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ABSTRACT
Quantum machine learning is a rapidly growing field at the 
intersection of quantum technology and artificial intelligence. 
This review provides a two-fold overview of several key 
approaches that can offer advancements in both the develop-
ment of quantum technologies and the power of artificial 
intelligence. Among these approaches are quantum-enhanced 
algorithms, which apply quantum software engineering to 
classical information processing to improve keystone machine 
learning solutions. In this context, we explore the capability of 
hybrid quantum-classical neural networks to improve model 
generalization and increase accuracy while reducing computa-
tional resources. We also illustrate how machine learning can 
be used both to mitigate the effects of errors on presently 
available noisy intermediate-scale quantum devices, and to 
understand quantum advantage via an automatic study of 
quantum walk processes on graphs. In addition, we review 
how quantum hardware can be enhanced by applying 
machine learning to fundamental and applied physics pro-
blems as well as quantum tomography and photonics. We 
aim to demonstrate how concepts in physics can be translated 
into practical engineering of machine learning solutions using 
quantum software.
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1. Introduction

Nowadays, due to exponential growth of information, computational 
speedup, acceleration of information transmission and recognition, many 
key global interdisciplinary problems for modern societies emerge [1]. In 
everyday life, we face the problem of big data everywhere. Classical infor-
mation science and relevant technological achievements in communication 
and computing enable us to move our society from Internet of computers to 
the Internet of Things (IoT), when humans interact with spatially distrib-
uted smart systems including high precision sensors, various recommenda-
tion systems based on huge amount of on-line information processing and 
its recognition [2]. Artificial intelligence (AI) and machine learning (ML) 
drive the progress in this movement of our society. These tasks and facilities 
require online information recognition that is actually possible only on the 
basis of the parallel information processing.

Today, a number of areas have formed in information science, physics, 
mathematics, and engineering, which propose to solve these problems by 
means of various approaches of parallel processing of information by 
spatially distributed systems. Our vision of the problem we establish sche-
matically in Figure 1 that reflects the content of this paper. Nowadays, AI 
predominantly focuses on ML approach that provides solutions for Big data 
problem, data mining problem, explainable AI, and knowledge discovery. 
As a result, in our everyday life we can find distributed intelligent systems 
(DIS) which represent networks of natural intelligent agents (humans) 
interacting with artificial intelligence agents (chatbots, digital avatars, 
recommendation systems, etc.), see e.g. [3] and references therein. Such 
systems require new approaches to data processing that may be described by 

Figure 1. Interdisciplinary paradigm of quantum machine learning that is based on current 
classical information, quantum technologies, and artificial intelligence, respectively (the details 
are given in the text).
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means of cognitive computing which possess human cognitive capabilities, 
cf [4]. At the same time, such a system operates within a lot of uncertainties 
which may provide new complexities. But, how about quantum approach 
and quantum technologies which can help us in this way?

Certainly, quantum approach and relevant quantum technologies are one 
of the drivers of current progress in the development of information sciences 
and artificial intelligence, which have common goals of designing efficient 
computing, as well as fast and secure communication and smart IoT. The 
mutual overlapping of the three seminal disciplines are bearing meaningful 
fruits today. Within left half of the ellipsis in Figure 1 we establish some crucial 
topics of quantum technologies studies, which are interdisciplinary right now. 
In particular, quantum computing opens new horizons for classical software 
engineering, see e.g. [5] Especially it is necessary to mention quantum inspired 
algorithms and quantum inspired approaches, which utilize quantum prob-
ability and quantum measurement theory for classical computing [6].

Quantum computers as physical systems, biological neurons and human 
brain are capable for parallel information proceeding in natural way. 
However, sufficient criterion for speedup information processing is still 
unknown in many cases.

A qubit, which is a minimal tool in quantum information science, is estab-
lished by superposition of two well-distinguished quantum states defined in 
Hilbert space and represents an indispensable ingredient for parallel informa-
tion processing [7]. Quantum algorithms (software) which are proposed many 
years ago utilize qubit quantum superposition and entanglement power for 
achieving so-called quantum supremacy and speedup in the solution of NP- 
hard problems, which are unattainable with classical algorithms [8]. Quantum 
computers (hardware) as physical devices was first proposed by Richard 
Feynman, which deals with simple two-level systems as physical qubits per-
forming quantum computation [9,10]. Despite the fact that a lot of time has 
passed since the successful demonstration of the first quantum gates and the 
simplest operations with them (see e.g. [11]), there exists a large gap between the 
quantum information theory, quantum algorithms, and quantum computers 
designed to execute them. Existing quantum computers and simulators are still 
very far from quantum supremacy demonstrations in solving real problems 
related to our daily life. This can be partly explained by the modern noisy 
intermediate-scale quantum (NISQ) era of the development of quantum tech-
nologies [12]. Currently, quantum computers are restricted by small number of 
qubits, and relatively high level of various noises, which include decoherence 
processes that completely (or, partially) destroy the effects of interference and 
entanglement. In this regard, the problem of quantum supremacy for specific 
tasks represents the subject of heated debates [13–15].

Surface codes and creation of logical qubits are proposed for significant 
reduction of computation errors [16,17]. In particular, such a code presume 
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mapping of some graph of physical qubits onto the logical qubit. Typically, 
special network-like circuits are designed for quantum processor consisting of 
logical qubits. However, it is unclear how this mapping is unique and how such 
a network is optimal and universal for various computation physical platforms?

As an example, a minor embedding procedure is supposed for quantum 
annealing computers, which are based on superconductor quantum hard-
ware [18]. Obviously, various physical platforms examined now for quan-
tum computation can use different mapping procedures and relay to design 
of specific networks of qubits accounting specific noises and decoherence. 
Thus, the choosing of appropriate network architecture represents 
a keystone problem for current quantum computing and properly relays 
to demonstration of quantum supremacy.

Clearly, the solution of this problem is connected not only with the proper-
ties of quantum systems, but also with the ability of networks to parallel and 
robust information processing. An important example that we refer here is the 
human brain as a complex network comprising from biologically active net-
works, which exhibit fast information processing. Noteworthy, the architec-
ture of such a computation is a non-von Neumann. In this order, the human 
brain is capable for pattern retrieving by means of association. A long time 
ago, Hopfield introduced a simple neural network model for associative 
memory [19]. As time evolves, neural networks have represented an indis-
pensable tool for parallel classical computing. Artificial intelligence and 
machine learning paradigm, cognitive and neuromorphic computing, use 
neural network some specific peculiarities represent vital approach proposed 
to explore the full power of parallel character of computation [1,20].

Quantum machine learning (QML) is a new paradigm of parallel computa-
tion where quantum computing meets network theory for improving com-
putation speed-up and current, NISQ-era quantum technology facilities, by 
means of quantum or classical computational systems and algorithms [21– 
24]. In Figure 2 we represent a timeline of the appearance and development of 
some important algorithms [25–45] which are able to improve computational 
complexity, accuracy and efficiency within various types of hardware available 
now. In this work, we are going to discuss most of them in detail.

In more general, nowadays QML disciplines occur at the border of 
current quantum technologies and artificial intelligence and includes all 
their methods and approaches to information processing, see Figure 1. The 
rapidly growing number of publications and reviews in this discipline 
indicates an increasing interest in it from the scientific community, see e. 
g. [46–53]. In particular, seminal problems in algorithm theory, which are 
capable of enhancement of quantum computing by means of the ML 
approach we can find in [21,46,50,53]. Some applications of ML approach 
to solve timely problems in material science, photonics, and physical chem-
istry reader can find in [47–49, 51, 52], respectively.
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It is important to notice that ML approach is closely connecting with 
knowledge discoveries in modern fundamental physics, which are closely 
connected with a problem of big data and their recognition. In order, we talk 
about automated scientific discovery, which can significantly expand our 
knowledge of Nature, cf [54,55]. In particular, it is worth to mention 
research of the Large Hadron Collider (LHC), where data mining can 
contribute to new discoveries in the field of fundamental physics [56]. 
Another important example constitutes network research on the registra-
tion of gravitational waves and extremely weak signals in astronomy, see e.g. 
[57] Clearly, further discoveries in this area require improvement of the 
sensitivity of network detectors (which are interferometers) and obtained 
data mining where ML approach can significantly promote, cf [58].

Despite the fact that the previous review papers [21, 22, 46, 47, 49–53] 
theoretically substantiate and discuss the effectiveness of quantum 
approaches and quantum algorithms in ML problems, in practice there 
are many problems that do not allow to see quantum supremacy in experi-
ment. Within the NISQ era of modern quantum computers and simulators, 
their capabilities are not yet enough to achieve quantum supremacy, cf [12]. 
In this regard, hybrid information processing algorithms that take into 
account the sharing of quantum and classical computers have come for-
ward. Quantum-classical variational, quantum approximate optimization 
(QAOA) algorithms are very useful and effective in this case, see e.g. [59– 
62]. In this review work, we are going to discuss various approaches, which 
are use for QML paradigm within current NISQ-era realities. Unlike the 
previous work [21,22,46,47,49–53], below we will focus on methods and 
approaches of ML that can be effective, especially for hybrid (quantum- 
classical) algorithms, see Figure 2.

