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Abstract – In this paper, we investigate the interaction between the semiconductor quantum well
(QW) structure, a weak probe field and a strong control field. Due to the quantum interference
effect induced by the strong control field, the absorption of the weak probe field is small and the
Kerr nonlinearity can be greatly enhanced. The results show that the spatial soliton can form in the
semiconductor QW structure via electromagnetically induced transparency (EIT). We also discuss
the optical response of the system and obtain the giant χ(3) and χ(5) susceptibilities with opposite
signs. In the one-dimension case, we obtain the analytical solutions for bright and dark spatial
solitons. For a general case, we present numerical solutions for ring solitons with experimental
parameters and show that the ring solitons are stable against azimuthal perturbation.

Copyright c© EPLA, 2015

Introduction. – The concept of soliton was introduced
by Zabusky and Kruskal [1], due to its shape and ve-
locity keeping unchanged during propagation and after
collisions, the study of temporal and spatial soliton has
received a great deal of attention [2–15]. The research of
the temporal vector optical solitons [16–18] has also been
considered due to the potential applications for the design
of new types of all-optical switches and logic gates. Espe-
cially, the ultra-slow two-color soliton [19,20] and temporal
vector optical solitons [21] with small absorption have been
studied in life-broadened four- or five-level atomic system
via EIT. Ring solitons have been found in self-defocusing
nonlinear media by Kivshar and Yang [22]. The ring dark
solitons in Bose-Einstein condensates were introduced by
Theocharis et al. [23], and they discussed the dynamics of
the original ring soliton. The vortex ring solitons [24] were
observed in Bose-Einstein condensate experiments using
density engineering on the healing length scale and they
showed that the oscillating solitons evolve periodically be-
tween vortex rings and solitons. Spatial solitons [25] with

(a)E-mail: liu0328@foxmail.com
(b)E-mail: xtxie1@gmail.com

low light intensities can be generated in an EIT medium
composed of a strong field and a four-level atomic system.
And the dynamics of the weak spatial soliton can be con-
trolled by varying the strong control field. The three-state
atomic system [26] can generate (2 + 1)-D stable spatial
optical solitons with extremely weak-light intensity under
the EIT condition. Giant χ(3) and χ(5) susceptibilities [27]
of opposite signs can be obtained in the atomic system
through a mechanism of EIT and multidimensional soli-
tons and light condensates can appear in this system. The
formation and evolution of optical vortices can be greatly
affected by the size and topological charge of the inci-
dent beam in multilevel atomic vapors [28]. In a nonlocal
medium, the stability of the vector-necklace-ring soliton
clusters can be adjusted by the mutual trapping of the
constituent components and nonlocality [29].

Model and (1 + 1)-D analytical solution. – In
this work, we study the optical response of a weak probe
field and spatial soliton generation in a semiconductor
QW system. Here we consider the system composed of
a three-level semiconductor QW, a weak probe field and a
strong control field, as shown in fig. 1. We not only show
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Fig. 1: Schematic of the 3-level cascade system in a quantum
well system. |j〉(j = 0, 1, 2) denote the subband states. Ωp

is the Rabi frequency of the weak probe field and drives the
transition from |0〉 to |1〉, and Ωc is the Rabi frequency of
the strong coupling field and drives the transition from |1〉 to
|2〉. The bare state transition energies are E10 = 124 meV and
E12 = 185 meV.

that the absorption of the weak probe field can be can-
celed by adjusting the intensity of the strong control field,
but also obtain giant χ(3) and χ(5) susceptibilities with
opposite signs in the QW medium. A few works have fo-
cused on the coherent control of intersubband transitions
in QW, such as laser-induced quantum coherence [30], AC
stark splitting and quantum interference [31], slow tempo-
ral optical solitons [32] in QW, optical bistability [33] via
intersubband transitions in QW. Our present work is dif-
ferent from those studies as we focused on the generation
and stability of (2 + 1)-D spatial solitons.

