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Realizing the topological bands of helical states poses a challenge in studying ultracold atomic
gases. Motivated by the recent experimental success in realizing chiral optical ladders, here we
present a scheme for synthesizing topological quantum matter, especially the quantum spin Hall
phase, in the chiral optical ladders. More precisely, we first establish the synthetic pseudo-spin-
orbit coupling and Zeeman splitting in the chiral ladders. We analyze the band structure of the
ladders exposed to the bichromatic optical potentials and report the existence of quantum spin Hall
phase. We further identify a rich phase diagram of the bichromatic chiral ladders, illustrating that
our proposal features a large space of system parameters exhibiting a variety of quantum phase
transitions. Our scheme can be readily implemented in the existing experimental systems and hence
provides a new method to engineer the sophisticated topological bands for cold atomic gases.

Identifying ways to search and probe topological op-
tical lattices and thus topological quantum matter is a
quest of major relevance in ultracold atoms [1, 2]. Over
the past decade, much progress has been witnessed in
realizing the topological phases in cold atomic systems,
ranging from the Su-Schrieffer-Heeger model [3], the Hof-
stadter model [4–6] to the Haldane model [7]. Important
cases are the quantum spin Hall insulators (QSHIs) that
arise in spin-orbit coupled systems, where the existence of
helical edge states produces a spin current along the edge
of a strip. Realizing the QSHI for ultracold gases was sug-
gested in early theoretical works [8]. The QSHI would be
implemented by engineering the hyperfine structure of
the ultracold atoms to synthesize the non-Abelian gauge
to mimic spin-orbit coupling [8]. On the experimental
side, the only realized examples are cases where indepen-
dent quantum Hall (QH) insulators of opposite Chern
number have been paired to form a single system [5, 9].
The system thereby is protected by a Z topological index.
Despite these advance, optical lattices featuring QSHI
with spin-orbit interaction have so far been lacking to
our knowledge.

Along this line, chiral ladder systems for ultracold
atoms constitute one of timely topics of engineering the
topological quantum matter with synthetic gauge and
synthetic dimensions [10]. They represent a simple yet
effective platform to study exotic quantum phases of ul-
tracold atoms, given that ultracold atoms in optical lat-
tices naturally realize such a strip geometry [11]. Apart
from the ladder structure in the real dimension [11], the
internal degrees of freedom of atoms such as the hyperfine
states [12, 13] and clock states [14–16], and the external
degrees of freedom such as the momentum states [17, 20]
and lattice orbitals [18, 19], can be exploited to fabri-
cate the chiral ladders in the synthetic dimensions. To
date, an intense theoretical and experimental investiga-
tion has revealed rich topological features of the chiral

ladders [10]. For example, the chiral ladder systems in
synthetic dimension have led to visualization of the chiral
edge states related to the QH phase [12, 13].

Motivated by the recent experimental realizations of
ultracold atomic ladders immersed in synthetic gauge po-
tentials [11–13], here we propose a chiral-ladder realiza-
tion of the topological bands of QSHIs. To be specific, we
utilize the leg degree of freedom to synthesize the pseudo-
spin-orbit coupling and Zeeman splitting. By exposing it
to a 1D bichromatic optical potential along the direction
of legs, we construct the model of bichromatic chiral lad-
der. We analyze the energy band of this bichromatic chi-
ral ladder, revealing the quantum spin Hall phase. We
further highlight the emergence of distinct topological
phases by varying the parameters of the ladder systems.
Our study is of direct experimental relevance for labora-
tories where ultracold gases within a chiral ladder geome-
try are realized [11–13, 15–20], hence providing a realistic
way to achieve topological quantum matter of ultracold
atoms.

Our starting point is the ladder geometry of optical lat-
tices for noninteracting spinless fermions that has been
synthesized experimentally [11]. The access of QSHE at
first requires the identification of two degrees of free-
dom representing the two spin states. We resort to a
two-leg ladder threaded by a uniform artificial magnetic
field [11], the so-called chiral ladder, to encode the two
degrees of freedom and enable their mutual interactions.
As sketched in Fig. 1 (a), the chiral ladder consists of a
two-leg strip with intra- and inter-leg hoppings J and K.
Each plaquette encloses a net gauge flux 2φ. According
to the Peierls substitution, the Landau gauge adopted
here will imprint a phase factor ±iφ on the hoppings
along the legs (± for the A- and B-legs, respectively). In
addition, we superimpose an energy offset 2∆ between
the legs. Physically, this corresponds to a deep double-
well configuration oriented along x direction. The overall
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ladder Hamiltonian in real space reads:

H =− J
∑
n

(
eiφc†n+1,Acn,A + e−iφc†n+1,Bcn,B + h.c.

