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PACS 42.50.Gy – Effects of atomic coherence on propagation, absorption, and amplification
of light; electromagnetically induced transparency and absorption

PACS 11.30.Er – Charge conjugation, parity, time reversal, and other discrete symmetries
PACS 78.20.Ci – Optical constants (including refractive index, complex dielectric constant,

absorption, reflection and transmission coefficients, emissivity)

Abstract – We propose a scheme to realize parity-time (PT )-symmetry in an ensemble of strongly
interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. We
show that Rydberg-dressed 87Rb atoms in a four-level inverted Y -type configuration is highly
efficient to generate the refractive index for a probe field, with a symmetric (antisymmetric) profile
spatially in the corresponding real (imaginary) part. Comparing with earlier investigations, the
present scheme provides a versatile platform to control the system from PT -symmetry to non-
PT -symmetry via different external parameters, i.e., coupling field detuning, probe field intensity
and control field intensity.

Copyright c⃝ EPLA, 2016

Introduction. – Every physical observable in quan-
tum mechanics requires a real spectrum with a Hermitian
Hamiltonian, nevertheless, Bender and co-workers claimed
that non-Hermitian Hamiltonians can have real spectra
under the parity (P) and time (T ) symmetries of phys-
ical systems [1]. Even though, it was pointed out that
the no-signaling principle will be violated when applying
the local PT -symmetric operation on one of the entangled
particles [2], PT -symmetry could still be used as an inter-
esting model for open systems in classical limit. Based on
the equivalence between the Schrödinger equation and the
optical wave equation, PT -symmetry in classical optical
systems demands that the real and imaginary parts of a
complex potential must be even and odd functions, i.e.,
V (x) = V ∗(−x). The concept of PT -symmetry was then
demonstrated in waveguides with gain and loss [3–6]. The
realization of PT -symmetry has prompted many designs
of PT -synthetic materials exhibiting various interesting
characteristics. These include for example, unidirectional
reflectionless wave propagation [7–9], coherent perfect ab-
sorber [10,11], giant wave amplification [12], and giant
Goos-Hänchen shift [13]. Experimental realization of
PT -symmetry has also been reported in plasmonics [14],
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synthetic lattices [15], and LRC circuits [16]. In addition
to solid-state media and optical devices, PT -symmetry
was studied in atomic media [17–19]. In ref. [17], Hang
and co-workers considered two species of gain and loss
atomic systems in the Λ-type configuration. In atomic sys-
tems, one may have many attractive characteristics, such
as that the optical structures can be easily tuned and con-
trolled in atomic medium through different external pa-
rameters, i.e., strength of Rabi frequencies and detunings.
In another work of Sheng and co-workers [19], a single
species of four-level N -type atomic medium has been con-
sidered for the realization of PT -symmetry. The control
over non-PT - and PT -symmetries was achieved by ad-
justing the coupling frequency detunings and introduced
gain and loss in a system simultaneously. Recently, non-
linear wave dynamics has been studied in PT -symmetric
systems and reported the relation between non-linearity
and PT -symmetry that generated a new phenomena [20].

Further, Rydberg states with a high principal quantum
number was demonstrated to address electromagnetically
induced transparency (EIT) in atomic ensembles [21].
There exists a strong interaction among the Rydberg
atoms, which is known as a dipole blockade [22]. In
Rydberg-dressed atoms, one Rydberg excitation can block
the Rydberg excitation of all atoms in its surrounding
volume. Rydberg-dressed EIT systems in the three-level
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Fig. 1: (Color online) (a) The schematics of the light incident
on a medium. x and z are the transverse and longitudinal
direction of propagation, respectively. (b) The energy-level
configuration of the inverted Y -type system.

cascade configuration was proposed, with the trans-
parency window controlled by the strength of probe
field [23]. In this work, we extend the concept of the
three-level cascade system to a four-level inverted Y -type
configuration, and exploit the realization of PT -symmetry
in Rydberg atomic medium. We take the van der Waals
(vdW) interaction between atoms into considerations, and
control the PT - and non-PT -symmetries using external
parameters. With coupling field detunings to balance the
gain and loss in a system simultaneously, our proposed
Rydberg atoms provides a versatile platform to investi-
gate PT -symmetry with the dipole blockade.

