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Machine Learning Transfer Efficiencies for Noisy Quantum
Walks

Alexey A. Melnikov,* Leonid E. Fedichkin, Ray-Kuang Lee, and Alexander Alodjants

Quantum effects are known to provide an advantage in particle transfer
across networks. In order to achieve this advantage, requirements on both a
graph type and a quantum system coherence must be found. Here, it is shown
that the process of finding these requirements can be automated by learning
from simulated examples. The automation is done by using a convolutional
neural network of a particular type that learns to understand with which
network and under which coherence requirements quantum advantage is
possible. The machine learning approach is applied to study noisy quantum
walks on cycle graphs of different sizes. It is found that it is possible to predict
the existence of quantum advantage for the entire decoherence parameter
range, even for graphs outside of the training set. The results are of
importance for demonstration of advantage in quantum experiments and
pave the way toward automating scientific research and discoveries.

1. Introduction

Classical and quantum particle transport plays a significant role
in many scientific fields related to the transfer of charge,[1]

energy,[2–4] or information.[5] Known advantages of coherently
propagating quantum excitations are used for developments
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in quantum computing,[6,7] search
algorithms,[8–10] communication net-
works, and efficient energy transport.[11,12]

Understanding the origins of quantum
transport advantage is important for these
fields. The standard approach for studying
quantum transport phenomena is based
on the quantum walks model.[13] Using
this model, it was shown that quantum
particles propagate faster than classical on
certain graphs including line,[14] cycle,[15,16]

hypercube,[17,18] and glued trees[19] graphs.
A systematic study of arbitrary graphs has
several challenges. The number of possible
graphs to study grows as the factorial of the
number of graph vertices,[20] although new
ways to reduce the problem dimensionality
are being developed.[21]

To overcome this challenge, we developed an automated ap-
proach to study quantum transport properties and to predict
the possibility of quantum advantage in particle transfer. This
automated approach is based on using a specific binary clas-
sifier called classical-quantum convolutional neural network
(CQCNN), recently introduced in ref. [22], which learns to pre-
dict whether the quantum or classical transport is more efficient
on a graph with a given topology. However, it is known that deco-
herence is inevitable in quantum systems. Under which levels of
noise can we still expect a quantum advantage to hold? To answer
the question, one needs to perform simulations for all graphs
of interest, testing different levels of noise. The noise is chang-
ing the quantum dynamics in a non-monotonic way, sometimes
helping quantum particles to reach the target node faster.[23,24] To
find out the exact relations, one would need to simulate the dy-
namics for all levels of decoherence.
In this paper, we demonstrate how the study of noisy quan-

tum walks can be automatically performed by a neural network
that learns from restricted simulated dynamics. Our approach is
based on using a version of CQCNN that is augmented with a
capacity to learn from additional data about decoherence levels.
The new approach is tested on a family of cycle graphs, which
represent a specific interest in quantum transport studies. We
simulated a set of cycle graph examples and observed that the
developed neural network can find correct conditions on the de-
coherence levels for graphs never given to the neural network.

2. Classifying Noisy Quantum Walks

Quantum transport and a corresponding classical transport are
modeled by stochastic processes of quantum walks[13,25,26] and
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classical random walks,[27,28] respectively. More specifically, the
state of a quantum particle in a graph defined by adjacency ma-
trix A (or transition matrix T) is described by a density matrix 𝜌,
which evolves according to the Gorini–Kossakowski–Sudarshan–
Lindblad equation[29–31]

d𝜌(t)
dt

= − i
ℏ
(1 − p)

[
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]

+ p
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The Hamiltonian  = ℏA defines coherent continuous time
transitions of a particle on the graph, Lmk = Tmk|m⟩⟨k| and Ls =|s⟩⟨t| operators correspond to transitions from vertices k tom and
from t (target) to s (“sink”), respectively. The “sink” vertex is an
additional vertex, which is coupled to the target vertex, and is con-
stantly monitored for the presence of a particle. The sink vertex
is an important addition because a continuous measurement di-
rectly in the target vertex might lead to the undesired quantum
Zeno effect.
The parameters 𝛾 and p further define the quantum walk dy-

namics: 𝛾 is the coupling of the target vertex to the sink vertex,
and p is the decoherence parameter. In particular, depending on
the value of p, the transport can be either quantum (p = 0), or
classical (p = 1, no sink vertex) that is defined by the probability
distribution

𝜋(t) = e−teTt𝜋(0) (2)