The present semiconductor QW sample is very
much similar to the one reported in refs. [30,31],
which has been grown by the molecular beam epitaxy
method. This sample consists of 50 periods, each with
a 4.8 nm In0.47Ga0.53As/0.2 nm Al0.48In0.52As/4.8 nm
In0.47Ga0.53As, separated by modulation-doped 36 nm
Al0.48In0.52As barriers. For this case, the semiconductor
QW can be recognized as a three-level system with the
subband energy levels |0〉, |1〉 and |2〉, respectively. The
corresponding transition frequencies are ω01 = 124 meV,
and ω12 = 185 meV, respectively. The weak probe field
Epe

iωpt drives the transition from |0〉 to |1〉 and the strong
coupling field Ece

iωct drives the transition from |1〉 to
|2〉. We suppose the frequencies of probe and coupling
fields are close to the transition frequencies, i.e. |ωp −
ω01|/ω01 � 1 and |ωc − ω12|/ω12 � 1, respectively. The
Rabi frequencies are defined as Ωp(c) = μ01(12)Ep(c)/h̄.
Here μ01(12) is the dipole moment for the intersubband
transition from |0〉 to |1〉 (|1〉 to |2〉). It is noted that
the dynamics of the system can be described by the Li-
ouville equation. Under the rotating wave approximation,
the equation of motion for the density matrix element ρij

can be written as

˙ρ11 = −γ1ρ11+ γ2ρ22+ i(Ωpρ01− Ω∗
pρ10+ Ω∗

cρ21− Ωcρ12),
(1a)

˙ρ00 = γ1ρ11 − i(Ωpρ01 − Ω∗
pρ10), (1b)

˙ρ10 = iR1ρ10 + iΩ∗
cρ20 + iΩp(ρ00 − ρ11), (1c)

˙ρ21 = iR2ρ21 + iΩc(ρ11 − ρ22) − iΩ∗
pρ20, (1d)

˙ρ20 = iR3ρ20 − iΩpρ21 + iΩcρ10, (1e)

along with the corresponding complex conjugates ρij =
ρ∗

ji(j �= i) and the conservation condition ρ00 + ρ11 +
ρ22 = 1. Here R1 = Δp + iγ10/2, R2 = Δc + iγ21/2,
R3 = Δp + Δc + iγ20/2, the single photon detunings are
defined as Δp = ωp − ω01 and Δc = ωc − ω12. The pop-
ulation decay rates, which correspond to subband states
|1〉 and |2〉, are denoted as γ1 and γ2. And the total de-
cay rates are defined as γ10 = γ1 + γdph

10 , γ20 = γ2 + γdph
20 ,

and γ21 = γ1 + γ2 + γdph
21 , where γdph

ij denotes the dephas-
ing decay rate, which comprises the sum of the quasielastic
acoustic phonon scattering and the elastic interface rough-
ness scattering, and the dephasing decay rate can be esti-
mated according to refs. [31,34].

The susceptibility is defined as χp = N0μ10ρ10/ε0Ep,
where N0 is the electron density in the conduction band
of the QW and ε0 is the permittivity of free space. With
the help of eq. (1) at the steady-state case, the analytical
expression for the susceptibility can be obtained as

see eq. (2) above

where N = R1R2R3, N1 = N − R2Ω2
c − R1Ω2
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N2 = 2iIm[NR−1
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c(γ1N3 + iγ2N3 −3|R3|2γ10γ21)−2γ2γ10|M |2 and
M = R2R3 − Ω2

p. In order to describe the high-order non-
linear optical response of the semiconductor QW struc-
ture, we express the susceptibility as a power series in the
field strength Ep, such as χ =

∑j=∞
j=0 χ2j+1|Ep|2j , then we

obtain
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c)(Ω

2
c −R∗

1R
∗
3)(γ2|R2|2+γ21Ω2

c), (4a)
B1 = γ2(2γ10|R2R3|2 + R1Ω4

c + γ21Ω4
c

+ γ1(|R1|2RR
23 − RR

12|Ωc|2)) + T0, (4b)
B2 = −γ10(γ1 + 3γ20)Ω2

c + γ2(2γ10R
R
23

− |R1|2γ1 + (γ10 − 2γ21)Ω2
c), (4c)

where T0 = Ω2
c(γ1(R0 − (γ21 + γ10)Ω2

c) − 3γ21(γ10|R3|2 +
γ20Ω2

c)), R0 = γ10Δ2
c + (γ10 + γ20 + γ21)ΔcΔp + (γ21 −

γ20)Δ2
p−0.25γ2

10γ20−0.25γ10γ20γ21, R4 = −γ21Δ2
p−(γ10+

γ20+γ21)ΔcΔp−(γ10+2γ20)Δ2
c−0.5γ2

21γ20−0.25γ10γ20γ21,
RI

23 = γ20Δc + γ21Δc + γ21Δp, RR
23 = 2Δ2

c + 2ΔcΔp −
0.5γ20γ21. Figure 2 shows the relationship between the
real and imaginary parts of the susceptibility χ and the
square of the probe field’s Rabi frequency |Ωp|2. Accord-
ing to the separate absorption saturation intensity mea-
surement [35], the population decay rate γ1 from state
|1〉 to |0〉 is 1.3 meV and the population decay rate γ2 is
0.9 meV, so the overall decay rate [31] is γ10 ∼ γ21 ∼
5 meV. Since the transition from |2〉 to |0〉 is dipole for-
bidden, the dephasing decay rate γdph

