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Normalization of optical Weber waves
and Weber–Gauss beams
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The normalization of energy divergent Weber waves and finite energy Weber–Gauss beams is reported. The
well-known Bessel and Mathieu waves are used to derive the integral relations between circular, elliptic, and
parabolic waves and to present the Bessel and Mathieu wave decomposition of the Weber waves. The efficiency
to approximate a Weber–Gauss beam as a finite superposition of Bessel–Gauss beams is also given. © 2010
Optical Society of America
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. INTRODUCTION
ropagation invariance is a phenomenon desired in cer-
ain scenarios, interesting in all occurrences. In the field
f optics, it is possible to talk about propagation invariant
aves, beams, and fields, i. e., non-paraxial and paraxial

olutions to the scalar wave equation and solutions to the
ector wave equation, in that order. Ideal propagation in-
ariant scalar waves are the separable solution to the
elmholtz equation with cylindrical symmetry. There ex-

st four fundamental families related to the four cylindri-
al coordinate systems for which the reduced wave equa-
ion is separable: Plane waves for Cartesian symmetry
nd Bessel, Mathieu, and Weber waves for circular-,
lliptic-, and parabolic-cylindrical symmetries, in that or-
er [1–4]. The interest in these families of structured sca-
ar waves nowadays lies beyond their propagation invari-
nce [5,6]. It is common knowledge that they all carry a
ell defined linear momentum in the propagation direc-

ion z. In addition, plane waves carry a well defined linear
omentum in the x and y directions, Bessel waves carry a
ell defined orbital angular momentum, Mathieu waves

arry a well defined composition of orbital angular and
-linear momenta, while Weber waves carry a composi-
ion of orbital angular and y-linear momenta [7,8]. These
ynamical properties are acquired by the corresponding
eams and vector fields, both in the classical and quan-
um regime [9–12], and can be used for manipulation of
atter at different scales [13].
These four propagation invariant families are exact so-

utions with divergent energies. By using the slowly vary-
ng envelope approximation (SVEA), these fundamental
amilies have been shown to support finite energy solu-
ions to the Helmholtz equation [14]; e. g., Hermite–
aussian beams are the best known solutions in Carte-

ian coordinates. Finite energy beam families are also
eported for the cylindrical symmetries, named as
essel–, Mathieu– and Weber–Gauss beams, which are a
loser description for the optical beams produced in the
aboratory, e. g., those using holographic schemes [15] or
1084-7529/10/020327-6/$15.00 © 2
ptical resonators [16]. A theoretical description close to
he experimental schemes of matter manipulation by
hese families of structured light requires the use of finite
nergy beams. In practice, the normalization of these
tructured modes of light gives rise to the requirement to
etermine the irradiance output needed from the laser
ources to produce the desired interchange of mechanical
ariables. Furthermore, quantization of the correspond-
ng finite energy fields requires the normalization of the
calar wave families. Currently, the general understand-
ng of the parabolic waves, beams, and fields includes
heir propagation characteristics [10,14] and dynamical
ariables [12] as well as holographic schemes for beam
roduction [15,17]. But to one’s surprise, the normaliza-
ion for Weber–Gauss beams is missing in the literature.

In this work, the link between Weber waves and the
ell-known Bessel and Mathieu waves is provided by de-

iving the integral relations between parabolic, circular,
nd elliptical waves following the phase space method
roposed by Boyer, Kalnins, and Miller [4,8]. With the
essel and Mathieu wave decompositions of Weber waves,
e present the normalization of Weber beams under a se-

ies scheme [18]. The efficiency to approximate Weber–
auss beams as a finite superposition of Bessel–Gauss
eams is also given. The results found here should pro-
ide the necessary information for the quantization of the
orresponding finite energy vector fields and for the un-
erstanding of any possible experimental demonstration
f mechanical transfer involving such fields.

. WEBER WAVES
he perpendicular component of the reduced wave equa-

ion in parabolic-cylindrical coordinates, u+ ıv= �2�x
ıy���1/2�, separates into a set of Weber differential equa-

ions,

� �2

�u2 + k�
2 u2 − 2k�a�U�u� = 0, �1�
010 Optical Society of America
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� �2

�v2 + k�
2 v2 + 2k�a�V�v� = 0. �2�

ccordingly, solutions to the wave equation with
arabolic-cylindrical symmetry are known as Weber
aves:

�e,k,�,a
�W� �u,v,z� =

���1

4
+

ıa

2 	�2

�
2 sin �
Ue,k,�,a�u�Ve,k,�,a�v�eı�kzz−�t�,

�3�

�o,k,�,a
�W� �u,v,z�

=


2���3

4
+

ıa

2 	�2

�
sin �
Uo,k,�,a�u�Vo,k,�,a�v�eı�kzz−�t�. �4�

hese parabolic waves are Dirac delta normalized for a
iven frequency � as

� d3x�
p̃,k,�̃,ã
�W�* �p,k,�,a

�W� = �p̃,p���̃ − ����ã − a�,p,p̃ = e,o.