In the classical case, the sink vertex is not needed, because the
measurement procedure does not affect the state of the particle.
The coupling to the sink vertex is set to the value of 𝛾 = 1 through-
out this paper.
From a physical interpretation of Equation (1), particle tran-

sitions between vertices can be recognized as tunneling pro-
cesses with temperature-dependent coefficients. In this case,
Equation (1) is inherent to the dissipative tunneling problem
for a physical system established by a graph of some topol-
ogy. It is important that some fundamental physical proper-
ties of this problem are well-known analytically, but in the two-
site limit only.[32–35] In particular, there exist some temperature
of crossover, or, a phase transition from classical to quantum
regimes. In ref. [36], one of us has shown that this kind of phase
transition reduces to hybridization of quantum algorithms based
on quantum tunneling processes. Themicroscopic description of
the temperature-dependent tunneling process in the presence of
dissipation requires characterization of interaction with a reser-
voir that needs a separate analysis (cf. ref. [32]). In this paper, we
restrict ourselves by the simplified model of decoherence estab-
lished by Equation (1).
Solutions to Equations (1) and (2) directly provide probability

distributions of particle’s position in the graph defined by A, and
given the value of p. In the particle transport problem, we are in-
terested in the probability of finding a particle in the target (or, in
the quantum case, sink) vertex. If this probability is larger than
1∕ log n, where n is the total number of vertices, it is assumed that
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Figure 1. A scheme of the machine learning approach that is used to de-
termine the exact conditions under which the quantum transfer efficiency
advantage can be expected. The approach is based on using the convolu-
tional neural network. One out of three levels of filters is shown.

the particle has reached the target. Hence, by comparing the solu-
tions to Equations (1) and (2), we can define the particle transfer
efficiency: it is 1 if the quantum particle reached the target first,
and 0 otherwise.
Determining the transfer efficiency usually requires the full

numerical simulation of Equation (1) for every given adjacency
matrix A and parameter p, as described above. In this work, we
show that this is not always required. To predict the result of
the dynamics from Equation (1), we use the supervised learn-
ing approach shown in Figure 1 that schematically demonstrates
the working principle of quantum advantage prediction. In this
machine learning approach, a network on which the dynamics
was simulated is given as a training example. The form of the
input to the neural network is an adjacency matrix A and the
decoherence parameter p. This input is processed by a convo-
lutional neural network[37] called CQCNN[22,38] with specifically
designed learnable “cross” filters. The first layer of “cross” filters
extracts features corresponding to a function of weighted num-
bers of neighboring edges (for a detailed mathematical descrip-
tion see ref. [22]). The second layer of “cross” filters extracts in-
formation about neighboring edges of neighboring edges. The
third layer continues to learn deeper about neighbors of neigh-
bors, and passes information about vertices connectivity further.
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with the rate p
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Figure 2. A schematic representation of a cycle graph with an arbitrary
number of vertices. The vertices are connected in different ways defined
by Equation (1).

The described filters are shown in Figure 1 as semitransparent
squares with highlighted columns and rows: they take values
from the previously processed layer (squares with values) which
starts with the matrix A at the very first level. All these convo-
lutions are followed by fully connected layers of neurons, which
are shown in Figure 1 as small balls fully connected to each other
between the layers. There are three layers of neurons with 3n,
10, and 2 neurons in each layer, respectively. After processing the
graph in these layers, the neural network gives its prediction on
quantum advantage in efficient transport. The training data is
used to compute the loss using the cross-entropy loss function,
and optimize CQCNN’s weights by the stochastic gradient de-
scent optimization technique. The trained network, as we show
next, can predict quantum advantage on a graph without being
trained with data from this graph.

3. Classifying Unknown Transport Dynamics on
Cycle Graphs

As an example of classifying and predicting unknown noisy
quantum walk dynamics, we consider cycle graphs. Cycle graphs
are known to provide a speedup for one- and two-particle quan-
tum walk in mixing and hitting time.[15,16,39] This advantage can
moreover be used for quantum information purposes.[40] A cycle
graph is schematically shown in Figure 2 with an additional de-
tector that is used to measure particle’s state in the sink vertex
s. Each vertex represents a possible position of a particle and is
shown as a colored circle. The particle is initially placed in the ver-
tex i (yellow), and thenmoves according to Equation (1). All terms
of Equation (1) are schematically visualized in Figure 2. The first
term in Equation (1) is represented by gray arrows, the second
term is represented by black arrows, whereas the third term is
the red arrow. The goal is to reach the target vertex t (blue), which
is connected to a sink vertex s (red) located near the particle de-
tector. One can see that all three processes occur with different
frequencies: (1 − p) for the coherent particle transfer, p for the
incoherent transfer, and 𝛾 for the measurement procedure.
To study the effect of decoherence on particle transfer effi-

ciency, we first simulate quantumwalk dynamics on a 6-cycle and
measure the efficiency of transport between opposite vertices of
the graph. The quantum walk and random walk dynamics are
simulated for 1000 randomly sampled values of the decoherence
parameter p. Then, the results of these simulations are used to

