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Abstract

The normalization of energy divergent Weber waves and finite energy Weber-

Gauss beams is reported. The well-known Bessel and Mathieu waves are used

to derive the integral relations between circular, elliptic, and parabolic waves

and to present the Bessel and Mathieu wave decomposition of the Weber waves.

The efficiency to approximate a Weber-Gauss beam as a finite superposition

of Bessel-Gauss beams is also given.
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1. Introduction

Ideal propagation invariant scalar waves are the separable solution to the Helmholtz equa-

tion with cylindrical symmetry. There exist four fundamental families related to the four

cylindrical coordinate systems for which the reduced wave equation is separable: Plane

waves for Cartesian symmetry, Bessel, Mathieu and Weber waves for circular-, elliptic- and

parabolic-cylindrical symmetries, in that order [1, 2, 3, 4]. In optics, the interest in these

families of structured scalar waves nowadays lies beyond their propagation invariance [5, 6].

It is common knowledge that they all carry a well defined linear momentum in the prop-

agation direction. In addition, Plane waves carry a well defined linear momentum in the

x and y directions, Bessel waves carry a well defined orbital angular momentum, Mathieu

waves carry a well defined composition of orbital angular and x-linear momenta, while Weber

waves carry a composition of orbital angular and y-linear momenta [7, 8]. These dynamical

properties are acquired by the corresponding beams and vector fields, both in the classical

and quantum regime [9, 10, 11, 12], and can be used for manipulation of matter at the

different scales [13].

These four propagation invariant families are exact solutions with divergent energies. By

using the slowly varying envelope approximation (SVEA), these fundamental families have

been shown to support finite energy solutions to Helmholtz equation [14]; e. g. Hermite-

Gaussian beams are the most known solutions in the Cartesian coordinates. Finite energy

beam families are also reported for the cylindrical symmetries, named as Bessel-, Mathieu-

and Weber-Gauss beams, which are a closer description for the optical beams produced in the

laboratory, e. g. those using holographic schemes [15] or optical resonators [16]. A theoretical

description close to the experimental schemes of matter manipulation by these families of

structured light requires the use of finite energy beams. In practice, the normalization of

these structured light gives the requirement to determine the irradiance output needed from

the laser sources to produce the desired interchange of mechanical variables. Furthermore,

quantization of the corresponding finite energy fields requires the normalization of the scalar

wave families. Currently, the general understanding of the parabolic waves, beams and fields

includes their propagation characteristics and dynamical variables as well as holographic

schemes for beam production [10, 12, 14, 15, 17]. But to one’s surprise, the normalization

for Weber-Gauss beams is missing in the literature.

In this work, the link between Weber waves and the well-known Bessel and Mathieu
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waves is provided by deriving the integral relations between parabolic, circular and elliptical

waves following the phase space method proposed by Boyer, Kalnis and Miller [4, 8]. With

the Bessel and Mathieu wave decompositions of Weber waves, we present the normalization

of Weber beams under a series scheme [18]. The efficiency to approximate Weber-Gauss

beams as a finite superposition of Bessel-Gauss beams is also given. The results found here

should provide the necessary information for the quantization of the corresponding finite

energy vector fields and for the understanding of any possible experimental demonstration

of mechanical transfer involving such fields.

2. Weber waves

The wave equation in parabolic-cylindrical coordinates, u + ı v = [2(x+ ı y)](1/2), accepts

separable solutions of the form

Ψ
(W )
e,k,γ,a(u, v, z) =

∣∣Γ [1
4

+ ıa
2

]∣∣2
π
√

2 sin γ
Ue,k,γ,a(u)Ve,k,γ,a(v)eı(kzz−ωt), (1)

Ψ
(W )
o,k,γ,a(u, v, z) =

√
2
∣∣ Γ
[

3
4

+ ıa
2

]∣∣2
π
√

sin γ
Uo,k,γ,a(u)Vo,k,γ,a(v)eı(kzz−ωt). (2)

