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Quantum Channels as Temporal Correlations in Quantum Mechanics
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Since the eminent work of J. S. Bell, spatial correlations in quantum mechanics have gained much progress.
Nevertheless, up to now, there is no agreement on the nature of temporal correlations. In this paper, based on the
entangled-history theory, we prove that temporal correlations are just quantum channels. Moreover, by using
the state tomography technology, the quantum channel can be uniquely determined. What is more, through
the entanglement of formation, temporal correlations can be quantified. Cases when the temporal correlation is

strongest and weakest are investigated, too.

Introduction: Even though the terminology, “entanglement”,
was introduced by E. Schrodinger in the early days of quan-
tum mechanics [1], only after the famous work by J. S.
Bell [2], people started to appreciate extraordinary features
of quantum spatial correlations. On the other hand, it has al-
ready been observed that observables of a single system at
different instants have correlations. However, compared with
spatial correlations, temporal correlations did not draw atten-
tion until the Leggett-Garg inequality [3], almost 20 years af-
ter J. S. Bell’s work [2]. In this inequality, four different in-
stants, not two, have to be considered. Furthermore, due to the
strong action of measurements, the Leggett-Garg inequality is
unable to reflect well the temporal correlation of the origi-
nal states. To tackle this problem, approaches based on the
two-vector formalism [4—7] and the entangled-history theory
[8-11] have been introduced. In the framework of entangled-
history theory, a kind of temporal CHSH inequality [9] has
been obtained to avoid the strong action of measurements, as
well as the monogamy relation discovered in [7]. Besides,
works like [12] also discussed the temporal correlations. In
[12], although relationship between spatial correlations and
temporal correlations is studied through transformations be-
tween them, however, whatever temporal correlations are is
still not clear. In this letter, we prove that temporal correla-
tions are just quantum channels. Thus, the physical entity cor-
responding to temporal correlations is found. We completely
characterize temporal correlations.

Quantum channels as temporal correlations: In quantum tele-
portation [13-15], spatial correlations can be used to send
states in one place to another place. And what is more, in tele-
portation, similarity between initial states and outcome states
is directly connected with the strength of spatial correlations
of bipartite states [14]. By comparison, the temporal corre-
lations between two instants ¢y and ¢; can be regarded as a
transformation ®. This transformation maps states at the in-

stant t( to states at the instant ¢;. And quantum mechanics
principle tell us that the transformation should be linear. Now,
by the entangled-history theory [11], firstly, we show that the
transformation @ is just a quantum channel.

Now, following the entangled-history theory [11], we show
how to use a bipartite state to correlate two instants and related
protocols to achieve this bipartite state.

Suppose a system is initialized in a state p at ty5. Using
the Hilbert space Hy to represent the system at to, {|a;)}s
is chosen as the orthonormal basis for Hy. And let F;; =
|e;) (@], Vi, 7, then the initial state p can be expressed as p =
i PijEij. Similarly, use the Hilbert space H to represent
the system at ¢; and {|3;)}; are chosen as the orthonormal
basis for Hy. And let F; = |Bk) (6|, Vk,l. Furthermore,
by the stinespring representation theorem [16], dim(Hy) =
dim(H,) = d can be assumed.

Firstly, add two auxiliary systems A, B to the original sys-
tem Hy, each system is initialized in a pure state, denoted as
|0,), p = A, B. For them, dim(Ha) = dim(Hy) = d =
dim(H,) = dim(Hp). Before the experiment begins, the
whole system is initialized in the state

> pijEi; @108) (05| @ [0.4) (0]

0]

At t, firstly a unitary gate U is practiced between the system
Hj and the auxiliary system A. The unitary gate acts in the
following way Up |a;) |04) = |ou) |ou), Vi. After this, the
whole system is transformed into

ZpijEij ®10B) (0B| ® Ejj.

2%

Keeping the auxiliary systems unchanged between ¢y and
t1. Then at ¢;, because of the temporal correlation ¢, the
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whole system is transformed into

> pi®(Eij) @ |05) (05| @ Eij.

]
Now use another unitary gate U; between the system [
and the auxiliary system B. The unitary gate U; acts as

Ui |Bk) |0B) = |Bk) |Bk) , VK. Then after this, the state of the
whole system becomes

Z Pij Priij Fri @ Fu @ Eij,
igk,l

where @y ;5 = tr(F,LCI)(Eij)). Now project the system H;
onto the state % >k |Bk), and then remove the first system
H, the state on auxiliary systems B and A will be

p= Z Pii Priij Fra © Eyj. (D
ikl

Here, following conventions in the entangled-history theory
[11], to differentiate the temporal structure of the system to
the spatial structure of the system, the signature ® is used to
represent the tensor product structure, instead of ®. By p in
Eq. (1), the system Hj at tp and the system H; at t; are
correlated.