20 � γdph
10 (γdph

21 ), and
hence γ20 ∼ γ2 ∼ 1.3 meV. Since the present study focuses
only on the low temperatures up to 10 K, the sheet electron
density of semiconductor QW structure is ∼ 4×1011 cm−2.
From fig. 2, we see that the imaginary part of the suscep-
tibility is much smaller than the real part. This indicates
that the absorption of the probe field in our system is
small. The real part of the susceptibility is proportional
to the probe field’s intensity for low powers, while it de-
creases when the probe field’s intensity increases for high
powers. Moreover the real part of the third-order suscepti-
bility χ

(3)
r is positive, while the real part of the fifth-order

susceptibility χ
(5)
r is negative. Figure 2 indicates that the

semiconductor QW structure considered here presents a
nonlinear self-focusing for low powers and a nonlinear self-
defocusing for high powers. The nonlinear property in
the semiconductor QW structure is similar to the cubic-
quintic nonlinear property in other media [27,36–43]. Due
to giant χ(3) and χ(5) susceptibilities with opposite signs,
the stable two-dimensional liquid light condensates [27]
have been shown in an atomic system via EIT. Rarefaction
pulses [38] can be generated by soliton-soliton interference
in a cubic-(focusing-)quintic (defocusing) nonlinear sys-
tem. Highly efficient four-wave mixing and six-wave mix-
ing processes [39] have been generated in atomic systems
and the coexistence of four-wave mixing and six-wave mix-
ing processes can be used to estimate the coefficient χ(5).

We assume that the coupling field’s Rabi frequency sat-
isfies Ωc � γ20γ10 and Ωc � Ωp. For the resonance case
(Δp = Δc = 0), we can obtain Im[χ(1)] ∝ μ2

01N0
ε0h̄

γ20
Ω2

c
. So

the strong coupling field Ωc can efficiently suppress the
absorption of the weak probe field Ωp. Because of the ef-
fects of EIT, the weak probe field Ep can propagate in the
semiconductor QW system without absorption, which is

Fig. 2: (Color online) The real and imaginary parts of the sus-
ceptibility χ as a function of the square of the probe field’s Rabi
frequency |Ωp|2, the parameters are given in the main text.

governed by the Maxwell equation

∇2 �Ep − 1
c2

∂2 �Ep

∂t2
=

1
ε0c2

∂2 �P

∂t2
, (5)

where c is the velocity of light in vacuum. We assume a lin-
ear relationship between �P and �E, so we obtain �P = ε0χE.
Assuming the amplitude of the probe field varying slowly
along the z-direction, the propagation equation of the
probe field in this semiconductor QW medium is given by

2ikp
∂Ep

∂z
+ ∇2

⊥Ep = −k2
pχpEp, (6)

where ∇2
⊥ is the transverse Laplacian operator, kp and Ep

are the wave number and amplitude of the probe field.
Substituting eqs. (3a)–(3c) into eq. (6), we obtain

2ikp
∂Ep

∂z
+ ∇2

⊥Ep + k2
p

j=2∑
j=0

χ(2j+1)
p |Ep|2jEp = 0, (7)

Since the optical susceptibility χ is complex, we can write
χ(1) = χ

(1)
r + iχ

(1)
i , χ(3) = χ

(3)
r + iχ

(3)
i , and χ(5) = χ

(5)
r +

iχ
(5)
i . If a reasonable and realistic set of parameters can be

satisfied that χ
(1)
r � χ

(1)
i , χ

(3)
r � χ

(3)
i , and χ

(5)
r � χ

(5)
i ,

we obtain χ(1) 	 χ
(1)
r , χ(3) 	 χ

(3)
r , and χ(5) 	 χ

(5)
r . As-

suming the probe field is very small, the optical suscepti-
bility χ can expressed as

χ 	 χ(1) + χ(3)|Ep|2, (8)

For the case of (1+1)-dimensional probe fields, substitut-
ing eq. (8) into eq. (6), we obtain

2ikp
∂Ep

∂z
+

∂2

∂x2 Ep + k2
p(χ(1)

p + χ(3)
p |Ep|2)Ep = 0, (9)

Equation (9) admits a solution describing bright solitons
(χ(3) > 0) and dark solitons (χ(3) < 0), the fundamental
bright soliton is given by