These expressions, Weber waves, are Dirac delta normalized for a given frequency ω∫
d3xΨ

(W ) ∗
p̃,k,γ̃,ãΨ

(W )
p,k,γ,a = δp̃,pδ(γ̃ − γ)δ(ã− a). (3)

The label set {p, k, γ, a} stands for the parity with respect to coordinate variables u and

v, even or odd, wave number k = ω/c, Euler angle corresponding to the decomposition

of the wave vector in longitudinal and perpendicular components k = k⊥ e⊥ + kz ez =

k sin γ e⊥ + k cos γ ez, and the real continuous eigenvalue, a, of the even,

Ue,k,γ,a(u) = e−ık⊥u
2/2

1F1

(
1

4
− ıa

2
,
1

2
, ık⊥u

2

)
, (4)

Ve,k,γ,a(v) = e−ık⊥v
2/2

1F1

(
1

4
+
ıa

2
,
1

2
, ık⊥v

2

)
, (5)

and odd functions,

Uo,k,γ,a(u) =
√

2k⊥ u e
−ık⊥u2/2

1F1

(
3

4
− ıa

2
,
3

2
, ık⊥u

2

)
, (6)

Vo,k,γ,a(v) =
√

2k⊥ v e
−ık⊥v2/2

1F1

(
3

4
+
ıa

2
,
3

2
, ık⊥v

2

)
. (7)

The definition of the hypergeometric 1F1 function follows Ref. [19]. All special functions

notation and definitions will follow the latter reference. All calculations are based on the

identities presented by Ref. [19, 20].
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Weber waves are eigenfunctions for the z-component of the linear momentum and the

Poisson bracket of the z- and y-component of the angular and linear momenta, in that order,

PzΨp,k,γ,a = kz Ψp,k,γ,a, (8)

{Jz, Py}Ψp,k,γ,a = 2ak⊥ Ψp,k,γ,a, (9)

where the notation P = −ı∇ and J = r×P has been used for linear and angular momentum.

Thus, choosing a positive (negative) real eigenvalue a leads to horizontal parabolas opening

to the left (right) with symmetry axis given by the x-axis.

The Plane wave decomposition calculated for these waves is given by

Ψp,k,γ,a(x, y, z) =

∫ π

−π
dϕ A

(W )
p,k,γ,a(ϕ)eık⊥(x cosϕ+y sinϕ)eıkzz, (10)

where the angular spectra is written

A
(W )
e,k,γ,a(ϕ) =

eia ln | tanϕ/2|√
2π sin γ| sinϕ|

, (11)

A
(W )
o,k,γ,a(ϕ) = −ı sgnϕ Ae,k,γ,a(ϕ). (12)

Solutions without well defined parity can be constructed such that,

Ψ
(W )
e/o,k,γ,a(r, φ, z) =

1√
2

[Ψ
(W )
k,γ,a(r, φ, z)±Ψ

(W )
k,γ,−a(r, φ, z)], (13)

with angular spectra,

A
(W )
k,γ,a(ϕ) = Ae,k,γ,a(ϕ)Θ(ϕ), (14)

A
(W )
k,γ,−a(ϕ) = ı Ak,γ,a(−ϕ), (15)

where the notation Θ represents the Heaviside Theta function. The latter spectra are equiv-

alent to those expressions presented in Ref.[4, 8].

Figure 1 shows a sampler of Weber waves for a given wave vector as well as positive and

negative eigenvalue a.