)
+ ∆

∑
n

(
c†n,Acn,A − c

†
n,Bcn,B

)
−K

∑
n

(
c†n,Acn,B + c†n,Bcn,A

)
. (1)

Here the operator c†n,µ
(
cn,µ

)
creates (annihilates) a

fermionic particle on site (n, µ), where µ = (A,B).
A precise connection can be made between a spin-orbit

coupled chain and the chiral ladder. Following the inter-
pretation of Ref. [21], one can think of Eq. (1) as a 1D
optical lattice with pseudo-spins represented by A- and
B-legs. Keeping this in mind, we introduce the spinor

operator Ψ†n =
(
c†n,A, c

†
n,B

)T
and rearrange our model

in the spinor space as follows:

H =
∑
n

∆Ψ†nσ̂zΨn −KΨ†nσ̂xΨn

− J
∑
n

Ψ†n+1e
ıφσ̂zΨn + h.c., (2)

where σ̂i are the Pauli operators. Written in the
momentum-space the resulted Hamiltonian is of the form

H = −
∑
k

Ψ†kM(k)Ψk (3)

with M(k) = 2J cosφ cos k1 + 2J sinφ sin kσ̂z + Kσ̂x −
∆σ̂z. We computed the the energy bands and the pseudo-
magnetization 〈σz〉 for a fixed flux 2φ and different values
of inter-leg hopping K and energy offset 2∆, shown in
Fig. 1(b-d). Figure 1(b) corresponds to the band struc-
ture in the case of vanishing K and ∆. Clearly, one
can observe a positive (negative) shift of energy mini-
mum for the pseudospin-up (-down) particles. This evi-
dences an effective spin-momentum locking derived from
the nonzero magnetic flux. Provided the inter-leg tun-
nelling K is turned on, as can be seen in Fig. 1 (c), it
opens a gap and the states get increasingly spin-mixed.
Thereby the σ̂x term in Eq. 3 brings about a spin-flip.
Further, in the case of large offset a spin separation is vi-
sualized from the spin magnetization in Fig. 1 (d). This
term therefore indicates a pseudo-Zeeman splitting. In
total, the above proposed chiral-ladder geometry can be
mapped onto a 1D spin-orbit coupled lattice with spin
flip and Zeeman field. It is necessary to stress that the
pseudo-Zeeman term involved here is associated with the
double well, instead of the artificial magnetic field. This
is different from the electronic systems. As a result, it
can give an independent control over the ladder systems.

To realize the topological bands of chiral ladders, we
propose to impose a bichromatic optical superlattice
V (y) = Vp cos2(kpy) + Va cos2(ka + θ) along y direction.
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FIG. 1. (a) Schematic representation of the two-leg ladder.
This optical lattice has a double-well structure in x direc-
tion, while unlimitedly extends in y direction. A and B (the
red and blue colors) label the two different degrees of free-
dom of legs, denoting the two different pseudo-spin states. J
and K are the hopping amplitudes along the legs and rungs,
respectively. An artificial magnetic flux 2φ penetrates the
plaquettes. An additional potential difference 2∆ is imposed
between the legs. (b)-(d) Band structures of the chiral lad-
ders for various K’s and ∆’s. Energy is set in units of J . The
color of the lines specifies the spin magnetization of the Bloch
state. The magnetic flux is set as 2φ = 0.6π. Other parame-
ters: (b)K = 0, ∆ = 0 (c) K = 1, ∆ = 0, (d) K = 1, ∆ = 1.

This can be created by superimposing on a primary, deep
lattice an auxiliary, weak lattice [22]. Vp and Va sep-
arately denote the depth of the primary and auxiliary
lattice. kp and ka are the two lattice wave numbers. The
variable phase θ accounts for the relative position of the
lattices. The modulation is applied equally on the A-
and B -legs (the shaded circle of Fig. 1 (a)). When the
primary lattice depth is sufficiently large, the ultracold
atoms feel actually the onsite potential energies as follows
V (n) = Λ cos(2πβn + θ) [22]. Here Λ characterizes the
modulation strength due to the auxiliary lattice, β equals
to the ratio ka/kp. Summing up, the modulated optical
ladder can described by a tight-binding Hamiltonian

H1D(n, θ) =−
∑
n

Ψ†n [Λ cos(2πβn+ θ)] Ψn

+
∑
n

Ψ†n [∆σ̂z −Kσ̂x] Ψn

−
∑
n

JΨ†n+1e
ıφσ̂zΨn + h.c.. (4)

The first term describes the bichromatic modulation. In
the second term ∆ and K denote the strength of Zee-
man splitting and pseudospin flip specified above. And
the last term contributes to the spin-orbit coupling. In
experiments, Λ and J can be controlled independently
by varying the depth of the primary and auxiliary lattice
potentials. θ can be tuned by the relative shift between
the two lattices. ∆ and K can be freely altered by tilting



3

the double-well. This setting of optical lattices enables
us to continuously tune the system among various topo-
logical regimes, as we elaborated below. Hereafter, the
chiral ladders with the bichromatic modulation will be
referred to as “bichromatic chiral ladders (BCLs)” for
convenience.