Figure 2. Timeline with milestones of quantum machine learning achievements.
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In its most general form, the current work can be divided into two 
large parts, which we establish as Sections 2 and 3, respectively. In 
particular, in Sec. 2 we consider a variety of problems where the ML 
approach may be enhanced by means of quantum technologies, as it is 
presented in Figure 1. In general, we speak here about speed-up of 
data processing by quantum computers and/or quantum simulators, 
which we can use for classical ML purposes, see Figure 3. An impor-
tant part of these studies is devoted to optimal encoding, or embed-
ding of classical data sets into the quantum device [63], and 
recognition of data set from quantum state readout. We establish 
a comprehensive analysis of quantum neural network (QNN) feature 
as a novel model in QML whose parameters are updated classically. 
We discussed how such a model may be used in timely hybrid quan-
tum-classical variational algorithms.

On the contrary, in Sec. 3 we establish currently developing QML 
hot directions where classical ML approach can help to solve NISQ-era 
quantum computing and quantum technology tasks, cf. Figure 1. In 
particular, it is necessary to mention automation of quantum experi-
ments, quantum state tomography, quantum error correction, etc., 
where classical ML techniques may be applied. Especially, we note 
here that ML algorithms which can be useful in recognition of quan-
tum speedup problem of random (classical, or quantum) walks per-
formed on various graphs. The solution to this problem proposed by 
us plays an essential role for both of current quantum computing 
hardware and software development.

2. Machine learning enhanced by quantum technologies

In this section, an impact that quantum technologies make in machine 
learning is discussed. The outline of the topics is given in Figure 3.

Figure 3. Quantum technologies help in improving machine learning. Sections that discuss 
a particular topic are labeled.
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2.1. Machine learning models

At its roots, machine learning is a procedural algorithm that is augmented 
by the provision of external data to model a specific probability distribution. 
The data could consist of only environment variables (features), x 2 X – 
unsupervised learning – features and their associated outcomes (labels), y 2
Y – supervised learning – or environment variables and a reward for specific 
actions, RðaÞ – reinforcement learning.

2.1.1. Unsupervised learning
The point of unsupervised learning is to infer attributes about a series of data 
points, usually to find the affinity of data points to a clustering regime. 
A popular method of unsupervised learning is known as the K-means cluster-
ing [64] where data points are assigned to a chosen number of clusters, and 
the position of the centres of these clusters could be trained. Unsupervised 
learning is applied to many real-world problems, from customer segmenta-
tion in different industries [65] to criminal activity detection [66].

2.1.2. Supervised learning
In contrast, supervised learning endeavours to infer patterns in the provided 
data. The goal of such models is to generalise this inference to previously 
unseen data points. In a linear regression setting, this is often done by linear 
interpolation [67], but for an a-priori problem where some degree of non- 
linearity is plausible, supervised learning can train non-linear regression 
models and provide better alternatives. Supervised learning is also used for 
logistical learning, where instead of a regression model, a categorical prob-
ability distribution is to be learned. Supervised learning has seen considerable 
success in many areas, from credit-rating models [68] to scientific fields [69].

2.1.3. Reinforcement learning
Finally, reinforcement learning is the optimisation of a set of actions (policy) 
in an environment. The environment allows actions and provides rewards if 
certain conditions are met. An agent is made to explore this environment by 
investigating the outcomes of certain actions given its current state and 
accordingly optimise its model variables. Reinforcement learning often 
attracts significant attention from the gaming industry [70] but it has also 
contributed to real-life scenarios, such as portfolio management [71].

2.1.4. Exponential growth of practical machine learning models
A recurring theme in all three modes of ML is the high complexity of their 
models. This could be caused by a high-dimensional input size like classify-
ing a high-resolution image database [72], or a complex problem like image 
segmentation [73]. A commonly used – but known to be inaccurate 
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[74,75] – measure of complexity is the parameter-count of an ML model. It 
is simply the number of trainable parameters of a model. Most familiarly in 
neural networks, the parameters are the weights and biases associated with 
each neural layer. For smaller problems, the parameter-count could be as 
small as hundreds [76,77], but cutting-edge AI models, such as DALL-E 2 
[78], Gopher [79], and GPT-3 [80] are models that have tens or hundreds of 
billions of parameters and is increasing [81,82]. This level of high-dimen-
sionality comes at a great financial and environmental cost. Ref [83]. 
assessed the carbon emission and the financial cost of fine-tuning and 
training several large ML models in 2019. They found that in some cases 
these models emitted more CO2 than the entire lifetime of an average 
American car, and could cost over $3 m. In addition to this great cost, 
there are concerns regarding the scalability, namely that the exponential- 
growth in computing power – known as Moore’s law [84], revisited in [85] – 
is growing at a slower rate than ML research [86,87].

2.1.5. Quantum-enhanced machine learning
The idea behind the field of quantum machine learning is to use the 
capabilities of quantum computers to provide scalable machine learning 
models that can provide machine learning capabilities beyond what classical 
models can be expected to deliver, at a healthier cost.

Quantum computers offer an exponential computational space advantage 
over classical computers by representing information in quantum binary digits 
or qubits. Where classical computers work in the Boolean space, B�n, qubits 
form an exponentially growing, special unitary space, SUð2nÞ. This means that 
while a classical register with n bits can hold an n-digit binary string, a quantum 
register of the same size holds all possible strings of such size, providing an 
exponential number of terms in comparison to its classical counterpart [7].

In addition to addressing the scalability concerns, classical machine 
learning models operate within the realm of classical statistical theory, 
which in some cases seems to diverge from human behavioural surveys. 
Ref [88]. Introduced the sure thing principle, which shows how unrelated 
uncertainties could affect a human’s decision, which a classical statistical 
model would deem as unrelated and remove. In Refs. [89,90] it is showed 
that in some cases people tend to give higher credence to two events 
occurring in conjunction than either happening individually, which is con-
trary to the classical statistical theory picture. In Ref [6,91]. It is argued that 
these problems could be addressed by using a quantum statistical formula-
tion. In addition, other similar issues like the problem of negation [92] and 
others listed in Ref [93]. are also shown to have a resolution in the quantum 
theory. The distributional compositional categorical (DisCoCat) model of 
language [94] could be addressed as the first theoretically successful attempt 
at harnessing this advantage of quantum machine learning.
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2.2. Quantum neural networks

For a given data provision method, e.g. supervised learning, a host of different 
machine learning architectures could be considered. A machine learning 
architecture has a set of trainable parameters θ that can be realised based on 
an initial probability distribution. Any specific realisation of the parameters of 
a machine learning architecture is a model. The quest of machine learning is 
to train these parameters and achieve a nearer probability distribution to that 
of the problem in question. The fully trained version of each architecture 
yields a different model with different performance, and generally, the archi-
tectures that can spot and infer existent patterns in the data are said to be of 
superior performance. It is also important to avoid models that find non- 
existent patterns, models that are said to over-fit their pattern-recognition to 
the provided data, and when evaluated on previously unseen data fail to 
perform as well. A model that can spot existent patterns without overfitting 
to the provided data is said to have a high generalisation ability. This metric 
establishes a platform for model selection1 [95].

For any given problem, there are a variety of architecture classes to 
choose from. Some of the most commonly used architectures are multi- 
layered perceptrons (neural networks), convolutional networks for image 
processing, and graph neural networks for graphically structured data. QML 
contributes to this list by introducing quantum models such as QNN [96].

Quantum neural networks are models in QML whose parameters are 
updated classically. The training pipeline includes providing data to the 
quantum model, calculating an objective (loss) value, and then adapting 
the QNN parameters in such a way as to reduce this objective function. 
A specific approach to providing the data to the quantum model is 
known as the data encoding strategy, and it can have a drastic effect on 
the functional representation of the model. Sec 2.2.1 covers the various 
approaches to data encoding, and Sec 2.2.4 offers a review of the 
theoretical advances in exploring the analytical form of this representa-
tion. In QNNs, the objective function is (or includes) the expectation 
value of a parametrised quantum circuit (PQC) [97]. PQCs are quan-
tum circuits that make use of continuous-variable group rotations. Fine- 
tuning the architecture of the PQC can have a direct effect on the 
performance of the resultant QNN model. Sec 2.2.2 reviews the various 
PQC parametrisations suggested in the literature.

The consequences of the choice of the loss function are outlined in Sec 
2.3.1. After making this choice, one could evaluate the PQC, and pass the 
result to the loss function to obtain a loss value. To minimise the loss value, it 
is important to tune the trainable parameters in such a way to maximally 
minimise this value. This is achieved – in both the classical and quantum 
ML – by calculating the gradient of the loss function with respect to the model 
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parameters.2 The gradient vector of a function point to the direction of 
maximal increase in that function, and to maximally reduce the loss function 
one could find the gradient and step in the opposite direction. Sec 2.2.3 
reviews the literature concerning QNN gradient computation.