A. Bessel Decomposition

Using the plane wave decomposition for Weber and Bessel waves, it is possible to show that

the Bessel wave decomposition of a Weber wave is given by the superposition

Ψ
(W )
p,k,γ,a(r, φ, z) =

∞∑
n=0

ψ
(B)
p,k,γ,a(n) Ψ

(B)
p,k,γ,n(r, φ, z), (16)
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Figure 1. Ideal Weber waves with wave number k = 2π/λ and z−component γ = 0.31756

rad leading to kz = 0.95 k. a) Ψ
(W )
e,k,γ,a=2, b) Ψ

(W )
o,k,γ,a=2, c) Ψ

(W )
k,γ,a=2, d) Ψ

(W )
e,k,γ,a=−2, e) Ψ

(W )
o,k,γ,a=−2,

f) Ψ
(W )
k,γ,a=−2.

where the coefficients for the expansion are,

ψ
(B)
e,k,γ,a(n) =

1

2π
e−π(2a+ı)/4 [C(n, a) + C(−n, a)] , (17)

ψ
(B)
o,k,γ,a(n) = − ı

2π
e−π(2a+ı)/4 [C(n, a)− C(−n, a)] , (18)

ψ
(B)
k,γ,±a(n) =

1

2π
e−π(2a+ı)/4C(∓n, a), (19)

with auxiliary functions,

C(n, a) = Γ

(
n+

1

2

)
[(−1)nf(n, a) + ı sgnaf(n,−a)] , (20)

f(n, a) =
2ıaΓ

(
1
2
− ıa

)
Γ(1 + n− ıa)

2F1

(
1

2
− ıa, 1

2
− ıa, 1 + n− ıa, 1

2

)
. (21)

Notice that the complex conjugate of the auxiliary functions are given by C∗(n, a) =

C(n,−a) and f ∗(n, a) = f(n,−a), while the even and odd Bessel waves are defined in
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the standard way,

Ψ
(B)
e/o,k,γ,n(r, φ, z) =

1√
2

[Ψ
(B)
k,γ,n(r, φ, z)±Ψ

(B)
k,γ,−n(r, φ, z)], n = 0, 1, 2, 3 . . . (22)

as functions of the Dirac delta normalized Bessel wave,

Ψ
(B)
k,γ,n(r, φ, z) = (2π)(−1/2)ınJn(k⊥r)e

ı(nφ+kz z), n = 0,±1,±2, . . . (23)

with angular spectra given by the expression

A
(B)
k,γ,n(ϕ) =

eınϕ√
2π sin γ

. (24)

B. Mathieu Decomposition

Eigenfunctions to the wave equation in elliptic-cylindrical coordinates, x+ıy = f cosh[ξ+ıη],

where f is half the interfocal distance of the coordinate system, are given by Mathieu waves

Ψ
(M)
e,k,γ,a(ξ, η, z) = se,n,qCem(ξ, q)cem(η, q)eı(kzz−ωt), (25)

Ψ
(M)
o,k,γ,a(ξ, η, z) = so,n,qSem(ξ, q)sem(η, q)eı(kzz−ωt), (26)

where the parameter is defined as q = (fk⊥/2)2 and the normalization coefficients for the

four possible families, two parities (even or odd) and two periodicities (π or 2π), are [21]

se,2n,q =
ce2n(0, q)ce2n(π/2, q)

A
(2n)
0 (q)

, (27)

se,2n+1,q = −
ce2n+1(0, q)ce′2n+1(π/2, q)

q1/2A
(2n+1)
1 (q)

, (28)

so,2n+2,q =
se′2n+2(0, q)se

′
2n+2(π/2, q)

qB
(2n+2)
2 (q)

, (29)

so,2n+1,q =
se′2n+1(0, q)se2n+1(π/2, q)

q1/2B
(2n+1)
1 (q)

. (30)

An interesting feature of Mathieu waves is that they take the form of ellipses (hyperbolas)

as the relation am(q)− 2q or bm(q)− 2q is positive (negative) with am(q) the characteristic

value for even Mathieu waves and bm(q) for odd.