�5�

he label set �p ,k ,� ,a stands for the parity with respect
o coordinate variables u and v, even or odd; wave number
=� /c; Euler angle corresponding to the decomposition of
he wave vector in longitudinal and perpendicular compo-
ents k=k�e�+kzez=k sin �e�+k cos �ez; and the real
ontinuous eigenvalue, a, of the even,

Ue,k,�,a�u� = e−ık�u2/2
1F1�1

4
−

ıa

2
,
1

2
,ık�u2� , �6�

Ve,k,�,a�v� = e−ık�v2/2
1F1�1

4
+

ıa

2
,
1

2
,ık�v2� , �7�

nd odd functions

Uo,k,�,a�u� = 
2k�ue−ık�u2/2
1F1�3

4
−

ıa

2
,
3

2
,ık�u2� , �8�

Vo,k,�,a�v� = 
2k�ve−ık�v2/2
1F1�3

4
+

ıa

2
,
3

2
,ık�v2� . �9�

he definition of the hypergeometric 1F1 function follows
19]. All special function notation and definitions will fol-
ow the latter reference. All calculations are based on the
dentities presented in [19,20].

Weber waves are eigenfunctions for the z component of
he linear momentum and the Poisson bracket of the z
nd y component of the angular and linear momenta, in
hat order:

Pz�p,k,�,a = kz�p,k,�,a, �10�

�Jz,Py�p,k,�,a = 2ak��p,k,�,a, �11�

here the notation P=−ı� and J=r�P has been used for
inear and angular momentum. Thus, choosing a positive
negative) real eigenvalue a leads to horizontal parabolas
pening to the left (right) with symmetry axis given by
he x axis.

The plane wave decomposition calculated for these
aves is given by

�p,k,�,a�x,y,z� =�
−�

�

d�Ap,k,�,a
�W� ���eık��x cos �+y sin ��eıkzz,

�12�

here the angular spectra are written

Ae,k,�,a
�W� ��� =

eıa ln�tan �/2�


2� sin ��sin ��
, �13�

Ao,k,�,a
�W� ��� = − ı sgn �Ae,k,�,a���. �14�

Solutions without well defined parity can be con-
tructed such that

�e/o,k,�,a
�W� �r,	,z� =

1


2
��k,�,a

�W� �r,	,z� ± �k,�,−a
�W� �r,	,z��,

�15�

ith angular spectra

Ak,�,a
�W� ��� = Ae,k,�,a���
���, �16�

Ak,�,−a
�W� ��� = ıAk,�,a�− ��, �17�

here the notation 
 represents the Heaviside theta
unction. The latter spectra are equivalent to those ex-
ressions presented in [4,8].
Figure 1 shows a sampler of Weber waves for a given

ave vector as well as positive and negative eigenvalues
.

. Bessel Decomposition
sing the plane wave decomposition for Weber and Bessel
aves, it is possible to show that the Bessel wave decom-
osition of a Weber wave is given by the superposition

�p,k,�,a
�W� �r,	,z� = �

n=0

�

�p,k,�,a
�B� �n��p,k,�,n

�B� �r,	,z�, �18�

here the coefficients for the expansion are

�e,k,�,a
�B� �n� =

1

2�
e−��2a+ı�/4�C�n,a� + C�− n,a��, �19�

�o,k,�,a
�B� �n� = −

ı

2�
e−��2a+ı�/4�C�n,a� − C�− n,a��, �20�

�k,�,±a
�B� �n� =

1

2�
e−��2a+ı�/4C�  n,a�, �21�

ith auxiliary functions

C�n,a� = ��n +
1

2���− 1�nf�n,a� + ı sgn af�n,− a��,

�22�
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f�n,a� =

2ıa��1

2
− ıa�

��1 + n − ıa�

� 2F1�1

2
− ıa,

1

2
− ıa,1 + n − ıa,

1

2� . �23�

ote that Eq. (21) agrees with the results in [4], and the
omplex conjugate of the auxiliary functions are given by
*�n ,a�=C�n ,−a� and f*�n ,a�= f�n ,−a�, while the even
nd odd Bessel waves are defined in the standard way, up
o a � /2 phase factor included in the odd parity function