2.2.1. Data encoding strategies
There are three overarching data encoding strategies [98]:

● State embedding: the features are mapped to the computational bases. 
This is often used for categorical data, and as the number of bases 
grows, the number of data points needs to follow the same trend, 
otherwise, the encoding will be sparse [96].

● Amplitude embedding: when the features of the dataset are mapped to 
the amplitudes of the qubit states. This embedding could be repeated to 
increase the complexity of the encoding. For n qubits, this method 
allows us to encode up to 2nþ1 features onto the quantum system.

● Observable embedding: the features are encoded in a Hamiltonian 
with respect to which the quantum system is measured. This encoding 
is typically used in quantum native problems - see Sec 2.5.2 - namely 
variational quantum eigensolvers (VQE) [30] and quantum differential 
equation solvers [99,100].

It is important to recognise that state embedding is the only discrete- 
variable encoding with a strong resemblance to classical ML, whereas the 
other two are continuous-variable methods and can be considered analogue 
machine learning.3

Amplitude embedding could be sub-divided into sub-categories: angle 
embedding, state amplitude embedding, squeezing embedding and displa-
cement embedding [101,102]. Ref [98]. provides an expressivity comparison 
between these encoding methods. Effective encoding strategies were ana-
lysed in [99,103–105].

2.2.2. Parametrised architecture
The specific parametrisation of the network could dramatically change the 
output of a circuit. In classical neural networks, adding parameters to 
a network improves the model expressivity, whereas, in a quantum circuit, 
parameters could become redundant in over-parametrised circuits [106]. 
Additionally, the architecture must be trainable, whereas it was shown that 
this cannot be assumed in an a-priori setting [107] – see Sec 2.2.5. Many 
architectures have been suggested in the literature, and many templates are 
readily available to choose from on QML packages [108–110].

10 A. MELNIKOV ET AL.



Ref [111]. introduced a family of hardware-efficient architectures and 
used them as variational eigensolvers – see Sec 2.5.2. These architectures 
repeated variational gates and used CNOT gates to create highly entangled 
systems. Based on the discrete model in Ref [112]. and made continuous in 
Ref [113]. A model was devised using RZZ quantum gates that was shown to 
be computationally expensive to classically simulate [101,114,115], named 
the instantaneous polynomial-time quantum ansatz (IQP).

Another approach to creating quantum circuits is to take inspiration 
from tensor networks [116]. Famous architectures in this class are the 
tensor-tree network (TTN), matrix product state (MPS), and the quantum 
convolutional neural networks (QCNN) [34,117–119].

2.2.3. Gradient calculation
Despite its excessive memory usage [120], the most prominent gradient calcula-
tion method in classical ML is the back-propagation algorithm [121]. This 
method computes the gradient of every function that trainable parameters are 
passed through alongside its output and employs the chain rule to create an 
automatically differentiable ML routine. The back-propagation method can 
(and has been [122]) implemented for QML, but as it requires access to the 
quantum state-vector, it can only be used on a simulator and not a real quantum 
processing unit (QPU). As quantum advantage can only occur in the latter 
setting, it is important to seek alternatives that can operate on QPUs.

The first proposed algorithm is known as the finite-difference differentia-
tion method [123]. As its name suggests, it calculates the gradient by using 
the first principles of taking derivatives, i.e. adding a finite difference to the 
trainable parameters one at a time, and observing the change that this action 
makes. This method is prone to error in the NISQ era.

As an alternative, a discovery was made in [124] known as the parameter- 
shift rule that suggested an exact, analytic derivative could be calculated by 
evaluating the circuit twice for each trainable parameter. The suggestion was 
that the derivative of a circuit with respect to a trainable parameter θ is half 
of the evaluation of the circuit with θ shifted by π

2 subtracted from the 
circuit when it is shifted by � π

2 . This suggestion initially worked only on 
trainable parameters applied to Pauli rotations, but later works [125–132] 
expanded to its current form, applicable to any parametrisation. The para-
meter-shift rule is the state-of-the-art gradient computation method and is 
compatible with QPUs, but one of its major problems is its scalability. As 
mentioned, the number of circuit evaluations for this method increases 
linearly with the number of trainable parameters, and this poses 
a challenge to how complex the quantum models can get. A notable effort 
to mitigate this effect was by parallelising the gradient computation, which 
is now natively provided when using PennyLane on AWS Braket [133].
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As a transitional gradient computation method for QNNs, Ref [134]. 
introduced the adjoint algorithm. Similar to the back-propagation method, 
the adjoint can only be run on a simulator and calculates the entire gradient 
vector using a single evaluation of the circuit. However, its memory usage is 
superior to the former. It works by holding a copy of the quantum state and 
its adjoint in the memory, and in turn applying the gates in reverse order, 
calculating the gradients wherever possible. This means that two overall 
evaluations of the circuit are made, first to evaluate the output, and second 
to compute the gradient.

Alternative suggestions have also been made to optimise QML models 
following the geometry of their group space. Ref [135]. suggested 
a Riemannian gradient flow over the Hilbert space, which through hardware 
implementation showed its favourable optimisation performance.

2.2.4. Quantum neural networks as universal Fourier estimators
Ref. [105] explored the effects of data encoding on the expressivity of the model. 
It is proved that the data re-uploading technique suggested by Ref [136]. created 
a truncated Fourier series limited by the number of repetitions of the encoding 
gates. Ref [137]. also showed that QNNs can be universal Fourier estimators – 
an analogue to the universality theorem in classical multi-layered perceptrons 
[138]. Another point proven by Refs. [105,136] was that by repeating the 
encoding strategy (in amplitude embedding and more specifically the angle 
embedding) more Fourier bases are added to the final functional representation 
of the circuit. This was true if the repetitions were added in parallel qubits or 
series. This sparked a question about the accessibility of these Fourier bases, i.e. 
whether their coefficients can independently be altered, which remains an open 
question at the time of this publication.

2.2.5. Barren plateaus and trainability issues
QNNs could suffer from the problem of vanishing gradients. This is when 
during training, the gradient of the model tends to zero in all directions. 
This could severely affect the efficiency of the training or even bring it to 
a halt. This is known as the barren plateau (BP) problem.

BPs are not usually at the centre of attention in classical ML, but their 
dominance in quantum architectures makes them one of the most important 
factors in choosing a circuit. Ref [107]. showed that the expectation value of 
the derivative of a well-parametrised4 quantum circuit is equal to zero, and 
that its variance decays exponentially with the number of qubits. Ref [139]. 
confirmed that barren plateaus also exist in gradient-free optimisation meth-
ods. In addition, Ref [140]. showed that in the NISQ era, using deep circuits 
flattens the overall loss landscape resulting in noise-induced BPs. These are 
mathematically different kinds of Barren plateaus that flatten the landscape as 
a whole. Illustrations in Figure 4 summarise these phenomena.
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These two findings painted a sobering picture for the future of QNNs, 
namely that they need to be shallow and low on qubit-count to be trainable, 
which contradicts the vision of high-dimensional, million-qubit QML models.

Many remedies have been proposed: Ref [141]. suggested that instead of 
training all parameters at once, the training could be done layer-wise and 
Ref [142]. showed that if the depth of the variational layers of the QNN is of 
the order O( logðnÞ), n being the number of qubits, and that only local 
measurements are made, the QNN remains trainable. This was tested on 
circuits with up to 100 qubits and no BPs were detected. Other remedies 
included introducing correlations in the trainable parameters [143,144] and 
specific initialisations of the parameters [145] of the circuit by applying 
adjoint operators of certain variational gates.

More analysis was done on specific architectures: Ref [146]. showed that 
under well-defined weak conditions, the TTN architecture was free from the 
BP problem; and Ref [147]. showed that the quantum convolutional neural 
network architecture introduced in Ref [34]. was also free from BPs. Ref 
[148]. developed a platform based on ZX calculus5 to analyse whether 
a given QNN is subject to suffering from BPs. In addition to confirming 
the results from the two earlier contributions, it is also proved that the 
matrix product state [149] and hardware efficient, strongly-entangling 
QNNs suffered from BPs. Furthermore, Ref [150]. related the barren plateau 
phenomenon to the degree of entanglement present in the system.

2.3. Quantum learning theory

2.3.1. Supervised QML methods are kernel methods
In Refs. [98,151] the similarities between the QNNs and kernel models were 
brought to focus. First introduced in Ref [152]., kernel methods are well- 
established ML techniques with many applications. In conjunction with 

Figure 4. Visualisation of the barren plateau phenomenon in (a) noise-free and (b) noise- 
induced settings.
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support vector machines (SVM), the way they work is by mapping the 
features of a dataset into a high-dimensional space through a function 
ϕðxÞ and then using a kernel function, Kðx1; x2Þ, as a distance measure 
between any two data points in this high-dimensional space. This is exactly 
the behaviour observed in QNNs: the features are first embedded into 
a high-dimensional quantum state-vector, and by overlapping one encoded 
state with another we can find the level of similarity between two points in 
this space. In this high-dimensional space, one hopes to find better insight 
into the data – usually expressed as a decision boundary in the form of 
a hyperplane in classification tasks. Ref [153]. used this link and developed 
a framework for searching for possible quantum advantages over classical 
models. It is also shown that large models could scatter the data so far apart 
that a distance measure becomes too large for optimisation purposes, and 
proposed that an intermediate step be added to map the high-dimensional 
space into a lower-dimensional hyperplane to improve its training 
performance.

