
Heliyon 9 (2023) e13416

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Quantum walk processes in quantum devices

Anandu Kalleri Madhu a, Alexey A. Melnikov b,∗, Leonid E. Fedichkin b,c,
Alexander P. Alodjants d,e, Ray-Kuang Lee a,f ,g,h

a Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
b Valiev Institute of Physics and Technology, Russian Academy of Sciences, 117218 Moscow, Russia
c Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
d ITMO University, 197101 St. Petersburg, Russia
e Quantum Light Engineering Laboratory, Institute of Natural and Exact Sciences, South Ural State University (SUSU), 454080 Chelyabinsk, Russia
f Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
g Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
h Center for Quantum Technology, Hsinchu 30013, Taiwan

A R T I C L E I N F O A B S T R A C T

Dataset link: https://github .com /q -ml /
quantum -walks -quantum -devices

Simulation and programming of current quantum computers as Noisy Intermediate-Scale
Quantum (NISQ) devices represent a hot topic at the border of current physical and information
sciences. The quantum walk process represents a basic subroutine in many quantum algorithms
and plays an important role in studying physical phenomena. Simulating quantum walk processes
is computationally challenging for classical processors. With an increasing improvement in qubits
fidelity and qubits number in a single register, there is a potential to improve quantum walks
simulations substantially. However, efficient ways to simulate quantum walks in qubit registers
still have to be explored. Here, we explore the relationship between quantum walk on graphs
and quantum circuits. Firstly, we discuss ways to obtain graphs provided quantum circuit. We
then explore techniques to represent quantum walk on a graph as a quantum circuit. Specifically,
we study hypercube graphs and arbitrary graphs. Our approach to studying the relationship
between graphs and quantum circuits paves way for the efficient implementation of quantum
walks algorithms on quantum computers.

1. Introduction

Random walks on graphs naturally appear in different physical processes [1–4] and computational subroutines [5–9]. In order
to study these physical processes and implement algorithms, there is a need for efficient ways to simulate random walks [10,11].
Quantum walks, quantum analogues of (classical) random walks [12–18], naturally appear in physical processes when studied
at a quantum level. Quantum interference, which is at the heart of quantum walks [19–24], potentially enables to accelerate
energy transfer in Fenna-Matthews-Olson complexes [25–27] and quantum photonic circuits [28,29]. Understanding quantum
walk advantage in particle transfer requires efficient simulation techniques and graph classification algorithms [30–32]. Simulating
quantum walks is computationally a #P-hard problem, which makes classical simulators inefficient for the task [33,34]. In this regard,
efficiently simulating quantum walks in quantum devices, especially in quantum computers available now represents an important

* Corresponding author.
Available online 8 February 2023
2405-8440/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: melnikov@phystech.edu (A.A. Melnikov).

https://doi.org/10.1016/j.heliyon.2023.e13416

Received 19 September 2022; Received in revised form 7 December 2022; Accepted 30 January 2023

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
https://github.com/q-ml/quantum-walks-quantum-devices
https://github.com/q-ml/quantum-walks-quantum-devices
mailto:melnikov@phystech.edu
https://doi.org/10.1016/j.heliyon.2023.e13416
https://doi.org/10.1016/j.heliyon.2023.e13416
http://creativecommons.org/licenses/by/4.0/

Heliyon 9 (2023) e13416A.K. Madhu, A.A. Melnikov, L.E. Fedichkin et al.

Fig. 1. A schematic relation between graphs and quantum circuits.

task for understanding quantum transport advantages [35,36], and for quantum algorithms implementation [37] as quantum walks
represent a universal model of quantum computation [38,39].

However, existing quantum computers are NISQ devices, and possess limited capabilities due to a small number of qubits [40].
In this sense, the simulation of quantum walks on large-scale graphs with such devices represents an important and non-trivial task.

In this work, we study the practical possibilities to run Continuous-Time Quantum Walk (CTQW) processes in NISQ devices. The
paper is mainly structured into two main parts as shown in Fig. 1. In the first section, we discuss about how to obtain graphs given
a quantum circuit. We talk about two different kinds of graphs: i) hypercubes and ii) arbitrary graphs. In the second section, we
discuss how to obtain a quantum circuit given a graph. We talk about how to simulate the CTQW on a graph using a quantum
circuit. In particular, we discuss simulating hypercube graphs and arbitrary graphs. As an example of simulating an arbitrary graph,
we simulate a 4 node “paw” graph on a quantum computer. We also discuss the technique of Hamiltonian simulation for simulating
arbitrary unitary state evolution in a quantum computer.