Mathieu waves have an angular spectra given by the expressions,

A
(M)
e,k,γ,m(ϕ) =

cem(φ, q)√
2π sin γ

, (31)

A
(M)
o,k,γ,m(ϕ) =

sem(φ, q)√
2π sin γ

. (32)
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As the ordinary even or odd Mathieu functions are defined as a cosine or sine series,

cem(φ, q) =
m∑
n=0

A
(m)
ñ (q) cos ñφ, (33)

cem(φ, q) =
m∑
n=0

B
(m)
ñ (q) sin ñφ, ñ = 2n+m mod 2, (34)

it is possible to relate the coefficients of the Mathieu decomposition with the aforementioned

Bessel decomposition coefficients,

ψ
(M)
e,k,γ,a(m) =

m∑
n=0

A
(m)
ñ (q)ψ

(B)
e,k,γ,a(ñ), (35)

ψ
(M)
o,k,γ,a(m) =

m∑
n=0

B
(m)
ñ (q)ψ

(B)
o,k,γ,a(ñ), ñ = 2n+m mod 2, (36)

where the Mathieu decomposition of a Weber wave is given by

Ψ
(W )
p,k,γ,a(ξ, η, z) =

∞∑
m=0

ψ
(M)
p,k,γ,a(m) Ψ

(M)
p,k,γ,m(ξ, η, z). (37)

3. Weber beams

A Weber beam is given by the SVEA solution to the Helmholtz equation [14],

Φp,k,γ,a(r) =
1

µ(z)
e
ı

„
k− k2⊥

2kµ(z)

«
z
e
− r2⊥
ω2
0µ(z) Ψp,k,γ,a (ũ, ṽ) . (38)

The exponential part accounts for the Gaussian envelope with minimum waist w0 and pa-

rameter µ(z) = 1 + ız/zR where the Rayleigh distance is given by zR = kω2
0/2 and the

modified coordinates are defined as functions of x̃ = x/µ(z) and ỹ = y/µ(z). Please notice

that the structure of the Weber waves is kept at the z = 0 plane but it may change with

propagation.

A. Normalization.

Normalization at the z = 0 plane yields complex integrals wich can be avoided using a nor-

malization scheme based on the Bessel decomposition [18]. Under this scheme, normalization

for Weber beams yield∫
d2x|Φp,k,γ,a(r, φ)|2 = πω̃2e−k

2
⊥ω̃

2
∞∑
n=0

(1 + δn,0)|ψ(B)
p,k,γ,a(n)|2In

(
k2
⊥ω̃

2
)
, (39)

where the following notation has been used, ω̃ = ω0/2, δm,n stands for Kronecker delta, and

Iν for the νth-order modified Bessel function of the first kind.
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The series is convergent, in general it is possible to numerically argue that

lim
n→∞

Sn
Sn−1

< 1, (40)

for any given value of a with

Sn = πω̃2e−k
2
⊥ω̃

2

(1 + δn,0)|ψ(B)
p,k,γ,a(n)|2In

(
k2
⊥ω̃

2
)
, n ≥ 0. (41)

For the special case a = 0 it is straightforward to show that

lim
n→∞

Sn
Sn−1

≈ In (k2
⊥ω̃

2)

In−2 (k2
⊥ω̃

2)
≈
(
e k2
⊥ω̃

2

8 n

)2

, log e = 1, (42)

where it has been used,

|ψe,k,γ,0(0)|2 =
4Γ2

(
5
4

)
πΓ2

(
3
4

) , (43)

|ψe,k,γ,0(n)|2 = (1− n mod 2)
Γ2
(

2n+1
4

)
4πΓ2

(
2n+3

4

) , n = 1, 2, 3, . . . (44)

|ψo,k,γ,0(1)|2 =
4Γ2

(
3
4

)
πΓ2

(
1
4

) , (45)

|ψe,k,γ,0(n)|2 = (n mod 2)
Γ2
(

2n+1
4

)
4πΓ2

(
2n+3

4

) , n = 2, 3, 4, . . . (46)

and the asymptotic limits [22]