2.3.2. Bayesian inference
Bayesian inference is an alternative approach to the statistical learning theory 
where Bayes’ theorem [154] is used to adapt an initial assumption about the 
problem (prior distribution) based on newly-found data (evidence) to get 
a posterior distribution. Bayesian learning is when this logic is applied to ML. 
This is done by applying a distribution to every parameter in the network and 
updating the distributions when training. Calculating the posterior distribu-
tion is generally computationally expensive, but it is possible to approximate 
its using a trick known as variational inference [155,156] successfully demon-
strated an approximate back-propagation algorithm on a Bayesian neural 
network (BNN), referred to as Bayes-by-backprop.

The first implementations of Bayesian QNNs were in Refs. [157–159] 
which attempted to make quantum circuits into an exact Bayesian inference 
machine. Ref [160]. introduced two efficient, but approximate methods – 
one from kernel theory and another using a classical adversary – to use 
QNNs to perform variational inference. The work consists of a quantum 
circuit that can be modelled to produce the probability distribution of 
a phenomenon by exploiting the probabilistic nature of quantum 
mechanics – known as a Born machine [161,162] or quantum generative 
models [149,163–168]. This could also be used later to quantify the predic-
tion error for a single data point, as it has been done classically in Ref [169].

2.3.3. Model complexity and generalisation error bounds
Intuitively, complex phenomena require complex modelling, but quantify-
ing the complexity of a given model is non-trivial. There are multiple ways 
of defining the model complexity: Vapnik-Chervonenkis (VC) dimension 
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[170], Rademacher complexity [171], and effective dimension [172].6 The 
complexity measures are also connected to the generalisation error because 
when the model becomes too complex for the problem, the generalisation is 
expected to worsen.

Much work has been done to quantify the complexity and the general-
isation error of quantum neural networks: Ref [173]. explored 
a generalisation error bound through the Rademacher complexity that 
explicitly accounted for the encoding strategy; and Ref [174]. used the 
effective dimension – a measure dependent on the sample size – to bound 
the generalisation error of QNNs as well as prove their higher expressivity 
given the same number of trainable parameters. Other attempts were also 
made to quantify the complexity (also referred to as the expressivity) of 
QNNs in Refs. [175–179].7 Notably, Ref [180]. theoretically proved that the 
generalisation error of a QNN grew as Oð

ffiffiffiffiffiffiffiffiffiffi
T=N

p
Þ where T was the number 

of parametrised quantum gates in the QNN, and N was the number of data 
samples in the dataset. The latter work implies that QML models are better 
at generalising from fewer data points.

2.4. Hybrid quantum neural networks

Just as there are classical and quantum models, one could also combine the 
two to create hybrid models – see Figure 5. It is conceivable that in the NISQ 
era, one could use the understanding of QML described in Sec. 2.3 to find 
a regime where quantum models cover some bases that classical models do 
not. Ref [41]. developed a platform for hybrid quantum high-performance 
computing (HQC) cloud and it was deployed on the QMware hardware 
[181,182]. It is shown that for high-dimensional data, a combination of 
classical and quantum networks in conjunction could offer two advantages: 
computational speed and the quality of the solution. The data points were, 
first, fed to a shallow8 quantum circuit composed of four qubits, two of 
which were measured, and their corresponding values were passed onto 
a neural network. Two classical datasets were chosen to explore the effec-
tiveness of a hybrid solution and to compare it when the quantum part is 
removed, leaving only a classical network: the sci-kit circles’ dataset [183] 
and the Boston housing dataset [184]. The former is a synthetic geometrical 
dataset that consists of two concentric circles in a 2-dimensional square of 
side x ¼ 2π, and the latter is about the distribution of the property value 
given its population status and the number of rooms. In both cases, it was 
shown that the hybrid network generalises better than the classical one and 
this difference is most visible at the extremes of problems with very small 
training sample sizes. However, this difference became smaller as the num-
ber of samples grew.
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In continuation, Ref [44]. suggested a hyperparameter optimisation scheme 
aimed at architecture selection of hybrid networks. This work also implemented 
a hybrid network for training, but in two new ways: 1) using a real-world, image 
recognition dataset [185], and 2) the quantum part of the hybrid network was 
inserted in the middle of the classical implementation. Additionally, the archi-
tecture of the quantum part was a subject of hyper-parameter optimisation, 
namely the number of qubits used, and the number of repetition layers included 
are optimised. Training this network showed that the hybrid network was able 
to achieve better quality solutions, albeit by a small margin. It is notable that 
because of this architecture optimisation, a highly improved quantum circuit 
was achieved. The performance of this circuit was theoretically measured by 
applying analysis methods such as ZX reducibility [186], Fourier analysis [105], 
Fisher information [106,187,188], and the effective dimension [172,174].

2.5. Applications and realisations

QML automatically inherits all classical ML problems and implementations, 
as it is simply a different model to apply to data science challenges. In 
addition to this inheritance, QML research has also provided novel, quan-
tum-native solutions. In both cases, QML has so far been unable to provide 
a definite, practical advantage over classical alternatives, and all the sug-
gested advantages are purely theoretical.

2.5.1. Solving classical problems
QML is employed in many classical applications. Some notable contributions 
are in sciences [189–195], in finance [42,196–198], pharmaceutical [43,45], 

Figure 5. An example of a hybrid quantum-classical ML model. In this case, the inputs are 
passed into a fully connected classical multi-layered perceptron, and its outputs are fed into the 
embedding of a quantum circuit. Depending on the setting, some measurements of this 
quantum circuit are taken and then passed into another fully connected layer, the output of 
which can be compared with the label.
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and automotive industries [44]. In many cases, these models replaced 
a previously known classical setting [199–202]. Quantum generative adver-
sarial networks were suggested in Ref [203]. and followed by Refs. [204–211]. 
Similarly, quantum recurrent neural networks were investigated in [212,213], 
and two approaches to image recognition were proposed in Refs. [34,214]. Ref 
[215]. looked at a classical-style approach to quantum natural language 
processing. The applications of QML in reinforcement learning were also 
explored in Refs. [38,216–218].9 Finally, a celebrated application is the quan-
tum auto-encoder, where data is compressed and then re-constructed from 
less information, a notable suggestion was made in Ref [219].

2.5.2. Quantum-native problems
Native problems are novel, quantum-inspired ML problems that are speci-
fically designed to be solved by a QML algorithm.

Perhaps, the most known QML algorithm is the variational quantum 
eigensolver (VQE). The problem formulation is that the input data is 
a Hamiltonian, and we are required to find its ground state and ground- 
state energy. The VQE solution consists of preparing a PQC of trainable 
parameters and taking the expectation value of the Hamiltonian. This yields 
the energy expectation of the prepared state, and the idea is that by mini-
mising this expectation value, we can achieve the ground-state energy, at 
which point the prepared state will represent the ground state of the 
problem. This was first implemented to find the ground-state energy of 
He � Hþ [30] and was then substantially extended in Ref [59]. VQE 
remains one of the most promising areas of QML.

Ref [25]. showed that PQCs can be used to solve a linear system of equations 
(LSE). They proposed a commonly known as the Harrow, Hassidim, and Lloyd 
(HHL). Refs. [220–227] improved this algorithm and Ref [228]. extended it to 
also include non-linear differential equations. Ref [100]. showed that it is 
possible to use a quantum feature map to solve non-linear differential equations 
on QNNs. This is also an exciting and promising area of QML.

An important QML formulation is known as the quadratic unconstrained 
binary optimisation (QUBO) [229,230]. This is generally a classical pro-
blem, but using the Ising model – see [231] – this can be solved on 
a quantum computer [232,233]. A common demonstration of the latter is 
the max cut problem [234] – see Figure 6. There are solutions for the QUBO 
problem on both gate-based quantum computers and quantum annealers 
[235–237], and this general concept has seen use in many sectors [238].

Lastly, another quantum-native formulation is in natural language pro-
cessing. Ref [94]. developed a platform for turning grammatical sentences 
into quantum categories using J. Lambek’s work [239]. Refs. [240–242] 
tested this algorithm on quantum hardware, and later a full QNLP package 
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was developed [243]. The initial value proposition of QNLP in this way is 
that this algorithm is natively grammar-aware, but given that large classical 
language models are shown to infer grammar [80], the real advantage of this 
approach could lie in other avenues, such as a potential Grover-style [244] 
speed-up in text classification.