2. Simulating quantum walks on graphs

Single particle CTQW on graphs is studied in this paper. A quantum particle can be located in one of the 𝑑 positions on a graph
with 𝑑 vertices, or in a superposition of these positions. A quantum state of this particle can be thought of as a state of a 𝑑-level
system as shown in Eq. (1):

||𝜓𝑑 (𝑡)⟩ = 𝑑−1∑
𝑖=0

𝛼𝑖(𝑡) |𝑖⟩ (1)

where |𝛼𝑖(𝑡)|2 being the detection probability in vertex 𝑖 at a time 𝑡 and verifying in Eq. (2):

𝑑−1∑
𝑖=0

|𝛼𝑖(𝑡)|2 = 1 (2)

The evolution of this quantum state is governed by the Hamiltonian with nearest-neighbour hopping terms given by Eq. (3):

𝐴 = ℏΩ
𝑑−1∑
𝑖,𝑗=0

𝐴𝑖𝑗 |𝑖⟩ ⟨𝑗| = ℏΩ𝐴, (3)

where 𝐴 is an adjacency matrix of a graph on which the quantum walk is performed, 𝐴𝑖𝑗 are the elements of this matrix and Ω is the
hopping frequency.

The unitary quantum state evolution is hence a solution to the Schrödinger equation, which is given by

||𝜓𝑑 (𝑡)⟩ = e−𝑖Ω𝑡𝐴 ||𝜓𝑑 (0)⟩ . (4)

Note that 𝐴 is not necessarily symmetric – the weights 𝐴𝑖𝑗 are complex parameters and can, in general, lead to a chiral quantum
walk on a weighted graph [41,42].

Exponentiation of the Ω𝑡𝐴 matrix is computationally challenging for large 𝑑. In the case of using a quantum computer, however,
it is known that some unitary matrices can be efficiently implemented in time logarithmic in 𝑑. However, as the form of a Hermitian
matrix 𝐴 is arbitrary, we cannot efficiently implement any quantum walk on a quantum computer. In the general case, the matrix
𝐴 is described by (𝑑2 − 𝑑)∕2 independent complex-valued variables, which means in the worst case, one would need to apply 𝑂(𝑑2)
operations making exponential speedup impossible. In this paper, we explore the set of matrices 𝐴, for which efficient implementation
is possible, and demonstrate this implementation on the IBM Q quantum device.

3. Obtaining graphs given quantum circuits

In this section, we discuss how to obtain graphs given a quantum circuit. A quantum circuit corresponds to a unitary state
evolution of a Hamiltonian. This Hamiltonian represents the CTQW of a particle on a graph. The adjacency matrix of this graph is
obtained from the underlying unitary represented by the quantum circuit. Therefore, every quantum circuit corresponds to a graph
on which CTQW are implemented. In this section, we briefly discuss obtaining two families of graphs: i) hypercubes; ii) arbitrary
2

graphs.

Heliyon 9 (2023) e13416A.K. Madhu, A.A. Melnikov, L.E. Fedichkin et al.

Fig. 2. (a) Quantum circuit for a CTQW implemented on 𝑛 separable qubits. (b) Two different ways to encode a state of a walking particle on a hypercube graph:
one qudit (left), and 𝑛 separable qubits (right). Quantum and classical simulation of CTQW on(c) a 3-dimensional hypercube and (d) a 20-dimensional hypercube.
Each plot shows a probability distribution of particle position on a graph at different times, corresponding to quantum circuit parameters 𝜙 = −𝜋∕2, 𝜆 = 𝜋∕2 and
𝜃 = 2Ω𝑡 = 𝜋∕2, 𝜋, 3𝜋∕2, 2𝜋. The blue circles and orange triangles correspond to execution on the classical simulator and the quantum IBM Q device, respectively.
Hamming distance indicates the distance at which the particle propagated starting from the initial state labeled as “00 … 0”.