In order to identify the topological nature of the BCL
structure, we now establish the connection of the 1D
BCL to a 2D spin-orbit coupled square lattice pierced
by a magnetic field. The 2D Hamiltonian can be found
by using the approach of dimensional extension [23–27].
To be specific, given the parameter θ is cyclically varied
in [0, 2π], it can be regarded as a quasi-momentum kz
along a virtual coordinate ẑ. After we make substitu-
tions of J → ty, θ → kz, and Λ → 2tz and relabel the

spinor as Ψn,kz
, the present 1D model can be converted

into a 2D Hamiltonian in a mixed momentum-position
representation (n, kz),

H2D(n, kz) =−
∑
n,kz

Ψ†n,kz [2tz cos(2πβn+ kz)] Ψn,kz

+
∑
n,kz

Ψ†n,kz [∆σ̂z −Kσ̂x] Ψn,kz

−
∑
n,kz

tyΨ†n+1,kz
eıφσ̂zΨn,kz + h.c.. (5)

Performing the inverse Fourier transform, Ψn,kz
=∑

m e
−ikzmΨn,m, gives the real-space 2D Hamiltonian

H2D(n,m) =− tz
∑
n,m

eı2πβnΨ†n,m+1Ψn,m + h.c.

− ty
∑
n,m

eıφσ̂zΨ†n+1,mΨn,m + h.c.

+
∑
n,m

[∆σ̂z −Kσ̂x] Ψ†n,mΨn,m. (6)

This Hamiltonian exactly describes a spinor moving on
a square lattice defined in the y − z plane (y = n, z =
m), which is threaded by a uniform magnetic flux β per
plaquette. Based on the analogy between our 1D system
and the 2D system, this allows us to define the topological
properties of the BCL. That is the topological origin of
our model. We should emphasize that, different from
the conventional Harper-Hofstadter model [28, 29], the
spin-orbit coupling, spin flip, and Zeeman splitting are
involved in Eq. 6.

Having precisely mapped the 1D BCL onto the analo-
gous 2D system, we at this point move to the topological
phases of the BCLs. Herein, we assume a rational β, i.e.,
β = p/q with p, q being coprime integers. The length
of unit cell of the ladder turns out to be q. Inserting
the Bloch waves Ψn+q = eikyΨn in Eq. 4 yields the band
structures E = E(ky, θ) of the modulated ladder, to-
gether with the associated eigenvectors, that are defined
by θ. Figure 2 (a) displays the energy band for β = 1/3.

To quantify the topological properties of our system,
we calculate the spin-up (spin-down, respectively) Chern
numbers associated with the bandgaps defined in the pa-
rameter space (ky, θ). In Fig. 2 (a) we have labeled the
spin gap Chern numbers. We note that for the middle gap
the Chern numbers are given by (C↑, C↓) = (−1, +1).
This leads to the nontrivial Z2 index 1

2 (C↑ − C↓) = −1
which verifies the emergence of QSHI. It should be noted
that the time-reversal symmetry is broken in the analo-
gous 2D Hamiltonian, and thus this phase corresponds
to the time-reversal-symmetry-broken QSHI phase [30].
In the meanwhile, the Chern numbers of the first gap are
(C↑, C↓) = (0, −1). This indicates a spin-filtered QH
phase [31, 32]. A similar result holds for the third gap,
but with (C↑, C↓) = (+1, 0).
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FIG. 2. Energy spectrum for 2φ = 0.6π, Λ = 1.5, β = 1/3,
∆ = 1, and K = 0.1. The energy is set in units of J . (a)
Energy spectrum E = E(ky, θ) for the infinite BCL. The in-
tegers near the graph label the spin Chern numbers of dif-
ferent bandgaps. (b) Energy spectrum obtained from a finite
ladder. As a function of θ, the spectrum is composed of the
bulk bands (solid lines) and dispersion curves that traverse
the gaps (dashed lines). � (•) is the markers for the states
at the same Fermi energy.