2.6. Open questions

2.6.1. Quantum advantage
Despite the theoretical findings in Sec 2.3.3, there is limited demonstrable 
success in using QML in real-life problems, and this is not purely due to 
hardware shortcomings. Ref [245]. showed that there exists a class of 
datasets that could showcase quantum advantage, and Ref [153]. found 
a mathematical formulation for where we can expect to find such an 
advantage. In Refs. [246–248] attempts were also made to devise a set of 
rules for potential quantum advantage. However, Ref [249]. argued that 
a shift of perspective from quantum advantage to alternative research ques-
tions could unlock a better understanding of QML. The suggested research 
questions were: finding an efficient building block for QML, finding bridges 
between statistical learning theory and quantum computing, and making 
QML software ready for scalable ML.10

2.6.2. Optimal parametrisation
In Sec 2.2.2, we encountered various QNN parametrisations with specific 
properties. An open question is how to optimally parametrise a circuit to 
avoid barren plateaus, be as expressive as possible, and be free of redun-
dancy. A potential characteristic of such a parametrisation is a high level of 
Fourier accessibility as mentioned in Sec 2.2.4, potentially requiring 
a quantifiable measure of this accessibility.

2.6.3. Theory for hybrid models
Despite the successes outlined in Sec 2.4, the theoretical grounding for such 
models is limited. We saw that hybrid networks performed well if the 

Figure 6. The max cut problem. The abstract manifestation of this problem is a general graph, 
and we are interested in finding a partition of its vertices such that the number of edges 
connecting the resultant graph to the complementary graph is maximal.
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quantum section was introduced at the beginning of the model architecture 
[41] or in the middle [44]. From an information-theoretic perspective, this 
needs to be investigated in more detail to shed light on the effect of 
hybridisation. Such investigation could identify if there exist areas where 
the application of a quantum part could complement a classical circuit by 
either introducing an information bottleneck to prevent over-fitting or by 
creating high-dimensional models.

2.6.4. An efficient optimisation method
The current gradient calculation methods are either only available on 
simulators or require a linearly-growing number of circuit evaluations- 
see Sec. 2.2.3. Neither of these can accommodate a billion- 
parameter, million-qubit setting. This poses a barrier to the future of 
QML, and thus an efficient optimisation method is needed for the long 
term.

3. Quantum technologies enhanced by machine learning

In this section, an impact that machine learning makes in quantum tech-
nologies is discussed. The outline of the topics is given in Figure 7. Today 
machine learning is used to realize algorithms and protocols in quantum 
devices, by autonomously learning how to control [35,250–253], error- 
correct [36,254–256], and measure quantum devices [257]. Given the 
experimental data, ML can reconstruct quantum states of physical systems 
[258–261], learn compact representations of these states [262,263], and 
validate the experiment [264]. In this section, we discuss the impact of 
machine learning on fundamental and applied physics, and give specific 
examples from quantum computing and quantum communication.

3.1. Machine learning in fundamental and applied quantum physics

Since its full development in the mid-1920s, a century later quantum 
mechanics is still considered as the most powerful theory, modeling 
a wide range of physical phenomena from subatomic to cosmological scales 
with the most precise accuracy. Even though the measurement problem and 
quantum gravity had led many physicists to conclude that quantum 
mechanics cannot be a complete theory, the spooky action of entanglement 
in the Einstein-Podolsky-Rosen pair [265], has provided the resources for 
quantum information processing tasks. With machine learning, one may be 
able to model different physical systems (e.g. quantum, statistical, and 
gravitational) using artificial neural networks, which might lead to the 
development of a new framework for fundamental physics.
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Even without a precise description of a physical apparatus and solely 
based on measurement data, one can prove the quantumness of some 
observed correlations by the device-independent test of Bell nonlocality 
[266]. In particular, by using generative algorithms to blend automatically 
many multilayer perceptrons (MLPs), a machine learning approach may 
allow the detection and quantification of nonlocality as well as its quantum 
(or postquantum) nature [267–269].

3.1.1. Machine learning in quantum computing
Machine learning has also become an essential element in applied quantum 
information science and quantum technologies. ML, which was inspired by 
the success of automated designs [31], was demonstrated to be capable of 
designing new quantum experiments [32].

Quantum experiments represent an essential step towards creating 
a quantum computer. More specifically, for example, three-particle photo-
nic quantum states represent a building block for a photonic quantum 
computing architecture. In Ref [32]. ML algorithm used is 
a reinforcement learning algorithm based on the projective simulation 
model [270–275]. An agent, the reinforcement learning algorithm, puts 
optical elements on a (simulated) optical table. Each action adds an optical 
element to an existing setup. In case the resulting setup achieves the goal, 
e.g. creates a desired multiphoton entangled state, the agent receives 
a reward. The described learning scheme is depicted in Figure 8(a).

The initial photonic setup is an output of a double spontaneous para-
metric down-conversion (SPDC) process in two nonlinear crystals. 
Neglecting these higher-order terms in the down-conversion, the initial 
state ψð0Þj i can be written as a tensor product of two orbital angular 
momentum entangled photons, 

Figure 7. Machine learning helps in solving problems in fundamental and applied quantum 
physics. Sections that discuss a particular problem are labeled.
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where the indices a; b; c and d specify four arms in the optical setup. The 
actions available to the agent consist of beam splitters (BS), mirrors (Refl), 
shift-parametrized holograms (Holo), and Dove prisms (DP). The final 
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E
is obtained by measuring the arm a, and post-selecting 

the state in the other arms based on the measurement outcome in a.
The reinforcement learning algorithm that achieves the experimental 

designs is shown in Figure 8(b). It is the projective simulation agent is 
represented by a two-layered network of clips. The first layer corresponds 
to the current state of the optical setup, whereas the second layer is the layer 
of actions. The connectives between layers define the memory of the agent, 
which changes during the learning process. The connectivities correspond 
to the probabilities of reaching a certain action in a given state of a quantum 
optical setup. During the learning process, the agent automatically adjusts 
the connectivities, and thereby prioritize some actions other than the other. 
As shown in Ref [32]. this leads to a variety of entangled states of improved 
efficiency of their realization.

3.1.2. Machine learning in quantum communication
In addition to designing new experiments, ML helps in designing new 
quantum algorithms [276] and protocols [277]. Designing new algorithms 
and protocols has similarities to experiment design. In particular, similar to 
experiment design, every protocol can be broken down into individual 
actions. In the case of the quantum communication protocol, these actions 

Figure 8. A reinforcement learning algorithm that designs a quantum experiment. An experi-
ment on an optical table is shown as an example. (a) The learning scheme depicts how an 
agent, the reinforcement learning algorithm, learns to design quantum experiments. (b) 
Representation of the reinforcement learning algorithm, projective simulation, as a two-layered 
network of clips.
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are, e.g: apply T-gate to the second qubit, apply H-gate to the first qubit, 
send the third qubit to the location B, and measure the first qubit in the 
Z-basis. Because of the combinatorial nature of the design problem, the 
number of possible protocols grows exponentially with the number of 
available actions. For that reason, a bruteforce search of a solution is 
impossible for an estimated number of possible states of a quantum com-
munication environment 0:6� 1012 [277].

A reinforcement learning approach to quantum protocol design, first 
proposed in Ref [277]., is shown to be applicable to a variety of quantum 
communication tasks: quantum teleportation, entanglement purification, 
and a quantum repeater. The scheme of the learning setting is shown in 
Figure 9. The agent perceives the quantum environment state, and chooses 
an action based on the projective simulation deliberation process. The 
projective simulation network used in this work is similar to the one in 
Figure 8(b), with addition of hierarchical skill acquisition. This skill is of 
particular importance in the long-distance quantum communication set-
ting, which has to include multiple repeater schemes.

With the help of projective simulation, it was demonstrated that reinfor-
cement learning can play a helpful assisting role in designing quantum 
communication protocols. It is shown that the use of ML in the protocol 
design is not limited to rediscovering existing protocols. The agent finds 
new protocols that are better than existing protocols in case optimal situa-
tions lack certain symmetries assumed by the known basic protocols.11

3.2. Machine learning in random walks problems

Random walks paradigm plays an important role in many scientific fields related 
to the transfer of charge, energy, or information transport [278–282]. Random 
(classical) walks on graphs represent an indispensable tool for many subroutines 
in computational algorithms [283–285]. Quantum walks (QW) represent 
a generalization of classical walks to the quantum domain and use quantum 
particles instead of classical one [286,287]. The resulting quantum interference 
pattern, which governs the QW physics fundamentally differs from the classical 
one [288]. For quantum information science, it is crucially important that 
a quantum particle exhibits quantum parallelism, which appears as a result of 
various path interference and entanglement. It was shown that quantum particle 
propagates quadratically faster than classical one on certain graphs, which are 
line [289], cycle [290,291], hypercube [292,293] and glued trees graphs [294], 
respectively. It is expected that algorithms based on QW should demonstrate 
quadratic speedup that is Oð

ffiffiffiffi
N
p
Þ. Such parallelism may be useful for quantum 

information processing and quantum algorithm purposes [294–296]. It is 
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especially important to note that QWs are explored in quantum search algo-
rithms, which represent important tools for speed up of QML algorithms 
[21,297–299].