3.1. Quantum walks on hypercubes

Hypercube graphs represent a starting point towards studying graphs with a large number of vertices connected non-trivially. To
simulate quantum walks on hypercubes, one needs to establish a mapping. Firstly, an encoding of the particle’s position in the space
of qubits needs to be defined. Secondly, a sequence of quantum gates must be specified, which corresponds to a unitary defined by an
adjacency matrix. Here we consider two possibilities of mappings, although there could be more, which correspond to an exponential
reduction of the number of qubits compared to the graph vertices. The first possibility is based on using separable qubits, whereas the
second possibility requires entangled qubits. In both cases the state ||𝜓𝑑 (𝑡)⟩ is simulated on a classical simulator and IBM Q quantum
devices.

The first mapping is demonstrated in Fig. 2(b). Instead of describing a quantum particle’s position as a state of a single 𝑑-level
quantum system, we can think of the position as a state of an 𝑛 = log2 𝑑 qubits system. These two different ways of encoding a
quantum walker state are shown in Fig. 2(b) for cube graphs. Both cube graphs in Fig. 2(b) have the same adjacency matrix 𝐴hc.
The two graphs’ difference is only in the vertex labeling: decimal (left cube, from 0 to 7) and binary (right cube, from 000 to 111)
encoding choices. The binary encoding choice replaces a 𝑑-level quantum system, qudit, with multiple 2-level systems, qubits.

In addition to the quantum walkers state mapping, we also specify the mapping for unitary operations defined by the graph
edges. The binary labelling is shown in Fig. 2(b) on the right helps us to see that two vertices are connected by a bit-flip operation.
Moreover, each 𝑖-th bit-flip corresponds to a walk on the 𝑖-th axis. Therefore, a walk on a hypercube is a sequence of independent
bit-flip operations. In other words, CTQW on an arbitrary 𝑛-dimensional hypercube can be decomposed into CTQW on 𝑛 independent
line graphs. The same can be observed by decomposing the 𝐴hc matrix as in Eq. (5):

𝐴hc =
𝑛−1∑
𝑖=0

𝐼
⊗𝑖

2 ⊗𝐴line
𝑖

⊗ 𝐼
⊗𝑛−1−𝑖

2 . (5)

Moreover, as a direct consequence of the above identity, the unitary matrix that is a function of 𝐴 is equal to

𝑈 (𝐴hc) = e−𝑖Ω𝑡𝐴hc =
(
e−𝑖Ω𝑡𝐴line

)⊗𝑛

, (6)

where 𝐴line = |0⟩ ⟨1|+ |1⟩ ⟨0| represents an adjacency matrix of a two-vertex line graph.

We next implement the CTQW on 𝑛-dimensional hypercubes in qubit registers of IBM Q. Because of the unitary operations
simplified form, obtained in Eq. (6), we implement 𝑛 identical CTQW on a line. Each quantum walk on the line is simulated by a
single-qubit unitary that evolves the qubit state |𝜓 (𝑖)

2 ⟩ shown in Fig. 2(a). For the simulation, we use the 𝑈3 gate given by Eq. (7) in
3

Qiskit to evolve the CTQW during the time 𝑡 = 𝜃∕2Ω:

Heliyon 9 (2023) e13416A.K. Madhu, A.A. Melnikov, L.E. Fedichkin et al.

𝑈3(𝜃,𝜙, 𝜆) =
⎡⎢⎢⎢⎣

cos 𝜃

2 − e𝑖𝜆 sin 𝜃

2

e𝑖𝜙 sin 𝜃

2 e𝑖(𝜆+𝜙) cos 𝜃

2

⎤⎥⎥⎥⎦ . (7)

A combined CTQW circuit, which is composed of the 𝑈3 gates is depicted in Fig. 2(a). The initial position of the simulated particle
is defined by the initial quantum state ||𝜓2𝑛 (0)⟩ = |𝜓 (1)

2 (0)⟩ ⊗⋯ ⊗ |𝜓 (𝑛)
2 (0)⟩. Because of the symmetry of hypercube graphs, without

the loss of generality, the initial vertex will always be “00 … 0” and ||𝜓2𝑛 (0)⟩ = |00…0⟩. Simulating the evolution of ||𝜓2𝑛 (𝑡)⟩ with the
specified initial condition, we observe the detection probabilities 𝑝𝑘 = |⟨𝑘|𝜓2𝑛 (𝑡)⟩|2 by repeating the circuit execution on the IBM Q
quantum device.