The definite topological property in a finite system is
the emergence of gapless edge states as the phase θ varies.
In Fig. 2(b), illustrating the spectrum of a finite lad-
der, the dispersion curves of the additional states (dashed
lines) are clearly superimposed on the bulk bandgaps. At
a given Fermi level EFermi = 0, gapless states, labeled as
A, B, C and D, emerge in the middle bandgap. States
A and C are localized near n = L, while B and D are
localized near n = 0 (Fig. 3 (a-d)). The slope of disper-
sion curves in Fig. 2(b) determines that the two states
A and C are counterpropagating in the analogous 2D
square lattice. Meanwhile, state A and C are almost fully
spin-down and spin-up polarized, respectively (Fig. 3(a),
(c)). Therefore, these two pair of mid-gap states form
the helical edge states, indicating the QSHI phase of the
middle gaps. On the other hand, when the Fermi energy
is adjusted inside the lowest gap, two propagating states
traverse the bulk gap (E and F in Fig. 2 (b)). E and F
are characterized by the single spin-component which are
localized at the opposite edges (Fig. 3(e,f)). In the analo-
gous 2D system the excitations E and F constitute a pair
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of chiral edges states with single spin-component. This is
associated with the spin-filtered QH phase [31, 32]. We
emphasize that the pseudospin components in our pro-
posal are manifested as the leg degree of freedom. As a
result, these edge states are localized at the extremities
of the left- and right-legs, respectively. This will give
convenience to the direct observations of the topological
phases.
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FIG. 3. The mode amplitudes of the gapless states in
Fig. 2(b). (a-d) corresponds to the states marked by �, while
(e,f) to the states •. The spin component Ψn↑ (respectively,
Ψn↓) is represented in red (respectively, blue).

To further show the rich topological phases, we ex-
plore the phase diagram through tuning the synthetic
Hamiltonian. Since changing the energy offset between
legs is readily accessible to the experiment, we com-
pute the phase diagram as a function of the ∆. Fig-
ure 4 illustrates the diversity of the topological phases.
The bulk is insulating in the white regions and classi-
fied into distinct phases: QH (C↑ = −1, C↓ = −1) or
(C↑ = +1, C↓ = +1), QSH (C↑ = −1, C↓ = +1), spin-
filtered QH (C↑ = ±1, C↓ = 0) or (C↑ = 0, C↓ = ±1), and
ordinary insulator (C↑ = 0, C↓ = 0). Take EFermi = 0
and EFermi = −1 for example. With the increase of ∆
the excitation of EFermi = 0 will undergo the regimes
of metal, QSH insulator, and ordinary insulator succes-
sively. On the other hand, for the EFermi = −1 the en-
ergy offset can turn a QH phase into a metal, then a
spin-filtered QH phase. Therefore, by manipulating ∆
and EFermi the BCL can host rich topological phases.

One of the key features of our scheme is that the spin-
less ultracold atoms are utilized and the synthetic spin-
orbit structures are built from the leg’s degree of freedom
which is coupled to the Abelian gauge field. Neither in-
ternal states (e.g., hyperfine states) nor a non-Abelian
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FIG. 4. E-∆ phase diagram. Here, the bandgaps are des-
ignated by the white regions. The pairs of integers indicate
the Chern numbers of the bandgaps for spin up and down,
distinguishing the topological regimes of the model.

gauge is used in our setting. This effectively avoids the
heating in the Raman process if spin-orbit coupling re-
lies on the excited states [33]. Besides that, since the
“spin” itself is synthesized in real space [11], our method
allows for a real-space-resolved detection of the topolog-
ical phases, instead of spin-resolved techniques. This
character will facilitate greatly the direct observations of
the spin-orbit coupled topological phases. On the other
hand, due to the versatility of the optical ladders, we re-
mark that our results are also applicable to the structures
prepared in the artificial dimensions [12–20].

Several comments are in order. As an alternative to
access the higher-dimensional lattice Hamiltonians that
host topological phases, the topological pumping in lower
dimensional systems provides an additional avenue to-
wards studying topological states of matter [23, 34–38].
The pumping experiments of ultracold atoms have been
demonstrated in optical superlattices [35, 36]. Therefore,
by adiabatically and periodically varying a set of BCLs’
parameters, e.g., the relative phase of the bichromatic
lattices, one can drive versatile quantized transports dur-
ing each cycle, such as charge [34] and spin pump [39].
The implementation of pumping in our BCL system will
arouse the interest from the experimental side.

In conclusion, we have proposed a system of bichro-
matic chiral ladder for studying the topological bands for
ultracold atoms, utilizing the concepts of synthetic spin-
orbit coupling and Zeeman splitting. We have demon-
strated that the quantum spin-Hall phase can emerge
within this setup. In the meanwhile, the bichromatic chi-
ral ladders can produce rich topological phases via tuning
the system parameters. We conclude that the bichro-
matic chiral ladders hence constitute a surprisingly sim-
ple yet versatile scenario to explore synthetic topological
quantum matter for the ultracold atoms. Our proposal to
engineer topological quantum matter is of direct exper-
imental relevance in ultracold atoms. And the state-of-
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the-art experimental setups [11–13, 18] render our scheme
immediately feasible in ultracold atom experiments. In
addition, one of advantages of ultracold atoms systems
is the ability to control the atom-atom interaction via
Feshbach resonances. Taking this work as a basis, we
believe that constructing the interacting models within
atomic chiral ladders can trigger the study on the exotic
topological many-body states [40, 41].
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