Noteworthy, QW speed up demonstration with arbitrary graphs represents 
an open problem [300]. The standard approach would be to simulate quantum 
and classical dynamics on a given graph, which provides an answer in which 
case a particle would arrive at a target vertex faster. However, this approach may 
be difficult (and costly) to use in computations for the graphs possessing a large 
number of vertices; the propagation time scales polynomially in the size of the 
graph. Second, we are usually interested in a set of graphs for which the 
obtained results of the simulations cannot reveal some general features of 
quantum advantage.

In a number of works, we attacked this problem by means of ML 
approach [39,40,301]. We explore a supervised learning approach to predict 
a quantum speed up just by looking at a graph. In particular, we designed 
a classical-quantum convolutional neural network (CQCNN) that learns 
from graph samples to recognize the quantum speedup of random walks.

The basic concept of CQCNN that we use in Ref [39,40,301]. is shown in 
Figure 10 and Figure 11, respectively. In particular, we examined in Ref 
[39,40,301–303]. continuous-time random walks and suppose that the classi-
cal random walk representing stochastic (Markovian) process defined on 
a connected graph. It starts at the time t ¼ 0 from the initial node i and hits 
the target vertext. Unlike the classical case, a quantum particle due to inter-
ference phenomenon will be ‘smeared’ across all vertices of the graphs. Thus, 
in the quantum case, we propose an additional (sink) vertex s that is con-
nected to the target vertex and provides localization of the quantum particle 
due to energy relaxation from t to s vertices, which happen with the rate γ. In 
other words, the quantum particle may be permanently monitored at the sink 

Figure 9. A reinforcement learning algorithm that designs a long-distance quantum commu-
nication protocol. The algorithm is based on projective simulation with episodic and composi-
tional memory (ECM). Given the state of the quantum communication environment, the 
algorithm chooses how to modify this state by acting on the environment. The goals of the 
PS agent are: (a) teleportation protocol (b) entanglement purification protocol (c) quantum 
repeater protocol (d) quantum repeater protocol for long-distance quantum communication.
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vertex. Mathematically, a graph is characterized by its weighted adjacency 
matrix A that is relevant to Hamiltonian H ¼ �hA. Notice, for chiral QW time 
asymmetry may be obtained by using complex-valued adjacency matrix ele-
ments [301]. We characterize quantum transport by means of Gorini– 
Kossakowski–Sudarshan–Lindblad equation that looks like (cf [304].): 

dρðtÞ
dt
¼ �

i
�h
ð1 � pÞ H; ρðtÞ½ � þ p

X

mk
LmkρðtÞLymk �

1
2

LymkLmk; ρðtÞ
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þ γ LsρðtÞLys �
1
2
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;

(2) 

where ρðtÞ is time-dependent density operator, Lmk ¼ Tmk mj i kh j and Ls ¼

sj i th j operators characterize transitions from vertices k to m and from t 
(target) to s (sink), respectively; γ is the coupling parameter between target 
and sink vertices. The parameter p lies 0 � p � 1 condition and determines 
the decoherence; the value p ¼ 0 is relevant to purely quantum transport, 
while p ¼ 1 determines completely classical random walks.

The solution of Eq. (2) specifies quantum probability PqðtÞ;ρðnþ1Þðnþ1ÞðtÞ
(n is the total number of vertices), which is relevant to QW on a chosen graph. 
The classical random walk may be established by the probability distribution 

PðtÞ ¼ e� IteTtPð0Þ; (3) 

where PðtÞ is a vector of probabilities PvðtÞ of detecting a classical particle in 
vertices v 2 V of the graph; I is the identity matrix of size n� n. The 
transition matrix T is a matrix of probabilities Tvu for a particle to jump 
from u to v. In this case, the sink vertex is not needed, and we can assume 
γ ¼ 0. We are interested in the probability of finding a particle in the target 
(or, in the sink) vertex, which is described by solutions of Eq. (2) and (3).

Figure 10. A schematic representation of considered in Refs. [39,40] random walks on (a) 
connected random graph, (b) cycle graph. The labels (i), and (t) specify initial and target 
vertices, respectively; s is a sink vertex which is require to localize and detect quantum particle. 
The γ is coupling parameter between target and sink vertices, respectively.
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Then, one is possible to compare PqðtÞ;ρðnþ1Þðnþ1ÞðtÞ and PcðtÞ;PnðtÞ
against Pth ¼ 1= log n that determines threshold value of probability for 
a given graph. If this probability is larger than Pth, we can conclude that 
the particle occurs at the target. The time at which one of the inequalities 
PqðtÞ> Pth, PcðtÞ>Pth fulfilled, is called the hitting time for quantum or 
classical particle, respectively. Hence, by comparing the solutions to Eq. (2) 
and (3), we can define the particle transfer efficiency: it is 1 if the quantum 
particle reached the target first, and 0 otherwise.

In Figure 11 we schematically summarize the proposed CNN approach 
for detection of QW speedup. In order, the architecture of CQCNN is 
shown in Figure 11(a). It consists of a two-dimensional input layer that 
takes one graph represented by an adjacency matrix A. This layer is con-
nected to several convolutional layers, the number of which depends on the 

Figure 11. Schematic representation of CQCNN approach which is used for predicting the 
quantum speed up on the graphs represented in Figure 10. (a) – scheme of the CQCNN 
architecture. The neural network takes a labeled graph in form of an adjacency matrix A as 
an input. The A then processed by convolutional layers with filters of graph-specific ‘edge-to- 
edge’ and ‘edge-to-vertex’, respectively. These filters act as functions of a weighted total 
number of neighboring vertices of each vertex. The convolutional layers are connected with 
fully connected layers which classify the input graph. Data and error propagation are shown 
with arrows. (b) and (c) demonstrates processes of CQCNN training and testing, respectively.
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number of vertices n of the input graph. The number of layers is the same 
for all graph sizes. CQCNN has a layout with convolutional and fully 
connected layers, and two output neurons that specify two possible output 
classes. Convolutional layers are used to extract features from graphs, and 
decrease the dimensionality of the input.

Empirically, we find out that relevant features are in the rows and 
columns of adjacency matrices. The first convolutional layer comprises six 
filters (or, feature detectors) which define three different ways of processing 
the input graph. These three ways are marked by green, red, and blue colors 
in Figure 11(a), respectively. The constructed filters are form ‘crosses’ which 
are shown in Figure 11(a) and capture a weighted sum of column and row 
elements. These filters act as functions of a weighted total number of 
neighboring vertices of each vertex. Thus, the cross ‘edge-to-edge’ and 
‘edge-to-vertex’ filters crucially important in designed CQCNN; they are 
capable for prediction of the quantum advantage by QW.

Figure 11(b) shows schematically the training procedure by using some 
graphs samples, which are established by adjacency matrices A as an input. 
CQCNN made prediction at the output determining classical or quantum 
classes depending on the values of the two output neurons. The predicted class 
is determined by means of the index of a neuron with the largest output value 
class ¼ argmaxmyðmÞ. Having a correct label, the loss value is computed.

The filters that we constructed in CQCNN play an essential role in the 
success of learning. CQCNN learns by stochastic gradient descent algorithm 
that takes the cross-entropy loss function. The loss on a test example i is defined 
relative to the correct class classi (classical or quantum, 0 or 1) of this example: 

lossi ¼ � κðclassiÞ log
exðclassiÞ

exð0Þ þ exð1Þ

� �

; (4) 

where we defined the values of the output neurons as xð0Þ and xð1Þ; κðclassiÞ

is the total fraction of examples from this class in the dataset. As we have 
shown in Ref [39]. CQCNN constructed a function that generalizes over 
seen graphs to unseen graphs, as the classification accuracy (which may be 
defined as the fraction of correct predictions) goes up.

CQCNN testing procedure is not principally different from the training 
process in how it is seen in Figure 11(c), cf. Figure 11(b). The CQCNN does 
not receive any feedback on its prediction in this case and the network is not 
modified.

We apply the described ML approach to different sets of graphs. In 
particular, to understand how our approach works in a systematic way, we 
first analyze the CQCNN on line graphs with up to 10 vertices. CQCNN was 
trained over 2000 epochs with a single batch of 3 examples per epoch.
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Then, we simulated CQCNN’s learning process for random graphs, each 
sampled uniformly from the set of all possible graphs with n vertices and m 
edges. The learning performance results in the absence of decoherence 
(p ¼ 0) are shown in Figure 12 for n ¼ 15; 20; 25; the m is chosen uniformly 
from n � 1 to ðn2 � nÞ=2. Our simulations shows that the loss after training 
is vanishing; it is below 3� 10� 3 for all these random graphs. In Figure 12 
(a) we see that both recall and precision are about 90% for the ‘classical’ part 
of the set, and is in the range of 25 � 35% for the ‘quantum’ one. n12 Thus, 
one can see that CQCNN helps to classify random graphs correctly much 
better than a random guess without performing any QW dynamics simula-
tions. In Figure 12(b)-(c) we represent samples of correctly classified graphs.