As a result of the simulations, we obtained the particle’s probability to be in different vertices of the hypercubes in different time
steps. The results for graphs with 𝑛 = 3 and 𝑛 = 20 are given in Fig. 2(c) and Fig. 2(d), respectively. The results demonstrate that
starting from the “00...0” initial node, the quantum particle moves along the graph reaching the furthest node “11...1” with almost
unit probability at time 𝑡 = 𝜋∕2Ω. The same holds for both 𝑛 = 3 and 𝑛 = 20. Indeed, for any dimension 𝑛, the time for a perfect particle
transfer is constant 𝑡 = 𝜋∕2Ω. This is expected since we evolved the walk through separable qubits independently. In the results shown
in Fig. 2(c)-(d), classical simulated results are shown as blue circles and quantum simulated results are shown as orange triangles.
We observe that for times 𝑡 = 𝜋∕4Ω and 𝑡 = 3𝜋∕4Ω the quantum simulated probability distribution matches the classical simulated
probability distribution with an error in probability below 0.05 for all data points. In cases of 𝑡 = 𝜋∕2Ω and 𝑡 = 𝜋∕Ω, however, the
errors in quantum simulation go up to 0.15 for 𝑛 = 3, and up to 0.8 for 𝑛 = 20. In addition, the errors are counter-intuitively lower for
𝑡 = 𝜋∕Ω compared to 𝑡 = 𝜋∕2Ω, which is explained by the underlying quantum system symmetry. However, in the case of separable
qubits, the quantum simulation does not provide any more advantage than classical simulation since we haven’t used any entangled
qubits for the simulation.

3.2. Quantum walks on arbitrary graphs

Not all unitary operations are efficiently implementable on a quantum computer, hence not all graphs 𝐴 with 𝑑 vertices can be
implemented with 𝑂 (log𝑑) qubits in time 𝑂 (poly(log𝑑)). Nonetheless, as we demonstrated in the previous section, for the hypercube
graphs it is possible. By studying CTQW on hypercubes, and providing different implementations of the same process, we conclude
that some implementations are more feasible than others. To see what other graphs have a feasible and efficient implementation on
a quantum device, we propose the following.

To find out which graphs can be efficiently implemented on a quantum computer, we explore different quantum circuits that are
efficiently implementable on the IBM Q quantum computer. Each of these quantum circuits represent some specific unitary operation
𝑈 , which has a corresponding adjacency matrix 𝐴(𝑈). Because of the form of evolution 𝑈 = e−𝑖Ω𝑡𝐴 in Eq. (4), 𝐴(𝑈) = 𝑖 log(𝑈)∕Ω𝑡. The
logarithm of a unitary matrix is not uniquely defined, however [43]. First, adding a term 2𝜋𝑘𝐼 , 𝑘 ∈ with 𝐼 being the identity matrix
does not introduce a change in matrix 𝐴. Second, adding a global phase 𝑐 ∈  to a unitary 𝑈 ′ = 𝑐𝑈 does not change the particle’s
quantum walk dynamics. The freedom in phase leads to the possibility to add a term 𝜑𝐼 , 𝜑 ∈ to any adjacency matrix without
affecting the quantum walk simulation. Third, one adds a complete graph with a factor 2𝜋𝑘𝐴complete∕𝑛Ω𝑡, 𝑘 ∈, without introducing
a change in 𝑈 . This is a consequence of 𝐴complete∕𝑛 being an idempotent matrix with 𝑛 – number of qubits. This condition is only
valid if 𝐴complete∕𝑛 commutes with U. Finally, combining all three possibilities to modify 𝐴 together, we obtain

𝐴 = 𝑖

Ω𝑡
log(𝑈) +𝜑𝐼 + 2𝜋𝑘

𝑛Ω𝑡
𝐴complete, (8)

with free parameters 𝑘 ∈ , and 𝜑 ∈. In addition to the derived Eq. (8), multiplying 𝐴 by an arbitrary factor 𝑏 ∈ leads to an
effective rescaling of the transition frequency Ω′ = Ω∕𝑏, which broadens the set of available 𝐴 even more.