�e/o,k,�,n
�B� �r,	,z� =

1


2
��k,�,n

�B� �r,	,z� ± �k,�,−n
�B� �r,	,z��,

n = 0,1,2,3. . . �24�

s functions of the Dirac delta normalized Bessel wave

�k,�,n
�B� �r,	,z� = �2���−1/2�ınJn�k�r�eı�n	+kzz�,

n = 0, ± 1, ± 2, . . . , �25�

ith angular spectra given by the expression

Ak,�,n
�B� ��� =

eın�


2� sin �
. �26�

. Mathieu Decomposition
igenfunctions to the wave equation in elliptic-cylindrical
oordinates, x+ ıy= f cosh��+ ı��, where f is half the inter-
ocal distance of the coordinate system, are given by

athieu waves

�e,k,�,a
�M� ��,�,z� = se,n,qCem��,q�cem��,q�eı�kzz−�t�, �27�

ig. 1. Ideal Weber waves with wave number k=2� /� and z com
c) �k,�,a=2

�W� . (d) �
e,k,�,a=−2
�W� . (e) �

o,k,�,a=−2
�W� . (f) �k,�,a=−2

�W� .
�o,k,�,a
�M� ��,�,z� = so,n,qSem��,q�sem��,q�eı�kzz−�t�, �28�

here the parameter is defined as q= �fk� /2�2 and the
ormalization coefficients for the four possible families,
wo parities (even or odd) and two periodicities (� or 2�),
re [21]

se,2n,q =
ce2n�0,q�ce2n��/2,q�

A0
�2n��q�

, �29�

se,2n+1,q = −
ce2n+1�0,q�ce2n+1� ��/2,q�

q1/2A1
�2n+1��q�

, �30�

so,2n+2,q =
se2n+2� �0,q�se2n+2� ��/2,q�

qB2
�2n+2��q�

, �31�

so,2n+1,q =
se2n+1� �0,q�se2n+1��/2,q�

q1/2B1
�2n+1��q�

. �32�

n interesting feature of Mathieu waves is that they take
he form of ellipses (hyperbolas) as the relation am−2q or
m−2q is positive (negative) with am�am�q� the charac-
eristic value for even Mathieu waves and bm�bm�q� for
dd.

Mathieu waves have angular spectra given by the ex-
ressions [4,8]

Ae,k,�,m
�M� ��� =

cem�	,q�


2� sin �
, �33�

Ao,k,�,m
�M� ��� =

sem�	,q�


2� sin �
. �34�

s the ordinary even or odd Mathieu functions are de-
ned as a cosine or sine series,

t �=0.31756 rad leading to kz=0.95 k. (a) �
e,k,�,a=2
�W� . (b) �

o,k,�,a=2
�W� .
ponen
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em�	,q� = �
n=0

m

Añ
�m��q�cos ñ	, �35�

em�	,q� = �
n=0

m

Bñ
�m��q�sin ñ	, ñ = 2n + m mod 2, �36�

t is possible to relate the coefficients of the Mathieu de-
omposition with the aforementioned Bessel decomposi-
ion coefficients by

�e,k,�,a
�M� �m� = �

n=0

m

Añ
�m��q��e,k,�,a

�B� �ñ�, �37�

�o,k,�,a
�M� �m� = �

n=0

m

Bñ
�m��q��o,k,�,a

�B� �ñ�, ñ = 2n + m mod 2,

�38�

here the Mathieu decomposition of a Weber wave is
iven by

�p,k,�,a
�W� ��,�,z� = �

m=0

�

�p,k,�,a
�M� �m��p,k,�,m

�M� ��,�,z�. �39�

. WEBER BEAMS
Weber beam is given by the SVEA solution to the Helm-

oltz equation [14] as

�p,k,�,a�r� =
1

��z�
eı�k−k�

2 /2k��z��ze−r�
2 /�0

2��z��p,k,�,a�ũ, ṽ�.

�40�

he exponential part accounts for the Gaussian envelope
ith minimum waist w0 and parameter ��z�=1+ ız /zR,
here the Rayleigh distance is given by zR=k�0

2 /2 and
he modified coordinates are defined as functions of x̃
x /��z� and ỹ=y /��z�. Please note that the structure of

he Weber waves is kept at the z=0, plane but it may
hange with propagation.

. Normalization
ormalization at the z=0 plane yields complex integrals,
hich can be avoided using a normalization scheme based
n the Bessel decomposition [18]. Under this scheme, nor-
alization for Weber beams yield

� d2x��p,k,�,a�r,	��2

= ��̃2e−k�
2

�̃2�
n=0

�

�1 + �n,0�

���p,k,�,a
�B� �n��2In�k�

2 �̃2�, p = e,o, �41�

here the angular integral is solved using the orthogonal-
ty of trigonometric functions; thus the radial integral
implifies to deliver a �th order modified Bessel function
f the first kind, I , as
�
�
0

�

drre−2r2/�0
2
Jn�k�r�Jn�k�r� = �̃2e−k�

2
�̃2

In�k�
2 �̃2�, n � 0.