3.2.1. Quantum walks with decoherence
In the presence of decoherence, i.e. for p> 0 physical picture is getting 
richer. In Figure 13 we demonstrate results of QW dynamics simulation 
on cycle graph consisting of 6-vertices; the efficiency of transport is mea-
sured between opposite vertices of the graph as it is shown in Figure 10(b). 
Simulations are performed for 1000 randomly sampled values of the deco-
herence parameter p and used to train CQCNN. After the training proce-
dure, we suggest CQCNN to predict if the QW can lead to an advantage for 
a new given parameter p. In Figure 13, we represent the results of the 
transfer efficiency predictions as a violet line. From Figure 13 it is clearly 
seen that at the value of decoherence parameter p ’ 0:34 abrupt crossover 
from quantum (p ’ 1) to classical (p ’ 0) regime transport occurs. Thus, 
one possible to expect QW advantage in transport in domain of p< 0:34. 
Physically, such a crossover may be relevant to quantum tunneling features 
in the presence of dissipation, cf [305,306]. Notice that the parameter p is 
temperature-dependent in general, cf [307]. In this case, we can recognize 
the established crossover as a (second-order) phase transition from the 

Figure 12. (a) CQCNN learning performance. Dataset consists of random graphs with n ¼ 15; 20 
and 25 vertices, 1000 examples for each n, and the corresponding classical and quantum labels. 
CQCNN was simulated during 3000 epochs, 100 mini batches each with the batch size of 3 
examples. The neural network was tested on 1000 random graphs for each n. (b), (c) establish 
random graph examples taken from the test set which were correctly classified by CQCNN 
(initial and target vertices are marked in yellow and red, respectively). The classical particle is 
faster on (b), whereas the quantum one is faster on graph (c).
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quantum to classical (thermal activation) regime that happens for a graph at 
some finite temperature.

Figure 13 demonstrates predictions of CQCNN which are based on the 
learned values of the output neurons; they are shown in Figure 13 as a classical 
(blue) and quantum (green) classes, respectively. CQCNN made decision 
about the class by using the maximum value of the output neuron activation. 
From Figure 13 it is clearly seen that the ‘vote’ for the quantum class grows up 
to the maximum value p ’ 0:2, which corresponds to the highest confidence 
for the quantum class. Simultaneously, the confidence in the classical class 
grows with increasing of decoherence parameter p. Separation between the 
classes becomes more evident after the crossover point of p ’ 0:34.

Thus, the obtained results play a significant role in the creation of soft- 
and hardware systems, which are based on the graph approach at their basis. 
CQCNN that we proposed here allows us to find out which graphs, and 
under which conditions on decoherence, can provide a quantum advantage. 
This is especially relevant to NISQ era quantum devises development.

3.3. Machine learning in quantum tomography

With the capability to find the best fit to arbitrarily complicated data patterns 
with a limited number of parameters available, machine learning has provided 
a powerful approach for quantum tomography. Here, quantum tomography 
or quantum state tomography (QST) refers to the reconstruction about 
a quantum state with its comprehensive information by using measurements 
on an ensemble of identical quantum states [308–314]. However, the expo-
nential growth in bases for a Hilbert space of N-qubit states implies that exact 
tomography techniques require exponential measurements and/or calcula-
tions. In order to leverage the full power of quantum states and related 

Figure 13. Prediction of transfer efficiency (violet curve) for a 6-cycle graph versus decoherence 
parameter p. The activation values of output neurons are shown in blue and green. The results 
obtained by averaging of 5 CQCNN networks. Standard deviations are marked by shaded 
regions.
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quantum processes, a well characterization and validation of large quantum 
systems is demanded and remains an important challenge [315].

Traditionally, by estimating the closest probability distribution to the data 
for any arbitrary quantum states, the maximum likelihood estimation (MLE) 
method is used in quantum tomography [316,317]. However, the MLE 
method requires exponential-in-N amount of data as well as an exponen-
tial-in-N time for processing. Albeit dealing with Gaussian quantum states, 
unavoidable coupling from the noisy environment makes a precise character-
ization on the quantum features in a large Hilbert space almost unattackable. 
Moreover, MLE also suffers from the overfitting problem when the number of 
bases grows. To make QST more accessible, several alternative algorithms are 
proposed by assuming some physical restrictions imposed upon the state in 
question, such as the adaptive quantum tomography [318], permutationally 
invariant tomography [319], quantum compressed sensing [320–323], tensor 
networks [324,325], generative models [326], feed-forward neural networks 
[327], and variational autoencoders [328].

To reduce the overfitting problem in MLE, the restricted Boltzmann 
machine (RBM) [329–332] has provided a powerful solution in QST. With 
the help of two layers of stochastic binary units, a visible layer and a hidden 
layer, the RBM acts as a universal function approximator. For qubits on an 
IBM Q quantum computer, quantum state reconstructions via ML were 
demonstrated with four qubits [333]. For continuous variables, the convolu-
tional neural network (CNN) has been experimentally implemented with the 
quantum homodyne tomography for continuous variables [260,334,335].

As illustrated in Figure 14, the time sequence data obtained in the optical 
homodyne measurements share the similarity to the voice (sound) pattern 
recognition [336,337]. Here, the noisy data of quadrature sequence are fed 
into a CNN, composited with 30 convolutional layers in total. In applying 
CNN, we take the advantage of good generalizability to extract the resulting 
density matrix from the time-series data [336]. In our deep CNN, there are 
four convolution blocks are used, each containing 1 to 9 convolution layers 
(filters) in different sizes. Five shortcuts are also introduced among the 
convolution blocks, in order to tackle the gradient vanishing problem. 
Instead of max-pooling, average pooling is applied to produce higher fidelity 
results, as all the tomography data should be equally weighted. Finally, after 
flattening two fully connected layers and normalization, the predicted 
matrices are inverted to reconstruct the density matrices in truncation.

Here, the loss function we want to minimize is the mean squared error 
(MSE); while the optimizer used for training is Adam. We take the batch size 
as 32 in the training process. By this setting, the network is trained with 70 
epochs to decrease the loss (MSE) up to 5� 10� 6. Practically, instead of an 
infinite sum on the photon number basis, we keep the sum in the probability 
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up to 0:9999 by truncating the photon number. Here, the resulting density 
matrix is represented in photon number basis, which is truncated to 35� 35 
by considering the maximum anti-squeezing level up to 20 dB.

As to avoid non-physical states, we impose the positive semi-definite 
constraint into the predicted density matrix. Here, an auxiliary (lower trian-
gular) matrix is introduced before generating the predicted factorized density 
matrix through the Cholesky decomposition. During the training process, the 
normalization also ensures that the trace of the output density matrix is kept 
as 1. More than a million data sets are fed into our CNN machine with 
a variety of squeezed (ρsq), squeezed thermal (ρsq

th), and thermal states (ρth) 
in different squeezing levels, quadrature angles, and reservoir tempera-
tures, i.e. 

ρsq ¼ Ŝρ0Ŝy; (5) 

ρsq
th ¼ ŜρthŜy: (6) 

Here, ρ0 ¼ j0ih0j with the vacuum state j0i, ρth ¼
P

n PðnÞ jni hnj with the 
probability distribution function PðnÞ ¼ 1

�nþ1 ð
�n

�nþ1Þ
n, defined with the mean- 

photon number �n ¼ 1
exp½�hω=kBT�� 1 at a fitting temperature T, and Ŝð�Þ ¼

exp½12 �
�â2 � 1

2 �ây2� denotes the squeezing operator, with the squeezing 
parameter �;r expðiϕÞ characterized by the squeezing factor r and the 
squeezing angle ϕ. All the training is carried out with the Python package 
tensorflow.keras performed in GPU (Nvidia Titan RTX).

The validation of ML-enhanced QST is verified with simulated data set, 
through the average fidelity obtained by MLE and CNN by calculating the 
purity of the quantum state, i.e. purity;trðρ2Þ. Compared with the time- 
consuming MLE method, ML-enhanced QST keeps the fidelity up to 0:99 

Figure 14. Schematic of machine learning enhanced quantum state tomography with convolu-
tional neural network (CNN). Here, the noisy data of quadrature sequence obtained by quantum 
homodyne tomography in a single-scan are fed to the convolutional layers, with the shortcut 
and average pooling in the architecture. Then, after flattening and normalization, the predicted 
matrices are inverted to reconstruct the density matrices in truncation.
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even taking 20 dB anti-squeezing level into consideration. With prior knowl-
edge of squeezed states, such a supervised CNN machine can be trained in 
a very short time (typically, in less than 1 hour), enabling us to build a specific 
machine learning for certain kinds of problem. When well trained, an average 
time of about 38:1 milliseconds (by averaging 100 times) costs in a standard 
GPU server. One unique advantage of ML-enhanced QST is that we can 
precisely identify the pure squeezed and noisy parts in extracting the degrada-
tion information. By directly applying the singular value decomposition to the 
predicted density matrix, i.e. ρ ¼ σ1 ρsq þ c1 ρsq

th þ d1 ρth, all the weighting ratios 
about the ideal (pure) squeezed state, the squeezed thermal state, and thermal 
state can be obtained. With this identification, one should be able to suppress 
and/or control the degradation at higher squeezing levels, which should be 
immediately applied to the applications for gravitational wave detectors and 
quantum photonic computing.

