1.4T",
and § = 0.043T". The four sets of 2 and § all optimize the
squeezing at w = 0. In each spectrum, the quadrature angle
is kept the same.

and have the same ratio of § to Q2 that maximizes the
squeezing at w = 0. Similarly, Figs. 4(c) and 4(d) show
the spectra at OD of 300 with two sets of the optimum
0 and €.

The four spectra in Fig. 4 have different bandwidths.
At a given OD («), a larger input Rabi frequency (or
equivalently a larger two-photon detuning because the
ratio of § to Q2 is fixed) makes the spectrum band-
width larger. We estimate that the bandwidth approx-
imately follows the formula of Q2/(v/2al'). This com-
pletely makes sense, because the width of the CPT trans-
parency window is just proportional to Q2/(y/al’). As for
a frequency outside the transparency window, severe at-
tenuation of the light fields adds much noise to destroy
the squeezing.

Oscillation behavior is clearly seen in the four spectra
of Fig. 4. The comparison between Figs. 4(a) and 4(c)
[or between Fig. 4(b) and 4(d)] shows a larger OD makes
the oscillation period shorter. In addition, the compari-
son between Figs. 4(a) and 4(b) [or between Fig. 4(c) and
4(d)] shows a larger input Rabi frequency (or equivalently
a larger two-photon detuning) also makes the oscillation
period longer. We estimate that the oscillation period
roughly follows the formula of 27 x [2Q%/(al')]. In other
words, the phase of the oscillation ¢ is approximately
equal to [al'/(29?)]w. In the CPT system, the propa-
gation time of light (or light-matter interaction time) ¢4
is about al'/(492?). Therefore, ¢ ~ 2wt,, indicating the
light-matter interaction time plays an important role in
the oscillation behavior.

In summary, through the effect of coherent population
trapping (CPT), we have proposed a new concept for the
generation of squeezed light from coherent inputs in a
single passage. The CPT nonlinearity can be greatly en-
hanced by the optical density (OD) of the system. An
OD of 1,000, which is accessible by the current technol-
ogy, produces the squeezing of 11 dB, and a larger OD
can further increase the squeezing. Since the maximum



achievable squeezing of a given OD is rather insensitive
to the input Rabi frequency or the two-photon detuning
individually, both of which are the key parameters in the
CPT nonlinearity, the proposed scheme is very flexible
and robust. Our study also reveals that the bandwidth
in the output squeezing spectra is mainly determined by
the width of the CPT transparency window. Combined
with light storage and retrieval, squeezed light directly
generated from high-OD CPT media has great poten-
tials in the applications of quantum optics and quantum
information manipulation utilizing continuous variables.
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I. THE HEISENBERG-LANGEVIN EQUATIONS

The derivations to calculate output quadrature variance of fields in the steady-state region are addressed here.
First of all, we start with the Heisenberg-Langevin equations for atomic operators &, from the Hamiltonian given in
Eq. (1) of the main text, i.e.,

0 r . i . P .

&031 = — <§ + ZAP) 031 — 5(0’11 — O'gg)Q 59 021 + Fi1, (Sl)
J . r . i Ay g

502 =" (5 + zAc) G2 — 5(022 — 633)U — 59 12 + Fig, (52)
0 R PYU SEPA

aam = — (112 +140) 621 + 591,023 - 503190 + Fa, (S3)
) AU U SO

aoll = 5033 — 5031917 + 592013 + i1, (54)
0 T ) A P A .

L B = —fran — —& Z0Ots

5022 = 5083 2032Qc+ 290023+F22, (S5)
0 . . VA i, A NN 7 A

7103 = —I'633 + 5031917 + 503290 - 592,013 5 93 + Fis, (S6)
0 e VN oA -

aalz = — (712 —10) 012 — 5032Qp+§ 1613 + Fio, (S7)
9 s =— (L i + Loms = 650) 00 + Lm0 + B (S8)
5,02 = 5 ¢ | 023 5 (022 033 2021 23,

9, 3 A + = ( )Q, + Qe+ F (S9)
(’%013 5 1Rp 013 5 011 — 033 20’12 13-

For steady-state case, we drop the time derivation in the left hand side. Then, we find the mean-field solutions both
for field and atomic operators, and expand the product of any two operators to first-order of quantum fluctuations,
ie. AB ~ AB + Ab+ Ba. Here, A(B) and a(b) denote the mean-field and corresponding quantum fluctuation of
operator A(B). As the terms related to ab are much smaller, then one can safely ignore them.

As for the propagation equations for optical fields, shown in Egs. (4) and (5) of the main text, we also separate the
corresponding mean-field and their quantum fluctuation by the same procedure. When keeping the nonlinear effects
in the mean-field equations, we can obtain a set of linearized equations of motion for quantum fluctuations. In the
following, we show the process in details to obtain and solve mean-fields and quantum fluctuations with a systematic
approach.