Note that the transformation ® is linear and maps states
to states, and ®(E;;) = Zk)l @4 F1, Vi, 5. Therefore,
(I)(p) = Zi,j pij‘I)(Eij) = Zi i kol pijq)kl,iijl is a quantum
state for arbitrary states p = ), ; pi; Eij on Ho. Moreover,
if pis ﬁ >, lai), then its corresponding p in Eq. (1) is just
the Choi matrix [17] of the transformation ®. And because
operators in Eq. (1) are just states of auxiliary systems, this
verifies the complete positivity of ®. Thus, ® is just a quan-
tum channel.

Moveover, the above also shows how to prepare the state p

experimentally for each input state p at instance .
And we have seen that if the initial state p is the state |u) =
ﬁ > lai), then the final state on auxiliary systems will be

Z Dy F © Eyj. (2)
gkl

1
Pu,® = E

Note that { Fi,; © E;; }4. ;.1 is a basis for operators on auxiliary
systems B and A. Therefore, once the state p,, ¢ is decided by
the state tomography technical [18], then all values of ®y; ;;
will be known. Thus, the quantum channel ¢ can be uniquely
determined by tomography state p,, .

Thus, for an initial state p on Hy, a bipartite state p on the
big system H; © Hy can be made to correlate two instants. In
particular, for the special initial state |p) = \/_ >, o), their
Pu,d can uniquely determine the temporal correlation between
to and ty.

Quantify temporal correlations: Now, we use the entangle-
ment ability of p,, ¢ to reflect the strength of the temporal cor-
relation, that is, we quantify the temporal correlation.

Let E(-) be the entanglement of formation [19-23]. Note
that |u) = ﬁ > ley) is a maximally coherent state in
the [; norm measure [24] of coherence of states for the
basis {|a;)};. In fact, for all maximally coherent states
in the [; norm measure of coherent of state on the ba-
sis {|a;)}i, the entanglement of formation of their p is
the same. Suppose we have two initial states |vg) =
% Z.eief laej) ,k € {0,1}, then their p can be expressed

as Py, @ = g Zm n,k,l e’ o, 0")(I)kl ;mntrki © By, then

puio =10 U(pyy0)] OUT, 3)

where U is a unitary operator with the following action
(an| U |am) = €00 =025, So from the property of E(),
we get the conclusion.

Thus, once the bases {|«;)}; for Hy and {|3;) }; for H; are
chosen, for ®, we define

E(Pu-@)-

Q{la:)}:.{18;)},; () describes the strength of the temporal cor-
relation @ between instants £y and ¢; with respect to the bases

{lai)}i and {[8;) }5.
To get rid of the dependence on choices of orthonormal
bases, the quantity QQ(®) is defined as

Q(P) =

Qlan)}i {1815 (®) =

(laotiayy, QU 0,(2)
, where the inf runs over all possible orthonormal bases
{|evi) }i and {|5;)}; for Hilbert spaces Hy and H, respec-
tively.

It follows from the definition of ()(-) that its value range is
[0, logd]. Moreover, from the invariance of the entanglement
of formation under the local unitary transformation, we have

Q(P) =Q(Vo ), ©)

where V is an arbitrary unitary channel on H;.

Now, we study when the temporal correlation is the
strongest and the weakest, respectively.

Theorem 1 If p is a state on Hy, then p is a maximally en-
tangled state if and only if ® is a unitary channel and p can
be expressed as the state |u) = % > lew). In particular,

Q(P)

Proof. For fixed orthonormal bases {|a;)}; on Hy and
{IBj)}; on Hi, if p is a state on Ho, then the fact that
p is a maximally entangled state means that p is pure and
tri, (p) = tra, (p) = 1. To be pure, it is equivalent to
tr(p?) = 3. 1pisP(Ch [®riig[?) = 1, where @y ji =
tr(Flqu)(Eji)) = tr(Fglfl)(Eij)). On the other hand, because
® is a channel, it can have the Kraus operator representation:

= logd if and only if ® is a unitary channel.

ZA MAI VM € L(Hy), (5)



and ®(E;;) is a quantum state for every i. Thus, we have
tr(®(E;)T®(E;)) < 1,Vi. Now, let us define |a;,) =
A, o) and the vector |@; ) whose coordinates are conjugate
of coordinates of the vector |a; ;).

Then for every i, 7, we have

D 1 @kiiP =Y {aiplaig) (ajplaj.q)- (6)
k,l

p.q

On the other hand, for every ¢, we have

D Haiplaig) P = w(®(Ea) () <1 (D)

So, combined this fact with the Cauchy-Schwarz inequal-
ity, we have Zk_’l |‘I)kz,ij|2 < 1,Vi,j. Therefore, tr(p?) =
i i Py 1®rs ) < 3255 lpijl?. Since pis a
pure state, so p has to be pure state and ¢ need to satisfy
>k | ®hris)? = 1,4, j. In particular, ®(E;;) is a pure state,
Vi.