Towards a real-time QST to give physical descriptions of every feature 
observed in the quantum noise, a characteristic model to directly predict 
physical parameters in such a CNN configuration is also demonstrated 
[338]. Without dealing with a density matrix in a higher dimensional 
Hilbert space, the predicted physical parameters obtained by the characteristic 
model are as good as those generated by a reconstruction model. One of the 
most promising advantages for ML in QST is that only fewer measurement 
settings are needed [339]. Even with incomplete projective measurements, the 
resilience of ML-based quantum state estimation techniques was demon-
strated from partial measurement results [340]. Furthermore, such a high- 
performance, lightweight, and easy-to-install supervised characteristic model- 
based ML-QST can be easily installed on edge devices such as FPGA as an in- 
line diagnostic toolbox for all possible applications with squeezed states.

In addition to the squeezed states illustrated here, similar machine learn-
ing concepts can be readily applied to a specific family of continuous 
variables, such as non-Gaussian states. Of course, different learning (adap-
tation) processes should be applied in dealing with single-photon states, 
Schrödinger’s cat states [341,342], and Gottesman-Kitaev-Preskill states for 
quantum error code corrections [343]. Alternatively, it is possible to use less 
training data with a better kernel developed in machine learning, such as the 
reinforce learning, generative adversarial network, and the deep reinforce-
ment learning used in the optimization problems [259,344–350]. Even 
without any prior information, informational completeness certification 
net (ICCNet), along with a fidelity prediction net (FidNet), have also been 
carried out to uniquely reconstruct any given quantum state [351].

Applications of these data-driven learning and/or adaptation ML are not 
limited to quantum state tomography. Identification and estimation of 
quantum process tomography, Hamiltonian tomography, and quantum 
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channel tomography, as well as quantum-phase estimation, are also in 
progresses [352–355]. Moreover, ML in quantum tomography can be used 
for the quantum state preparation, for the general single-preparation quan-
tum information processing (SIPQIP) framework [356].

3.4. Photonic quantum computing

In addition to classical information processing, photonic quantum comput-
ing is also one of the possible technologies to demonstrate quantum advan-
tage [14,357,358], i.e. in which a quantum system has been shown to 
outperform a classical one on some well-defined information processing 
task. Even though the computational task on the implementation of photo-
nic Boson sampling is non-universal [359], meaning that it cannot perform 
arbitrary quantum operations, whether any useful applications exist within 
the heavily restricted space of non-universal photonic systems is an open 
question. Nevertheless, the advantages of photonics as a quantum technol-
ogies platform compared to other platforms are a high degree of integration 
with mature classical photonic technologies, and the fact that the photonic 
circuits involved can be operated at room temperature [360,361].

Reviews on the recent advances of machine learningin particular, deep 
learning, for the photonic structure design and optical data analysis, as well 
as the challenges and perspectives, can be found in Refs. [48,362–364]. 
Inverse designs and optimization on the photonic crystals, plasmonic 
nanostructures, programmable meta-materials, and meta-surfaces have 
been actively explored for high-speed optical communication and comput-
ing, ultrasensitive biochemical detection, efficient solar energy harvesting, 
and super-resolution imaging [365]. By utilizing adaptive linear optics, 
quantum machine learning is proposed for performing quantum variational 
classification and quantum kernel estimation [366].

Towards the goal of realization of on-chip quantum photonics, silicon-based 
materials have been actively explored due to their compatibility with conven-
tional CMOS fabrication processes. Instead of using photons or entangled 
photon pairs from an optical parametric process, which suffers from the low 
probabilities and rare successful events in post-selection, a quantum optical 
microresonator on a chip employs the Kerr nonlinearity has the advantage over 
the photonic qubit-based approach [367–371]. Unlike all gate-based quantum 
computing, which are based on single-qubit and entangling gates, photonic 
quantum computing does not rely on any physical gates during the computa-
tion, but on the preparation of quantum modes, e.g. cluster states, with the 
time-domain and/or frequency-domain multiplexing [372,373].

Regarding the integrated quantum photonics, as well as the progress of the 
hybrid quantum devices, machine-learning methodology has also been widely 
applied in order to offer an efficient means to design photonic structures, as 
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well as to tailor light–matter interaction [374]. For the emerging field of 
machine learning quantum photonics, we do not need ML for automated 
design of quantum optical experiments [375], such as the quantum walk with 
graph states illustrated in Sec. 3.2, but also quantum technologies enhanced by 
machine learning, such as ML in quantum tomography illustrated in Sec. 3.3 
to have ML-assisted quantum measurements. Along this direction, a quantum 
optical neural network (QONN) was introduced to leverage advances in 
integrated quantum photonics [376]. With the newly developed protocols 
such as quantum optical state compression for quantum networking and 
black-box quantum simulation, many thousands of optoelectronic compo-
nents should be integrated in monolithically integrated circuits. It is expected 
to see the combination of quantum measurements, quantum metrology, and 
optimization of on-chip and free-space meta-devices for photonic quantum 
computing as a promising route for automatization of quantum experiments.

4. Conclusions

Artificial intelligence and machine learning are currently key factors in the 
progress of modern society in the world. Now it is quite difficult to find an 
area of our life where achievements in the field of artificial intelligence would 
not be used. However, this success is largely ensured by the development of 
classical information technologies in terms of hardware, which possess natural 
limitations. The creation of quantum computers and quantum networks can 
bypass these limitations in different fields. Quantum machine learning is 
a rapidly developing new field of research at the border of artificial intelli-
gence, quantum information science and quantum technology.

The ecosystem of QML, which has developed to date and will be in demand 
for the next decade, is depicted in Figure 15. Here, we proceed from the fact 

Figure 15. Quantum machine learning ecosystem for the next decade
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that in the near future, the main role in our daily life will be played by various 
(tensor) network systems of transmission, processing, and intelligent recogni-
tion of large amounts of information. In this regard, we are confident that 
practically significant quantum computers will be embedded into large dis-
tributed intelligent systems environment that will surround us everywhere.

In this review, we outlined the hot topics of interplay between promising 
artificial intelligence methods and modern quantum computing. These topics 
are predominantly associated with the limited capabilities of NISQ era quantum 
computers and use a variety of variational algorithms, such as variational 
eigensolver and quantum approximate optimisation algorithm, respectively. 
A special place in our review is given to so-called quantum neural networks, 
which represent new QML models whose parameters are updated classically 
and may be used within quantum-classical training algorithms for variational 
circuits. In this sense, we discussed promising hybrid information processing 
methods that use both classical ML algorithms and quantum devices. The 
training procedure proposes data providing to the quantum model, calculating 
an objective (loss) value, and then adapting the QNN parameters. Thus, the 
whole procedure represents a hybrid quantum-classical algorithm. In this work, 
we discuss another possible application for hybrid computation, that may use 
classical-quantum convolutional neural network designed for resolving speed 
up of random walks on chosen graphs. Our approach is based on training 
CQCNN, which learns to extract feature vectors from graph adjacency matrices 
combined with a decoherence parameter. We have shown that even without 
any decoherence, in general the speedup of random walks essentially depends 
on topological properties of the graph, i.e. on adjacency matrix peculiarities. 
Our findings open new perspectives in quantum-classical algorithms, which 
explore random walks as subroutines.

Notes

1. Sometimes referred to as Occam’s factor [377].
2. Some alternative approaches exist known as gradient-free optimisation methods 

[378].
3. This is subject to the input methodology. Normally, a digital computer is used to set 

up the quantum circuit, in which case the learning is still fully digital.
4. Formally, when the variational architecture of a quantum circuit nears a 1-design 

[379].
5. ZX calculus is a graphical language in quantum information theory [186,380,381].
6. For an exhaustive list of complexity measures see [75]
7. It is noteworthy that Ref. [382] showed that some models have a higher generalisation 

ability despite overfitting.
8. Apart from performance considerations, this also provided an effective way to avoid 

barren plateaus described in Sec 2.2.5.
9. Notably the first photonic continuous-variable policy network was introduced in Ref. 

[383].
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10. Other examples include quantum federated (distributed) learning (QFL) [384]. 
Notably, for the latter, Ref. [385] proposed the first model of distributed secure 
quantum machine learning.

11. Ref. [386] uses reinforcement learning (DPPO) to design the optimal path of quan-
tum imaginary time evolution, which can always achieve an efficient find an efficient 
quantum circuit.

12. Recall quantifies the fraction of correct predictions in a particular class, whereas precision 
identifies the fraction of a particular class predictions that turned out to be correct.
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