Model. – We consider an ensemble of 87Rb atoms
in inverted Y -type atomic configuration interacting with
three optical fields. The probe (red), coupling (black) and
control (green) fields interacting with atomic medium as
depicted in fig. 1(b). Each atom has energy-levels |g⟩,
|e⟩, |b⟩ and |r⟩. A probe field of frequency ωp drives the
transition between |g⟩ and |e⟩ with Rabi frequency Ωp,
whereas the control field with Rabi frequency Ωc drives
the transition between |r⟩ and |e⟩ and a third field is ap-
plied between |e⟩ and |b⟩ with Rabi frequency Ω1. The
coupling field excites the atoms to the Rydberg state |r⟩
and the atoms interact with each other via a vdW poten-
tial ∆(ri − rj) = C6/|ri − rj |6 [23], where ri and rj are
the positions of atoms i and j, respectively. The total
Hamiltonian can then be written as

H = Ha + Haf + HvdW, (1)

where

Ha = −h̄
N

∑

j

[∆pσ
j
ee + ∆2σ

j
rr + (∆p − ∆1)σ

j
bb],

Haf = −h̄
N

∑

j

[Ωpσ
j
eg + Ωcσ

j
re + Ω1σ

j
eb + H.c.],

HvdW = h̄
N

∑

i<j

σi
rr∆(ri − rj)σ

j
rr, (2)

whereas ∆p = ωp − ωeg, ∆c = ωc − ωre, ∆1 = ω1 − ωeb,
∆2 = ∆p + ∆c is the two-photon detuning and
σj

αβ = |α⟩jj⟨β| is the transition operator for atom j at
position rj . Using the Hamiltonian equation (1) we can
write down the Heisenberg Langevin equations as

σ̇j
eg = (i∆p − γeg)σ

j
eg − iΩp(σ

j
ee − σj

gg) + iΩ∗
cσ

j
rg

+ iΩ1σ
j
bg,

σ̇j
rg = [i(∆2 − S(r)) − γrg]σ

j
rg + iΩcσ

j
eg − iΩpσ

j
re,

σ̇bg = [i(∆p − ∆1) − Γ]σj
bg + iΩ∗

1σ
j
eg − iΩpσ

j
be, (3)

where Γ is the relaxation rate of dipole-forbidden transi-
tion between |g⟩ and |b⟩ whereas S(r) is the total vdW
induced shift of Rydberg state |r⟩ for an atom at position
r and can therefore be written as

S(r) =
nSA
∑

i<j

∆(r − rj)σrr. (4)

In eq. (4), σrr is the population of Rydberg state |r⟩ and
we can approximate it by a Lorentzian function. We con-
sider the stationary-state solution of eq. (3) without con-
sidering vdW shift S(r) and the average population of
Rydberg state can then be calculated as [23,24]

⟨σrr⟩ = (σrg)(σgr). (5)

In the present consideration, the decay rate γrg and the
dipole forbidden transition Γ are very weak, so we consider
γrg and Γ equal to zero in our calculation. We also con-
sider the resonance condition (∆1 = 0) for control field Ω1.
From the steady-state solution of eq. (3) without consid-
ering the vdW interaction, we can write σrg as

σrg =
[Γ + i(∆1 − ∆p)]ΩcΩp

(γrg − i∆2)|Ω1|2 + [Γ + i(∆1 − ∆p)]F
, (6)

where F = γrg(γeg − i∆p) − ∆2(iγeg + ∆p) + |Ωc|2. Using
the following approximations, i.e., γrg ≪ γeg then the
term γrg(γeg − i∆p) → 0 whereas ∆p < γeg leads to ∆p →
0 and γrg

∼= 0, Γ ∼= 0, ∆1
∼= 0, then the final form of σrg

can therefore be written as

σrg = −
ΩcΩp

|Ωc|2 + ∆2
∆p

|Ω1|2 − iγeg∆2
. (7)

The expression for population of Rydberg state may take
the form

⟨σrr⟩ =
|Ωc|2|Ωp|2

(|Ωc|2 + ∆2
∆p

|Ω1|2)2 + γ2
eg∆

2
2

. (8)