Next, let us consider the second requirement for p being a
maximally entangled state,

1
try, (ﬁ) = try, (ﬁ) = a] (8)

Note that for every i, Y, Pipii = tr(®(FE;)) = 1. Com-

bined this with Eq. (8), by comparing coefficients, we have

Pii = %, Vi. Nevertheless, as we have verified that p has to be

pure, so p = |a) (a. Thus, we have |a) = Ld > e |aj).
Now, we have

1 .
~ - (0 —0p)
p= fD@I(d g e |amam) (anan]).  (9)

m,m

As ﬁ >, €9 |,y ) is a maximally entangled state on
Hy ® Hy, so in this case, p is proportional to the Choi matrix
of ®. From the isomorphism between channels and their Choi
matrices, we know that for channel ®, & ® I maps some max-
imally entangled state into another maximally entangled state
if and only if @ is a unitary channel.

Thus, we prove the following conclusion: for fixed or-
thonormal bases {|c;)}; and {|5;)},, p is a maximally en-
tangled state implies that ® is a unitary channel and the initial
state is maximally coherent in the /; norm measure of coher-
ence.

Conversely, for every unitary channel, it can be verified eas-
ily that for arbitrary orthonormal bases {|a;)}; on Hy and
{1B;)}; on Hy, p,, & is always a maximally entangled state.

In particular, note that Q(®) = logd means that for arbi-
trary orthonormal bases {|a;)}; on Hy and {|3;)}; on Hi,
the quantity Qy|a,)}..{18,)}, () is always logd. By [22], this
implies that for arbitrary orthonormal bases {|«;)}; on Hy
and {|5;)}; on H, the corresponding state p,, ¢ is always a
maximally entangled state. The above shows that the theorem
is proved. m

Theorem 2 If p,, & is a classical-classical state, then ® is the
coherence destroying channel, and its temporal correlation is
the weakest, that is Q(®) = 0.

In fact, since every classical-classical state [25, 26] is a
separable state, so if p, ¢ is a classical-classical state, then
Q(®) = 0. Moreover, since Pu,® 1s a classical-classical state,
SO pua =% Dokt Prii o © Eij =37 0 AeiFie © Ei.
Thus, we have ®(E;;) = 0 for every ¢ # j and ®(E;;) is
a diagonal matrix for every ¢. This shows that the quantum
channel @ is a coherence destroying channel [27].

Remarks: Although the equivalence of temporal correlations
and quantum channels is based on states on the big Hilbert
space H1 ® Hy, which is similar to spatial correlations. How-
ever, there is a notable difference between temporal correla-
tions and spatial correlations. Temporal correlations is a rela-
tive concept, it is dependent on choices of bases.

Firstly, seeing orthonormal bases {|c;)}; and {|3;)}; as
eigenvectors of nondegenerate observables M at ty and N at
t1, by using a bipartite state to correlate two different instants,
the quantity Q{|a.)},.{18,)}, () measures the temporal corre-
lation in terms of observables M at tyg and N at ¢1. In this
sense, for a quantum channel ®, Q)(®) measures at least how
strong the temporal correlation is. This is one aspect that tem-
poral correlations are dependent on choices of bases.

Secondly, for an initial p and one choice of {|a;)}; and
{IB;)};. its p in Eq. (2) may be separable, and for another
choice of {|a;)}; and {|5;)};, its p may be entangled. In spa-
tial cases, the fact that a bipartite state is entangled or not is not
influenced by local unitary transformations. This is another
aspect that temporal correlations are dependent on choices of
bases.

What is more, there is another big difference between tem-
poral correlations and spatial correlations. This difference is
rooted in the nature of time. Time has its order, while space
does not have such order. In spatial correlations, for a bipartite
system, the role of two subsystems are symmetric. However,
in temporal correlations, things are different. For Alice at ¢y,
once she knows what the channel between ¢ and ¢4 is, she can
always definitely know the state at ¢; from her state. However,
suppose that Bob at £; knows the channel between ¢ and ¢ is
®, and he measures the observable /N and obtains a outcome j
corresponding to the eigenvector | 5;). In this case, generally,
he can not say definitely what the state at ¢y is from knowing
|8;) and ®. In particular, if ® is unitary, Bob can certainly
know what the state at to should be from his |3;). This shows
that the strongest temporal correlation has to be unitary chan-
nels in intuition. Our Thm. 1 asserted the fact strictly.

Conclusion: In this letter, by the entangled-history theory, we
verify that temporal correlations are quantum channels. Thus,
if we consider spatial correlations are about quantum states,
then temporal correlations are just about quantum channels.
Our results fit physical intuitions and pave the way to further



study many instants temporal correlation problems.
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