II. MEAN-FIELD SOLUTIONS

To have a clear illustration, we rewrite the mean-field part of Egs. (SI))-(S9) into a matrix form, i.e., Mjx = b,
with M explicitly written as
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—15 0 —i 2C —z'?p 0 27” 0 0 0
QF  QF QF
0 —933 0 0 —i—<¢ i—=< —i—2 0 0
Q 2 2 2 O
—if 0 —(mz2+45) 0 0 0 0 2.7;0 0
A, R
—i 0 0 0 0 r/2 0 0 g
M; = Q. O , (S10)
0 —is 0 0 0 r/2 g 0
0 0 0 1 1 1 0 0 0
Q QF
0 ——fzf 0 0 0 0 —(yn2—14) 0 in
Q Q. Q. -
0 0 i—2 0 =< == 0 —J23 0
2 Q 2 (% Q
0 0 0 p— 0 —i-Z < 0 -7
1 2 1 2 7 2 Y13 %0
where 413 = T/2 — @A, and F23 = T/2 — iA.. Here, the notations are defined as x? =

(0’31, 032,021,011,022,033,012,023, 0’13) and bT = (O, O, O, O, O, 1, O, O, O) In Eq (m), we also have replaced Eq (m)
with the help of population conservation, i.e., 011 + 0922 + 033 = 1.

The corresponding steady-state solution can be easily obtained by using the matrix algebra: x = MIlb. The two
dipole sources 013 = 013(2p, 25, Qe, 27) and 23 = 023(€2p, 20, Qe, (27) count the nonlinear responses with respect to
the optical fields. With the solutions of 013 and a3 substituted into the mean-field part of Egs. (4) and (5) of the
main text, one can obtain the corresponding solutions for optical fields.

III. QUANTUM FLUCTUATION SOLUTIONS

For the fluctuation operators in the atomic parts, as well as their hermitian conjugates, we linearize Eqs. (SI))-
(S9) to obtain the results shown in Egs. (6)-(10) of the main text. Again, in the steady-state, we express the
fluctuation operators in a matrix form: My y + My u +1r = 0, where y© = (831, 832, 821, 811, 822, 833, 812, 523, 813)

gives the fluctuations of atomic operators, u’ = (ap,ﬁ};,ﬁc,ﬁl) denotes the fluctuations of field operators, and
7 = (Fgl,F32,F21,F11,F227F33,F12,F23,F13) are the corresponding Langevin noise operators, respectively. The

matrix My is a 9 by 4 matrix, with the matrix elements having the form:

0 —1 (0'11 - 0’33) 0 —iUgl
0 —iUlg 0 —1 (0'22 - 0’33)
0 i023 —iO’31 0
1 —iO’31 i013 0 0
M2 == 5 0 0 —iUgg iUgg . (Sll)
0 0 0 0
—i0'32 0 0 i013
iO'Ql 0 i(O’QQ —0’33) 0
i(Ull—Ugg) 0 i012 0 9x4

The atomic fluctuation part can be found by solving y = TMg u+Tr, where we define T = —M;l. With the solution
of y, we can have the expressions for the quantum fluctuations in two dipole sources $13 = y(9) and 323 = y(8), in
terms of the field fluctuation operators. In general, one can write down §13 and So3 in the following form:
G13 = Aviiy + Bral + Crie + Dral + fia, (S12)
423 = Aoty + Batt} + Caile + Dott] + fos. (S13)

Here, A;, B;, C; and D; can be directly calculated from the matrix TMo, with the effective Langevin noise operators
fi3 and fo3 obtained from the 9th and 8th elements of Tr. Moreover, we also have fiTj = fji- In particular, the

explicit forms for flg and f23 can be found to be

9
fis=(Tr)g =Y Tox 7,

=1 (S14)

9
fas = (Tr)g = Tai 7.
k=1



At the same time, we can obtain the steady-state solutions for fields from the propagation equation shown in
Egs. (12) and (13) of the main text. They are

0 . (Ta .
iy = Z(_Q ) (515)
9 (Ta)
i = ( . ) (516)

with a dimensionless length denoted as £ = z/L.
By substituting Eqgs. (S12) and (SI3) and their hermitian conjugates into the propagation equation for field
fluctuations shown in Eqs. (SI5) and (SI6), we can obtain a compact form for the noise operators for fields

aT = (dp,d;;,dc,&l):

0

Here, the two matrices of C and IN have the explicit form as

Ar B Ci D P Q1 Ry Si
C—i“ 1 1 1 1] = 1 05T Ry 318
9 Ay By Cy Dy Py, Q2 Ry Sy |’ (S18)
-B; —A; -D; —C; Qs Py S5 R;
,1—‘0( A~ A ~ N T
N = lﬁ ( fizs—Figs fozs—fas ) - (S19)

IV. EQUATIONS OF MOTION FOR QUANTUM CORRELATIONS

In order to calculate the quadrature variance in the output fields, we have to know the corresponding field-field
correlations. According to Eqs. (SI7)-(S19), one can obtain the equations of motion for all the two-field correlations
in the following form

a%<aa ) = C (aal) + (aal) CT + Z. (520)

Here, the matrix Z shows the correlations of Langevin noise operators, denoted <NNT). That is
— (NN = 1@ t
Z=(NN')= -2 (VDV ) . (S21)