Further, we discuss about the vdW shift and consider
that an atom is in a Rydberg state which induces a vdW
shift ∆(R) for another atom located at a distance R. The
vdW interaction suppresses the excitation of all the atoms
in a small volume VSA, which is called as a Rydberg block-
ade or superatom (SA) [22]. There is only one Rydberg
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excited atom in each SA, i.e., in VSA. The number of
atoms in a SA may be defined as nSA = ρ(r)VSA, where
ρ(r) is the atomic density. The total medium can then be
treated as the collection of superatoms, and the number
of superatoms in volume V will be NSA = ρSAV . Then,
the total vdW shift at position r can be written as [23,24]

S(r) =
NSA
∑

j

∆(r − rj)ΣRR(rj) = ∆̄ΣRR(r) + s(r), (9)

where the first term in right side of eq. (9) shows the
excited SA at rj ≈ r i.e., ΣRR(r) → 1, which in-
duces divergent vdW shift in a volume of SA, and then
∆(0) ∼= 1

VSA

∫

VSA
∆r′d3r′ → ∞. The second part on the

right side of eq. (9) shows the vdW shift induces the ex-
ternal SAs outside the volume and can be expressed as
s(r) =

∑NSA

j ∆(r − rj)ΣRR(rj). We can calculate the
expression for s(r) by replacing the summation by inte-
gration over the total volume and using the mean field
approximation as [23]

⟨s(r)⟩ =
w

8
⟨ΣRR(r)⟩, (10)

where w is the half-width of Lorentzian function of popu-
lation in Rydberg state given by |Ωc|2/γeg. To find the an-
alytical expression for s(r), we need to calculate ΣRR(r).
The dynamics of individual SAs can be described in the
form of collective states and operators within the blockade
volume such that the ground and single collective Rydberg
excited state are given by |G⟩ = |g1, g2, g3, . . . , gnSA⟩ and
|R(1)⟩ = 1√

nSA
×

∑nSA

j |g1, g2, g3, . . . , rj , . . . , gnSA⟩ [23],

where g1, g2, . . . , gnSA are the ground states of the atoms
in SAs, whereas |R(1)⟩ shows that in a SA one atom must
be in Rydberg state.

For a single-atom treatment and considering a SA in
state |G⟩, ΣRR(r) can be represented as [23]

ΣRR = (ΣRG)(ΣGR), (11)

where

ΣRG =

√
nSAΩcΩpΣGG

∆2(iγeg + ∆p) − (∆2
∆p

|Ω1|2 + |Ωc|2)
. (12)

Using eqs. (11) and (12) with considering ΣGG+ΣRR = 1,
the expression for ΣRR after some mathematical steps can
be calculated as

ΣRR =
nSA|Ωc|2|Ωp|2

|Ωc|2|Ωp|2nSA + B + γ2
eg∆

2
2

, (13)

where B = [∆2∆p − (|Ωc|2 + ∆2
∆p

|Ω1|2)]2.
The compact expression for optical susceptibility of our

proposed atomic system can therefore be written as

χ = ξ

[

ΣRR
∆p

(−i∆p)(γeg − i∆p) + |Ω1|2

+ (1 − ΣRR) ×
∆p

(−i∆p)(γeg − i∆p) + A

]

, (14)

where ξ= 2NSA|µeg|2
h̄ϵ0

and A = |Ω1|2 + |Ωc|2[γeg − i(∆2 −
⟨s(r)⟩)]−1. From eq. (13), it is clear that ΣRR depends
on nSA which is directly related to the superatoms. The
blockade effects arise from the dipole-dipole interactions
between atoms. Thus, the blockade effect modifies the
susceptibility of the system as shown in eq. (14). For the
case, when the blockade effect is so strong, i.e., ΣRR → 1
the probe field sees a three-level with energy levels |g⟩,
|e⟩ and |b⟩ electromagnetically induce transparency (EIT)
system. On the contrary, for non-interacting atoms,
ΣRR → 0 whole the system reduces to a single inverse-Y
configuration.