In(z) ≈ 1√
2ı
e
ınπ
2

+n+n log( ze
−ıπ/2

2
)−(n+ 1

2
) logn, n→∞, (47)

Γ(z) ≈
√

2πe−zzz−1/2

(
1 +

1

12z

)
, z →∞. (48)

Figure 2 shows the behaviour of the truncated normalization coefficient,
∑n

j=0 Sj, as a

function of the total number of accounted terms, n, for even and odd Weber beams for a given

wave vector and some random values of a. A thorough sampling in the range a ∈ [−25, 25]

showed that the truncated normalization coefficient was well stabilized at around the fiftieth

term, at most.

B. Generation.

The holographic generation of a Weber wave or beam implies a great loss of irrandiance. An

optical resonator with parabolic modes as output has not been reported yet to the knowledge

of the author. Thus, a feasible scheme for obtaining a high irradiance Weber beam relies on

the superposition of Bessel or Mathieu beams from optical resonators [16].

8



Figure 2. (Color online) Behaviour of the truncated normalization coefficient
∑n

j=0 Sj for

a given wave number k = 2π/λ and Euler angle γ = 0.31756 rad leading to kz = 0.95 k

for a) Even Weber fields Ψ
(W )
e,k,γ,a and b) Ψ

(W )
o,k,γ,a=2 with eigenvalues a = −11.2821 (circle),

a = −2.2827 (square), a = 0 (diamond), a = 10 (triangle), a = 23.7902 (upside-down

triangle).

In order to realize how many Bessel or Mathieu beams are required to reproduce a Weber

beam, the behaviour of the coefficients for the Bessel or Mathieu decomposition has to be

studied. Although the asymptotic limit for the modified Bessel function of the first kind,

the Hypergeometric and the Gamma function are known [22, 23], it is quite complex to get

an analytical asymptotic behaviour for the ratio between Bessel or Mathieu decomposition

coefficients.

For the Bessel decomposition, a thorough numerical survey for large values of n in the

range a ∈ [−25, 25] shows that

lim
n→∞

∣∣∣∣∣ ψ
(B)
p,k,γ,a(n)

ψ
(B)
p,k,γ,a(n− 1)

∣∣∣∣∣→ 1. (49)
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This can only be analytically asserted for a = 0. Figure 3 shows the numerical behaviour

for some Bessel decomposition coefficients. It is possible to see that the main contributing

terms are not the first terms of the series, with the exception of a = 0, as n increases the

contribution of each term becomes important until it reaches a maximum, then it oscillates

to stabilize and fulfil Eq.(49).

Figure 3. (Color online) Behaviour for the absolute value of the normalized Bessel decompo-

sition coefficients of a) even and b) odd Weber waves with a given wave number k = 2π/λ,

Euler angle γ = 0.31756 rad leading to kz = 0.95 k, and eigenvalues a = −11.2821 (cir-

cle), a = −2.2827 (square), a = 0 (diamond), a = 10 (triangle), a = 23.7902 (upside-down

triangle).

4. Discussion

The Dirac delta normalization of the even and odd ideal scalar parabolic waves given as

hypergeometric functions, Weber waves, has been presented. The integral relations between

these eigenfunctions of the Helmholtz equation with parabolic-cylindrical symmetry and
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those with circular and elliptical-cylindrical symmetries, Bessel and Mathieu waves, have

been shown and used to introduce the Bessel and Mathieu wave decomposition of Weber

waves.

A normalization for the finite energy Weber-Gauss beams was presented based on their

Bessel-Gauss decomposition. It has been shown that it is not feasible to efficiently construct

a Weber-Gauss beam through the finite superposition of just a few Bessel-Gauss beams.

Finding a close analytical form for the normalization integral straight from the con-

figuration or phase space representation of a Weber beam and the analysis pertaining the

generation of Weber beams as the superposition of Mathieu beams is left as an open problem

due to the complexity of the calculations involved.
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