The derived Eq. (8) helps us to obtain a variety of adjacency matrices of potential interest given the unitary transformation. Our
implementation of the unitary transformations, in turn, is adjusted to the quantum device’s connectivity. From the quantum device’s
connectivity limitations, it is possible to simulate which 𝑈 (𝐴) are easily implementable with 𝑘-depth quantum circuits. For this, we
automated sampling of random circuits that implement perfect transport from the state “0 … 00” to the state “1 … 11” with a circuit
depth up to 5. We obtained these circuits to find feasible 𝑈 , and from it, feasible graphs 𝐴(𝑈). In the case of 4 qubits, we obtained a
graph shown in Fig. 3(b), by randomly implementing 𝑈3 and CNOT gates. The corresponding quantum circuit is given in Fig. 3(a).
Given that the initial state is “0000”, the circuit’s transformation is equivalent to unitary in Eq. (6). However, for the general initial
particle’s position, i.e., general ||𝜓16(0)⟩, the transformation is different from the hypercubes cases. This difference can be observed
from the disconnected graph shown in Fig. 3(b) compared to a fully connected graph of a 4-dimensional cube in Fig. 4(b). Quantum
and classical simulation results in Fig. 3(c) demonstrate the chiral nature of the graph. Indeed, starting from ||𝜓16(0)⟩ = |0000⟩, particle
ends in |1111⟩, however starting from ||𝜓16(0)⟩ = |1111⟩ brings the particle to the “0110” vertex. The simulations performed for the
initial state ||𝜓16(0)⟩ = |1010⟩ show that the particle is bounded to the subspace of the “1010” and “0010” vertices. Note that the
fidelities of all the quantum simulations in Fig. 3 are above 0.75.

4. Obtaining quantum circuits given graphs

In the section above, we have discussed how to obtain graphs given quantum circuits. In this section, we discuss obtaining
quantum circuits corresponding to CTQW of a particle on a graph. The adjacency matrix 𝐴 of a graph corresponds to the Hamiltonian
4

of the CTQW of a particle on that graph. Therefore, to represent a graph as a quantum circuit, we simulate the unitary state evolution

Heliyon 9 (2023) e13416A.K. Madhu, A.A. Melnikov, L.E. Fedichkin et al.

Fig. 3. (a) A 4-qubit quantum circuit consisting of 𝑈3(𝜃 = 𝜋, 𝜙 = −𝜋∕2, 𝜆 = 𝜋∕2) and CNOT gates with a circuit depth of 5. (b) A weighted graph generated from a
4-qubit quantum circuit with 𝑈3 and CNOT gates on which we evolved a CTQW starting from the node “0000” and ending up in “1111” with probability one. Weights
are not shown. (c) Quantum and classical simulation results for a quantum walk on the graph (b). Each plot shows a probability distribution of particles position on a
graph for different initial conditions: ||𝜓16(0)⟩ = |0000⟩, |1111⟩, and |1010⟩. The blue circles and orange triangles correspond to execution on the simulator and the IBM
Q quantum register, respectively. Vertex labels correspond to vertices in (b).

Fig. 4. (a)-(b) Mapping an 𝑛-dimensional hypercube graph to a line graph. Examples for 𝑛 = 3 (a) and 𝑛 = 4 (b) are shown. Weights 𝛽 are defined in Eq. (11). (c)
Quantum circuit for a CTQW implemented for 𝑡 = 𝜋∕2Ω on four entangled qubits. (d) Quantum and classical simulation results for implementing a CTQW on a
weighted line with 4 vertices. Each plot shows a probability distribution of particles position on a graph at different times: 𝑡 = 𝜋∕4Ω, 𝜋∕2Ω, 3𝜋∕4Ω, and 𝜋∕Ω. The
blue circles and orange triangles correspond to execution on the simulator and the IBM Q quantum register, respectively. Hamming distance indicates the distance at
which particle propagated starting from the initial state corresponding to an excited state of the 𝑞0 qubit.

of the Hamiltonian corresponding to the adjacency matrix of the graph. In this section, we discuss how to simulate: i) hypercube
graphs; ii) arbitrary graphs on a quantum computer using quantum circuits.

4.1. Quantum walks on hypercubes

A different mapping can be used to simulate a CTQW on a hypercube. In this mapping, one exploits the fact that there is an
equal probability of detecting a particle in vertices with the same Hamming distance. By taking all the symmetries into account, one
obtains a weighted line graph. The mapping procedure is shown in Fig. 4 for 𝑛 = 3 (a) and 𝑛 = 4 (b). To construct the Hamiltonian
5

that governs the time evolution of the quantum walk in the mapped space, we use 𝑋𝑌 coupling terms, where:

Heliyon 9 (2023) e13416A.K. Madhu, A.A. Melnikov, L.E. Fedichkin et al.