Results and discussion. – We start our discussion
by considering an optical susceptibility (χ) of the atomic
medium consist of Rydberg atoms (87Rb). It is well known
from the literature that the susceptibility of a medium is
related with the refractive index via the relation

n =
√

1 + χ ≈ 1 + χ/2, (15)

where χ = χR + iχI , with real (χR) and imaginary (χI)
parts of the optical susceptibility. Whereas n = n0 +nR +
inI , with real (nR) and imaginary (nI) parts, and n0 = 1
is the background refractive index of the medium. We
follow the same approach as described earlier in ref. [19]
and consider two different coupling fields side by side each
having the same Gaussian intensity profile. The optical
susceptibility of the probe field varies in the transverse
direction of x. The intensity distribution of the coupling
beams can then be represented as [19]

Ic(x) = A

(

e
−(x−a)2

2σ2 + e
−(x+a)2

2σ2

)

, (16)

where A is constant, whereas 2a and σ are the separa-
tion between the two potential channels and beam waist,
respectively. To introduce gain in one and loss in another
waveguide, here, we consider two different coupling de-
tunings (±∆c). The refractive index of the medium, then
varies only with the coupling intensity. The key point here
is to find out the two coupling detunings for gain and loss
simultaneously in a system. We study the variation of
imaginary part of the optical susceptibility vs. coupling
detuning (∆c) using eq. (14). The fixed parameters are
nSA = 10, γ = 1 MHz, Ω1 = 2γ, Ωp = 0.05γ, ∆p = 0.01γ,
γeg = γ, and σ = 3λ [19,23]. We plot the imaginary part
of optical susceptibility vs. ∆c for two different coupling
field strengths as shown in fig. 2(a). The plot clearly shows
that there is gain (loss) for −∆c(+∆c) simultaneously in
our system. For a more clear picture next we plot the
Im[χ] vs. coupling field strength (Ωc) by considering two
coupling field detunings, i.e., ∆c = ±0.01γ, see fig. 2(b).
We indeed notice that for two different coupling field de-
tunings (∆c = ±0.01γ), the imaginary parts for gain and
loss waveguides vs. coupling field strength are different.
In comparison, the two curves in fig. 2(b) are flipped with
each other with negative sign. We also study the real
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Fig. 2: (Color online) (a) The imaginary part of optical sus-
ceptibility (χ) vs. coupling field detuning (∆c) for Ωc = 5γ
and Ωc = 10γ. (b) The imaginary part of optical susceptibility
(χ) vs. coupling field (Ωc) for ∆c = 0.01γ and ∆c = −0.01γ.
(c) The real part of optical susceptibility (χ) vs. coupling field
(Ωc) when ∆c = 0.01γ. (d) The real part of optical suscepti-
bility (χ) vs. coupling field (Ωc) when ∆c = −0.01γ, the other
parameters are presented in the text.

part of optical susceptibility and plot it vs. coupling field
strength for two coupling field detunings (±0.01γ). It is
found that the real part of optical susceptibility associated
with two waveguides overlap with each other. Figures 2(c)
and (d) represent the Re[χ] for loss and gain waveguides,
respectively.

Now, it is established from the relation between the op-
tical susceptibility and the coupling field strength Ωc as
depicted in fig. 2(b) that we can achieve a spatial index
modulation. We use the intensity distribution as described
in eq. (16) and relate this with eq. (15), then the refrac-
tive index becomes a position dependent, i.e., n(x). To
study the refractive index of the medium, we consider two
different coupling field detunings (±∆c) for gain and loss
waveguides and plot the real and imaginary parts of the
refractive index vs. x. First, we consider ∆c = −0.01γ
(gain) and 0.01γ (loss) for two coupling field detunings
and choose all the other parameters as described in the
text. We plot the real and imaginary parts of the refrac-
tive index vs. position x as depicted in figs. 3(a), (b). The
plots clearly reveal that the real part of the refractive in-
dex is an even function of x, while the imaginary part is an
odd function of x. The imaginary part of n(x) describes
that the gain and loss remain the same and balance each
other. The PT -symmetry demands that the real (imagi-
nary) part must be even (odd) function of position x and
the gain (loss) must be balanced to each other. Following
the above statement our investigation fulfills the require-
ments of PT -symmetry. Further, we proceed our investi-
gation and confirm that the realization of PT -symmetry is
valid for all those values where (−∆c = +∆c). For differ-
ent values of coupling field detunings where −∆c = +∆c,
we plot the real and imaginary parts of the refractive index
vs. x. We get an even (odd) function for the real (imagi-
nary) part of refractive index with balance loss (gain), see
figs. 3(a)–(h).