Here, we have applied the matrix product of Tr and the correlations of any two Langevin noise operators, i.e.,
(F,F,)) = D, ¢/(NL). The diffusion coefficient, D,,, can be obtained from the generalized Einstein relation [1].
Moreover, to link the optical density (OD) and the related single photon Rabi frequency, we also define a = g> NL/(cI').
The matrix V shown in Eq. (S2I)) has the form:

Tor Too Toz Toa Tos Tos Tor Tog  Too
~Ty —Tyo —Ti3 =Ty —Ti5 —Tie —Ti7 —Tis —Tig

V= Tgy Tgo Tz Tsa T35 Tge Ty7  Tss  Tio (522)
—TIo1 =T —To3 —Toa —To5 —Toe —Tor —Tos —Ta9/ ,
with the corresponding diffusion coefficeints in the matrix D:

00 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0
0 0 72033 0 0 0 0 0 0
00 O Y1033 0 0 0 —Y1032 —Y1031

D= 00 0 0 Y2033 0 0 —7Y2032 —7Y2031 . (823)
00 O 0 0 0 0 0 0
00 O 0 0 0 71033 0 0
00 0 —mo23 —y2023 0 0 72033+ o2 Loy
00 0 -moiz3 —2013 0 0 Lo moss + Loy

9%x9



Based on Eq. (520), and with the help of Eqgs. (SI8) and (S19) and Egs. (S2I)-(S23)), the equations of motion for

quantum correlations can be found as:

0

8§< > 2P (a > + Q1 ( <a ap) + 1) + 2R (Gpac) + 251(apa > +n (S24)

0

9

0 . . N N Lt

8—€<a§> = 2Ry(a2) + 2Pz (apac) + 2Q2<azac> + 82 (2(afac) + 1) +n3 (526)
0
B3
0
9
0
9

here, P{ and R/ denote the real parts of P; and Ry; while n; (i = 1—6) are the corresponding noise-noise correlations.

The explicit expressions for n; have the forms:

(abap) = 2Pi{abay) + Qilay) + Q1(af?) + Si(apac) + Si(afal) + Rilayal) + Rifabac) +n» (525)

(alac) = 2Ry(alac) + Q5 lapac) + Qa(abal) + Py (alac) + Palapal) + S3(a2) + Sz(al?) +na (527)
(apac) = (Py + Ra) (apac) + Ri(a2) + Pa(a2) + Si(alac) + Sa(apal) + Qilalac) + Q2 ((aa,) + 1) + ns (S28)

—(aac) = (Pf + Re) (alac) + Q7 (apac) + Q2(al?) + S(a2) + Ri(alac) + Palalay) + Sa(alal) + ne, (S29)

n = Z(1,2) = —n{fisfrs), (S30)
ny = Z(2,2) = +n{fls fis,) ($31)
ng = Z(3,4) = —n(fas fas), (S32)
na = Z(4,4) = +1(f33 f23), (S33)
ns = Z(1,4) = —n{fizfas), (S34)
ne = Z(2,4) = +n(flsfas), (S35)

with n = [Ta/(29)]?. As the case of coherent state inputs is considered, the initial conditions at & = 0 for these
correlations given in Eqs. (S24)-(S29) are set to be zeros. By solving Eqs. (524)-(S29) directly, one can find the
corresponding minimum value in the quadrature variance, as shown in Eq. (15) of the main text.

V. SQUEEZING SPECTRA IN THE OUTPUT FIELDS

The quadrature variance in the output fields can be measured directly in experiments. To calculate the variance
spectrum for the output fields, we need to take the time-dependent fluctuations of field and atomic operators into
account. Here, we perform the Fourier transform for all the fluctuation operators into the frequency domain, i.e.,
O(t) = O(w). For the atomic fluctuations, we have

y = T'Myu + T'r, (S36)
with SIT = [531(&)), 532(&)), §21(W), 511(&)), 522(&)), §33(W), 512 (w), 523(&)), 513(&))], and T/ = — (Ml + ion)il. Here, IO

is a matrix whose non-zero matrix elements are 1 in the diagonal part, but only with I,(6,6) = 0. In the frequency
domain , the propagation equations for field fluctuations are given by

SE) = 158y ) 17 | 44 @)y () + B () + Cfw)aclw) + D @lal(—w) + L 13(“)] - (537)
c g
(%ac(w) = i%acw + %a Ay ()i () + By(w)h (—w) + Ch()ae(w) + Dy(w)it (—w) + L 239(“’)] . (S38)

where we have the coefficients: Af ,(w), B 5(w), C] 5(w), and D} ,5(w), obtained from the matrix product of T'M,

accordingly. As the quadrature operator in the output probe field is defined as X,(w) = a,(w) + af(—w), we can
calculate the optima squeezing spectrum through the following formula:

S(w) = (X (W) XT(w)) = —Nap(@)ap(~w))| — [(ah(w)ah (~w))| + (@) (~w)ap(~w)) + (@p(w)aw)). (S39)

With Egs. (S317)-(S39), the squeezing spectrum shown in Fig. 4 of the main text can be generated.
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