𝑋 =
⎡⎢⎢⎣
0 1

1 0

⎤⎥⎥⎦ , (9)

and

𝑌 =
⎡⎢⎢⎣
0 − 𝑖

𝑖 0

⎤⎥⎥⎦ , (10)

are the Pauli matrices as represented in Eq. (9) and Eq. (10) respectively. The nodes of the weighted line graph are implemented as
qubits and are expressed as 𝑋 and 𝑌 terms in our Hamiltonian. The weights of the edges of the graph are specified by the strength of
the couplings between qubits. In our Hamiltonian, we represent them as coefficients of the 𝑋𝑌 coupling terms 𝛽𝑖,𝑖+1 =

√
(1 + 𝑖)(𝑛− 𝑖),

where n is the dimension of the hypercube and the indices i represent qubits or nodes of the graph. The Hamiltonian that governs
the quantum walk in the mapped space can be defined for an arbitrary 𝑛:

𝐻hc→line = 1
2

𝑛−1∑
𝑖=0

𝛽𝑖,𝑖+1
(
𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1

)
. (11)

Implementing a quantum walk in this mapping has an advantage of the exponential reduction of the number of qubits, as there are
only (𝑛 + 1) qubits needed for 𝑛-dimensional hypercube CTQW implementation. This is similar to the mapping with separable qubits
considered before, which required 𝑛 qubits.

For the simulation of CTQW on a hypercube with this mapping, we have to implement the above Hamiltonian in Eq. (11) on the
IBM quantum computer. Here, we simulate a hypercube of dimension 𝑛 = 3 mapped to a weighted line graph. The corresponding
Hamiltonian for the weighted line graph can be obtained from Eq. (11) for 𝑛 = 3 as shown in Eq. (12),

𝐻hc→line =
√
3
2

(𝑋0𝑋1 + 𝑌0𝑌1) + (𝑋1𝑋2 + 𝑌1𝑌2) +
√
3
2

(𝑋2𝑋3 + 𝑌2𝑌3). (12)

The 16 × 16 adjacency matrix of the line graph corresponds to this Hamiltonian. Since the terms of the Hamiltonian do not
commute, we use Trotter decomposition to simulate the Hamiltonian. Trotter decomposition can be used to accurately simulate the
Hamiltonian’s unitary time evolution by breaking it up into a series of short time-steps as shown in Eq. (13)

exp

[
−𝑖

𝑚∑
𝑗=1

𝐻𝑗𝑡

]
=

𝑚∏
𝑗=1

exp
[
−𝑖𝐻𝑗𝑡

]
+O(𝑚2𝑡2), (13)

where 𝑚 is the number of time-steps.

Noting that Trotter decomposition is currently widely used in the framework of Quantum Approximate Optimization Algorithm
(QAOA), which uses both quantum and classical computer resources, see, e.g., [44,45]. In practice, if the number of variational
parameters is large enough, QAOA can solve the MaxCut problem with high enough accuracy.

Ideally, a larger number of time-steps in the decomposition leads to more accurate results. But in our case, we have to keep in
mind the depth of the circuit, as a larger circuit depth can lead to an accumulation of errors. In our Trotter decomposition, we keep
the number of time-steps at 𝑚 = 6 to have a smaller circuit depth without compromising the accuracy of the results. In general, as
the dimension of the hypercube increases, the circuit depth increases by a factor of two gates. The corresponding quantum circuit
obtained for the CTQW simulation is given in Fig. 4(c). The circuit consists of 𝑅𝑧 and

√
𝑋 gate. The 𝑅𝑧 is defined in Eq. (14) as,

𝑅𝑧(𝜃) =
⎡⎢⎢⎢⎣
e−𝑖

𝜃

2 0

0 e𝑖
𝜃

2

⎤⎥⎥⎥⎦ . (14)

The
√

𝑋 gate is defined in Eq. (15) as,

√
𝑋 =

⎡⎢⎢⎣
1 + 𝑖 1 − 𝑖

1 − 𝑖 1 + 𝑖

⎤⎥⎥⎦ . (15)

In this mapping, the nodes of the line are encoded using one-hot encoding. In this encoding, the states are represented by bit
strings, which consist of “1” at nodes where the particle can be found and zeros elsewhere. Therefore, the total Hilbert space of the
CTQW gets reduced to these states. The described encoding helps in error-correcting all the other states those are not valid in the
one-hot encoding, which we obtain while implementing the CTQW on IBM Q devices.