Fig. 3: (Color online) The real and imaginary parts of refractive
indexes as a function of position x for ((a), (b)) ∆c = 0.01γ
and ∆c = −0.01γ, ((c), (d)) ∆c = 0.05γ and ∆c = −0.05γ,
((e), (f)) ∆c = 0.1γ and ∆c = −0.1γ, and ((g), (h)) ∆c = 1γ
and ∆c = −1γ, the other parameters are the same as in the
text.

To study the perfect situation of PT -symmetric sys-
tems, i.e., to achieve the perfect symmetric real and anti-
symmetric imaginary parts of the refractive index of the
medium. Here, we define an error function as

ψ(x) ∼= n(x) − n∗(−x) ≈ 0, (17)

where n(x) ≈ 1 + 1
2χ(x). For the realization of

PT -symmetry, it is important to make the error func-
tion ψ(x) equal or close to zero. Earlier, in an atomic
system of two species the real and imaginary parts of the
error function have been noticed and found it 1% and 2%
of the real and imaginary parts of n(x), respectively [17].
Similarly, in a single species of atomic medium the real
and imaginary parts of the error function is calculated as
below 5%. We explore the error function and found that
the real and imaginary parts of the error function ψ(x)
are 0.0006% and 0.03% of the real and imaginary parts of
n(x). We believe that in our proposed scheme the error
function approaches to zero.

The control of PT -symmetry is an important charac-
teristic via external parameters. In the present scheme
we can control the PT -symmetry using different param-
eters, these include for example, coupling field detun-
ing, strength of probe and control fields. As mentioned
earlier that PT -symmetry is satisfied for −∆c = +∆c.
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Fig. 4: (Color online) The real and imaginary parts of refractive
indexes as a function of position x for ((a), (b)) ∆c = 0.1γ and
∆c = −0.01γ, ((c), (d)) ∆c = 0.01γ and ∆c = −0.1γ, ((e), (f))
∆c = 0.01γ, ∆c = −0.01γ, and Ωp = 0.2γ and ((g), (h))
∆c = 0.01γ, ∆c = −0.01γ and Ω1 = 0.2γ, the other parameters
are the same as in the text.

Now we consider two coupling field detunings with differ-
ent strengths, i.e., ∆c = 0.1γ and −0.01γ, while keeping
all the other parameters remain the same as used in fig. 3.
We again plot the real and imaginary parts of refractive
index vs. position function x, see figs. 4(a), (b). The
PT -symmetry breaks due to imbalance gain and loss in
the system simultaneously as shown in fig. 4(b). It is due
to the fact that ∆c = 0.1γ in loss waveguide is greater
than in gain waveguide (∆c = −0.01γ). It is also clear
from the realization of PT -symmetry that the gain and
loss must balance each other simultaneously in a system.
Therefore, symmetry breaking occurs in our system by
considering different strengths of coupling field detunings
and then the medium treated as non-PT -symmetric. Sim-
ilarly, we consider ∆c = 0.01γ and −0.1γ for loss and gain
waveguides and plot the real and imaginary parts of the
refractive index vs. position x, see figs. 4(c), (d). In this
time ∆c = −0.1γ in gain waveguide is greater than in loss
waveguide (∆c = 0.01γ) and we get a symmetry break-
ing again with a large gain in the system as shown in
fig. 4(d). This clearly indicates that symmetry breaking
occurs in our system for different coupling field detunings,
i.e., −∆c ̸= +∆c.