Ep = E0sech(x/τ) exp[i0.5kp(E2
0χ(3)

p + χ(1)
p )z], (10)

56002-p3
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Fig. 3: (Color online) The solution forms of the ring solitons with vortex charge m = 3 and propagation constant β = 0.1, 0.25, 0.5
and 1 are shown in panels (a)–(d), respectively, X0 = Y0 = 1 × 10−6 m.

where τ = (
√

0.5χ
(3)
p kpE0)−1 with the amplitude E0

which is related to the full width at half maximum
(FWHM) xFWHM = 2

√
2 ln(2 +

√
3)

√
χ

(3)
p /kpE0. It is

noted that the width of the soliton is determined by the
amplitudes of probe and coupling fields and the detunings
δc and Δp. We can tune the coupling field’s amplitude
and the detunings to achieve no absorption. So the width
of the soliton does not change when it propagates in this
semiconductor QW medium. When (χ(3) < 0), the fun-
damental dark soliton is given by

Ep = E0 tanh(x/τ) exp[i0.5kp(E2
0χ(3)

p + χ(1)
p )z]. (11)

Numerical solution of ring solitons. – For a
(2 + 1)-D nonlinear Schrödinger equation, it is difficult to
find the analytical solution. Next, we will present a nu-
merical solution for eq. (7). For simplicity, we use the
polar coordinates instead of the rectangular coordinates.
We assume the stationary transverse solutions in eq. (7)
of the form Ep(r, θ, z) = φm(r)eiβz+imθ , where β is the
propagation constant, m = 0, ±1, ±2, . . ., for m �= 0, this
solution is related to vortex solitons. In polar coordinates,
we can derive the following equation:⎡

⎣ d2

dr2 +
1
r

d
dr

− m2

r2 − 2kpβ + k2
p

j=2∑
j=0

χ(2j+1)
p |φm|2j

⎤
⎦

× φm(r) = 0, (12)

with the boundary conditions φm(r = ∞) = 0 and
φ′

m(r = 0) = 0. We now present numerical results to
illustrate the existence of ring solitons in this QW system.
According to the experimental in refs. [30,31], the sheet
electron density is 4 × 1011 cm−2, γ1 	 1.3 meV, γ20 	
0.9 meV and γ10 	 γ21 = 5 meV, Δp = 36.5 meV and
Ωc = 50 meV, we can obtain χ(1) 	 0.23 + 0.026i 	 0.23,
χ(3) 	 −1 × 10−3 − 1 × 10−4i 	 −0.001 and χ(5) 	
3.9 × 10−5 + 4.3 × 10−6i 	 3.9 × 10−5. For m = 3 and
different values of β, we numerically search the computed
spatial profile φm(r) which satisfies the given boundary
conditions in eq. (12). The numerical solutions with differ-
ent profiles which correspond to different β = 0.1, 0.25, 0.5
and 1 μm−1 have been presented in fig. 3. From fig. 3, we
see that the height of the ring soliton becomes higher with
increasing the propagation constant β and the radius of
the ring soliton is inversely proportional to the propaga-
tion constant β.

The power of ring solitons can be defined as P =∫ ∫
φ2

mdxdy. In order to test the stability of (2+1)-D ring
solitons against small perturbations, we plot the relation
between the power of a ring soliton and the propagation
constant β for m = 3 in fig. 4. Figure 4 shows that the
power of ring solitons is proportional to the propagation
constant β. We find that the inequality dP

dβ > 0 is satisfied
in each point of the curve in fig. 4. It is very important
to determine the stability of the ring soliton solution and

56002-p4
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Fig. 4: (Color online) The relation between the power and
propagation constant for the ring soliton solution.

many studies [44–48] focused on this problem with dif-
ferent methods. In order to test the stability of the ring
soliton solutions, we simulate directly the propagation of
our solutions with eq. (7), which shows that the solutions
in fig. 3 are stable against azimuthal perturbation.

Conclusion. – We studied theoretically optical phe-
nomena in a semiconductor QW system which interact
with a weak probe field and a strong control field. Using
the density matrix method, we have obtained the analyt-
ical expression for susceptibility at a steady case. It is
found that the imaginary part of susceptibility is much
smaller than the real part in some conditions. In this
case, the probe field’s absorption is very small. We also ob-
tained the giant χ(3) and χ(5) susceptibilities with opposite
signs. And we presented the ring spatial soliton solution
in a numerical form. At last, we investigated the relation-
ship between the power P and propagation constant β and
the numerical results show that the ring spatial soliton so-
lutions are stable against azimuthal perturbation.
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