For 𝑛 = 3 hypercube, which is shown in Fig. 4(a), we can compare this evolution of the CTQW mapped to a line with the CTQW
implemented on individual qubits as shown in Fig. 2(c). We observe that the walk’s evolution on each time step is similar for both
implementations if we correct the experimental errors occurring during the implementation. The quantum and classical simulation
results are shown in Fig. 4(d). Compared to the simulation results in Fig. 2(c), the probabilities mismatch has two origins: errors
6

because of the Trotterization procedure, and error because of the larger depth of the experimental quantum circuit. In both Fig. 2

Heliyon 9 (2023) e13416A.K. Madhu, A.A. Melnikov, L.E. Fedichkin et al.

Fig. 5. (a) A ‘paw’ graph with 4 nodes labelled in order is shown (b) Quantum circuit for a CTQW implemented for 𝑡 = 𝜋∕2Ω on the ‘paw’ graph. (c) Quantum
and classical simulation results for implementing a CTQW ‘paw’ graph with 4 vertices. Each plot shows a probability distribution of particles position on a graph at
different times: 𝑡 = 𝜋∕4Ω, 𝜋∕2Ω, 3𝜋∕4Ω, and 𝜋∕Ω. The blue circles and orange triangles correspond to execution on the simulator and the IBM Q quantum register,
respectively. Vertex labels indicate the labelling of different vertices of the graph.

and Fig. 4, the transport between opposite hypercube vertices should be noticed. In the case of the implementation shown in Fig. 4,
also corresponds to transport in quantum spin networks [46].

4.2. Simulating arbitrary graphs using quantum circuits

In this section, we discuss how an arbitrary graph can be mapped to a quantum circuit. We know that the adjacency matrix of a
graph corresponds to the Hamiltonian which governs the state evolution of the quantum particle on the graph. Therefore, in order
to simulate a graph on a quantum computer, we need to find an efficient way to decompose the unitary matrix which corresponds
to the state evolution of the Hamiltonian into Pauli matrices. Hamiltonian simulation method finds an efficient decomposition of the
unitary state evolution of a Hamiltonian into a product of Pauli terms which in turn, can be simulated in a quantum computer by
using gates which are native to the architecture. We can use the Hamiltonian simulation technique to simulate a graph on a quantum
computer by mapping the graph to a quantum circuit.

For example, we simulated a “paw” graph with 4 nodes as shown in Fig. 5. Also, shown is the quantum circuit obtained from
Hamiltonian simulation using Qiskit implemented on the IBM quantum computer. The feasibility of implementing an arbitrary graph
on a NISQ device can be evaluated by estimating the complexity of the Hamiltonian simulation method used. The query complexity
of the Hamiltonian simulation directly depends on the size or complexity of the graph. We will discuss more about Hamiltonian
simulation methods and their complexity in the next section.

4.3. Hamiltonian simulation

Hamiltonian simulation methods in quantum information science address the problem of efficient simulation of quantum systems.
The goal of the algorithm is to find an approximation to a unitary matrix U such that, ||𝑈 − e−𝑖Ω𝑡𝐴|| ≤ 𝜖 where 𝜖 is the maximum
simulation error and ||.|| is the spectral norm. There are different algorithms or techniques with varying complexity used for
simulating the unitary state evolution of a Hamiltonian in a quantum computer. They can be mainly divided into divide and conquer
algorithms and quantum walk algorithms. We can use Hamiltonian simulation techniques to simulate an arbitrary graph on a
quantum computer. The complexity of the algorithm determines how efficiently we can simulate graphs on a quantum computer.
Therefore, larger complex graphs are more challenging to be simulated on quantum computers. Thus creating the need to improve the
performance of current Hamiltonian simulation algorithms more important. Some of the most prominent algorithms for Hamiltonian
simulation along with their query complexities are given in Table 1.

5. Conclusion

We demonstrate the feasibility of NISQ device for implementation of CTQW. Quantum walks are implemented utilizing classical
and quantum simulation, where quantum simulations are performed on currently available quantum computers of IBM Q. All
quantum walks are implemented with the number of qubits that scale logarithmically with the graph size.