As our system is nonlinear and depends on the strength
of probe field intensity. By changing the strength of

probe field intensity one can modify the characteristics of
a medium. From an earlier investigation where a strong
interacting three-level Rydberg atomic medium has been
considered and modified the EIT features by changing
the probe field intensity [23]. Our system is an exten-
sion of the previous work [23] and also dependent on
the intensity of probe field. Here, we expect that the
probe field intensity will modify the characteristics of PT -
symmetric medium. We choose ∆c = ±0.01γ and in-
crease the strength of probe field intensity from 0.05γ
to 0.2γ and plot the real and imaginary parts vs. posi-
tion x, see figs. 4(e), (f). It is found that by increasing
the strength of probe field intensity, the gain and loss in
a system become unbalanced. Symmetry breaking occurs
via increasing the strength of probe field and the medium
becomes non-PT -symmetric. Further, PT -symmetry also
depends on the control field intensity (Ω1) in our system
and symmetry breaking occurs for Ω1 < 1.3γ. We choose
∆c = ±0.01γ, Ωp = 0.05γ, Ω1 = 0.2γ, and plot the real
and imaginary parts of refractive index vs. position x,
see in figs. 4(g), (h). The plot in fig. 4(h) shows that
the medium becomes an absorptive with unequal gain and
loss.

To study a more clear picture about PT -symmetry, next
we consider the wave propagation along the z-direction
through the proposed atomic medium as shown in
fig. 1(a). We try to show that the propagation con-
stant has real value under the condition of PT -symmetry.
Using the paraxial approximation one can write the field
equation [17] as

i
∂Ep

∂z
+

1

2kp

∂2Ep

∂x2
+

1

2
kpχp(x)Ep = 0, (18)

where kp describe the wave vector of probe field and

Ep(z, x) = E(x)eibz , (19)

with b being the propagation constant and can show that
the field would be attenuated quickly during propaga-
tion in the medium when b has non-zero imaginary part.
In contrast, the field can propagate for longer distances
through the medium if the imaginary part of b is very
small or zero. To study the wave propagation through the
medium, we are looking for eigenvalue problem instead
of solving the field equation. We substitute eq. (19) into
eq. (18) and make a simplified eigenvalue equation as

d2E

dξ2
+

kp

k2
s

χ(ξ)E = βE, (20)

where β = 2kp

k2
s

b. To show the spectrum of β we plot Im[β]

vs. different number of eigen modes for different condi-
tions and link these results with the realization of PT -
and non-PT -symmetry as investigated in figs. 3 and 4. As
discussed above that for the realization of PT -symmetric
medium, the real (imaginary) part must be even (odd)
and the gain and loss waveguide must balance each other
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Fig. 5: (Color online) The spectrum of eigenvalue of Im[β] vs.
different eigenmodes (a) PT -symmetry and (b)–(d) non-PT -
symmetry.

simultaneously in a system, see fig. 3. For the realiza-
tion of PT -symmetric medium we expect that the Im[β]
must be zero or close to zero. We choose the same pa-
rameters as used in figs. 3(a), (b), and plot the Im[β] vs.
different eigen modes. The plot in fig. 5(a) portrays that
the Im[β] is zero which satisfy the PT -symmetry condi-
tion of figs. 3(a), (b). Next, we choose the unbalance
gain and loss simultaneously in a system to satisfy the
results obtained in figs. 4(a), (b). We consider all the
parameters as used in figs. 4(a), (b), and plot the Im[β]
vs. different modes. It is found that Im[β] has non-
zero values for different modes and gives us a non-PT -
symmetric medium, see fig. 5(b). As described above that
PT -symmetry breaking occurs when the intensity of the
probe (Ωp) and control (Ω1) fields varies, see figs. 4(e)–(h).
To study the influence of these intensities over Im[β], we
plot again Im[β] vs. different modes as shown in figs. 5(c)
and (d). The results describe that Im[β] has non-zero
values for different modes and the medium becomes a
non-PT -symmetric when the probe and control fields are
varied.

Conclusion. – To conclude, we propose to use
Rydberg atomic media consist of 87Rb atoms in the
four-level inverted Y -type configuration, to realize PT -
symmetric profiles of the refractive index. By varying
the external parameters such as coupling field detuning
(∆c), probe field intensity (Ωp) and control field intensity
(Ω1), we investigate various index profiles, in particular
the control over PT - and non-PT -symmetry via chang-
ing the external parameters. More interestingly, an exact
PT -symmetry can be achieved with different parameters
in Rydberg atoms.
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