Figure 3. Prediction of transfer efficiency (blue) for a 6-cycle graph for dif-
ferent values of decoherence parameter p. The activation values of output
neurons are shown in red and green. The results are an average of five
CQCNN networks. Shaded areas correspond to the standard deviation.

train CQCNN. Once the neural network is trained, we ask the
network to predict if the quantum walk can lead to an advantage
for a new given parameter p. The results of the transfer efficiency
predictions are shown in Figure 3 as a blue line. The efficiency
of one corresponds to quantum advantage in transport, whereas
the efficiency of zero corresponds to a classical transport regime.
We see that for p < 0.34, the quantum transport is more efficient
(efficiency of 1), whereas for p > 0.34, the quantum transport is
less efficient (efficiency of 0) than classical transport.
The crossover from quantum to classical transport occurs at

p = 0.34 and could be inherent to a second-order phase transition
from quantum to classical tunneling that happens for a complex
graph system at some finite temperature (note that the param-
eter p is, in general, temperature-dependent).[33–35] Importantly,
the efficiency is defined relative to the coupling parameter 𝛾 and
in case of properly chosen 𝛾 , the quantum transport can be at
least as efficient as the classical transport. Predictions of CQCNN
are based on the learned values of the output neurons, which
are shown in red (“classical” class) and green (“quantum” class)
in Figure 3. The decision about the class is made by the maxi-
mum value of the output neurons activation. We can see that the
“vote” for the quantum class grows up to a particular value with
the maximum at about p = 0.2, which corresponds to the high-
est confidence for the quantum class. After the crossover point
of p = 0.34, the confidence in the classical class grows rapidly,
which means the separation between classes become more ap-
parent, the more decoherence grows.
We next use the neural network CQCNN of the same architec-

ture as shown in Figure 1, and train it with simulations of noisy
quantumwalks on different graphs with 100 data points each. Af-
ter training, all graphs are tested on a combined set of 6, 8, 10, 12,
and 14-cycle graphs. Figure 4a demonstrates the learning per-
formance of two types of CQCNNs: one is trained on all graphs
(gray), and the other is trained on all but 10-cycle graphs (blue).
One can see that both types of CQCNNs show very similar per-
formance, suggesting that CQCNN has a generalization ability
and does not need to be trained on all graphs. To verify that the
predictions are accurate for all studied cycle graph dimensions,
we check transfer efficiencies as functions of the decoherence pa-
rameter for each graph individually. The dependencies are shown
in Figure 4b, where one can see five transitions from quantum-
enhanced transport to classical transport that correspond to five
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Figure 4. a) Learning performance of the machine learning approach. Loss on the training data goes down to zero with the number of epochs. The
accuracy of neural network predictions improves with the number of epochs and goes up to unit accuracy. b) Prediction of transfer efficiency for cycles
graphs of different sizes with n = 6, 8, 10, 12, and 14 vertices. Dashed blue lines show the efficiency predicted by CQCNN after being trained on all
graphs, whereas solid gray lines are obtained from CQCNN not trained on 10-cycle graphs.

different cycle graphs. One can see that the match between gray
and blue lines is very precise for 6,8, and 12-cycle graphs and
less accurate for 10 and 14-cycle graphs, although we believe the
match will increase with the number of training examples.

4. Conclusion and Outlook

The transfer of quantum and classical particles from a classifi-
cation perspective was studied. The problem we considered is
finding out which graphs, and under which conditions on deco-
herence, can provide a quantum advantage. This is especially rel-
evant for near-future experimental demonstrations of quantum-
enhanced transport, for example, in lossy photonic, or polaritonic
tunnel-coupled waveguides.[36] Physically, the crossover from
quantum to classical transportmay be relevant to a study of phase
transitions from quantum to classical tunneling that occurs in
complex graph systems at some finite temperature. In this paper,
we developed a machine learning approach that can predict if a
quantum advantage is possible for a given graph under a given
noise level. The approach is based on training a convolutional
neural network, called CQCNN, that automatically learns to ex-
tract feature vectors from graph adjacency matrices combined
with a decoherence parameter. We demonstrated that not only
CQCNN can find parameter range for which advantage holds
on a given graph, but also for graphs which were not observed
before. These results highlight the successful feature extraction
from the simulated noisy quantum walk dynamics, which goes
toward an understanding of the nature of quantum advantage.
The presentedmachine learning approach helps in further devel-
oping quantum experiments[41–43] showing an advantage of quan-
tum transport.
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