�42�

he notation �̃=�0 /2 has been used, and �n,m stands for a
ronecker delta.
The series of Eq. (41) is convergent. In general, it is

ossible to numerically argue that

lim
n→�

Sn

Sn−1
� 1 �43�

or any given value of a with

Sn = ��̃2e−k�
2

�̃2
�1 + �n,0���p,k,�,a

�B� �n��2In�k�
2 �̃2�, n � 0.

�44�

or the special case a=0, it is straightforward to show
hat

lim
n→�

Sn

Sn−2
�

In�k�
2 �̃2�

In−2�k�
2 �̃2�

� � ek�
2 �̃2

8n �2

, log e = 1, �45�

here it has been used in

�e,k,�,0�0��2 =
4�2�5/4�
��2�3/4�

, �46�

�e,k,�,0�n��2 = �1 − n mod 2�

�2�2n + 1

4 �
4��2�2n + 3

4 � , n � 1, �47�

�o,k,�,0�1��2 =
4�2�3/4�
��2�1/4�

, �48�

�o,k,�,0�n��2 = �n mod 2�

�2�2n + 1

4 �
4��2�2n + 3

4 � , n � 2, �49�

nd the asymptotic limits [22]

In�z� �
1


2ı
eın�/2+n+n log�ze−ı�/2/2�−�n+1/2�log n, n → �,

�50�

��z� � 
2�e−zzz−1/2�1 +
1

12z�, z → �. �51�

Figure 2 shows the behavior of the truncated normal-
zation coefficient, �j=0

n Sj, as a function of the total num-
er of accounted terms, n, for even and odd Weber beams
or a given wave vector and some random values of a. A
horough sampling in the range a� �−25,25� showed that
he truncated normalization coefficient was well stabi-
ized at around the fiftieth term, at most.
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. Generation
he holographic generation of a Weber wave or beam im-
lies a great loss of irradiance. An optical resonator with
arabolic modes as output has not been reported yet to
he knowledge of the author. Thus, a feasible scheme for
btaining a high irradiance Weber beam relies on the su-
erposition of Bessel or Mathieu beams from optical reso-
ators [16].
In order to realize how many Bessel or Mathieu beams

re required to reproduce a Weber beam, the behavior of
he coefficients for the Bessel or Mathieu decomposition
as to be studied. Although the asymptotic limit for the
odified Bessel function of the first kind, the hypergeo-
etric and the gamma function are known [22,23], it is

uite complex to get an analytical asymptotic behavior for
he ratio between Bessel or Mathieu decomposition coef-
cients.
For the Bessel decomposition, a thorough numerical

urvey for large values of n in the range a� �−25,25�
hows that

lim
n→�
� �p,k,�,a

�B� �n�

�p,k,�,a
�B� �n − 1�

�→ 1. �52�

his can only be analytically asserted for a=0. Figure 3
hows the numerical behavior for some Bessel decomposi-
ion coefficients. It is possible to see that the main con-
ributing terms are not the first terms of the series, with
he exception of a=0; as n increases the contribution of
ach term becomes important until it reaches a maxi-

ig. 2. (Color online) Behavior of the truncated normalization
oefficient �j=0

n Sj for a given wave number k=2� /� and Euler
ngle �=0.31756 rad leading to kz=0.95 k for (a) even Weber
elds �

e,k,�,a
�W� and (b) �

o,k,�,a=2
�W� , with eigenvalues a=−11.2821

circle), a=−2.2827 (square), a=0 (diamond), a=10 (triangle), a
23.7902 (inverted triangle).
um, then it oscillates to stabilize and fulfil Eq. (52).

. CONCLUSION
he Dirac delta normalization of the even and odd ideal
calar parabolic waves, Weber waves, given as hypergeo-
etric functions, has been presented. The integral rela-

ions between these eigenfunctions of the Helmholtz
quation with parabolic-cylindrical symmetry and those
ith circular- and elliptical-cylindrical symmetries,
essel and Mathieu waves, have been shown and used to

ntroduce the Bessel and Mathieu wave decomposition of
eber waves.
A normalization for the finite energy Weber–Gauss

eams has been presented based on their Bessel–Gauss
ecomposition. It has been shown that it is not feasible to
fficiently construct a Weber–Gauss beam through the fi-
ite superposition of just a few Bessel–Gauss beams.
Finding a closed analytical form for the normalization

ntegral straight from the configuration or phase space
epresentation of a Weber beam and the analysis pertain-
ng to the generation of Weber beams as the superposition
f Mathieu beams are left as open problems because of the
omplexity of the calculations involved.
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