The presented results consist of two parts. First, a mapping between circuits and graphs is shown. A method to obtain the CTQW
on a graph corresponding to a quantum circuit is discussed. The quantum circuit is simulated on the state-of-the-art IBM quantum
7

computer to obtain the graphs. Hypercube graphs and arbitrary graphs are obtained. In the second part, a method to map graphs to

Heliyon 9 (2023) e13416A.K. Madhu, A.A. Melnikov, L.E. Fedichkin et al.

Table 1

Algorithms for Hamiltonian simulation along with their
query complexity where 𝑘 is the sparcity, 𝑡 is the time
parameter and 𝜖 is the error parameter. Here QW refers
to Quantum walks and QSP refers to Quantum Signal
Processing respectively.

Algorithms Complexity

Product formulas [47,48] O(𝑑3𝑡(𝑑𝑡∕𝜖)1∕2𝑘)
Phase estimation on Quantum

Walks (QW) [49,50]

O(𝑑𝑡∕
√

𝜖)

Fractional queries [51] or
Truncated Taylor series [52]

O(𝑑2𝑡
log(𝑑2 𝑡∕𝜖)

log log(𝑑2 𝑡∕𝜖)
)

Linear combination of QW [53] O(𝑑𝑡 log(𝑑𝑡∕𝜖)
log log(𝑑𝑡∕𝜖)

)

Quantum Signal Processing [54] O(𝑑𝑡+ log(1∕𝜖))
Qubitization/ QSP [55] O(𝑑2𝑡+ log(1∕𝜖))

the circuit is studied. Hypercubes and arbitrary graphs are simulated on a quantum computer using quantum circuits. Both classical
and quantum simulation results are obtained and compared. The technique of Hamiltonian simulation is discussed and various
algorithms for Hamiltonian simulation are listed with their complexities.

With our work, we hence established an analogy between quantum circuits and graphs that allowed us to tackle computationally
challenging simulation problems. This result paves the way towards the practical realization of quantum advantage in quantum walk
simulation for algorithm development.

CRediT authorship contribution statement

Anandu Kalleri Madhu and Alexey Melnikov: Conceived and designed the experiments.

Anandu Kalleri Madhu and Alexander Alodjants: Contributed analysis tools and data.

Anandu Kalleri Madhu: Performed the experiments.

Anandu Kalleri Madhu, Alexey Melnikov, Leonid Fedichkin, Alexander Alodjants, Ray-Kuang Lee: Analyzed and interpreted the
data; Wrote the paper.

Funding statement

Leonid Fedichkin was supported by Ministry of Science and Higher Education of the Russian Federation for Valiev Institute of
Physics and Technology of RAS [Program No. FFNN-2022-0016].

Alexander Alodjants was supported by Ministry of Science and Higher Education of the Russian Federation and South Ural State
University [agreement No. 075-15-2022-1116].

Ray-Kuang Lee was supported by Ministry of Science and Technology of Taiwan [No. 109-2112-M-007-019-MY3, 109-2627-M-

008-001, 110-2123-M-007-002].

Declaration of competing interest

The authors declare no competing interests.

Data availability

Data associated with this study has been deposited at https://github .com /q -ml /quantum -walks -quantum -devices.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .heliyon .2023 .e13416.

References

[1] M. Kac, Random walk and the theory of Brownian motion, Am. Math. Mon. 54 (1947) 369.

[2] F. Bartumeus, M.G.E. da Luz, G.M. Viswanathan, J. Catalan, Animal search strategies: a quantitative random-walk analysis, Ecology 86 (2005) 3078.

[3] D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel, Nature 439 (2006) 462.

[4] E.A. Codling, M.J. Plank, S. Benhamou, Random walk models in biology, J. R. Soc. Interface 5 (2008) 813.

[5] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, New York, USA, 1995, Chap. 6.

[6] F. Wang, D.P. Landau, Efficient, multiple-range random walk algorithm to calculate the density of states, Phys. Rev. Lett. 86 (2001) 2050.

[7] T. Sottinen, Fractional Brownian motion, random walks and binary market models, Finance Stoch. 5 (2001) 343.
8

[8] K.K. Sabelfeld, N.A. Simonov, Random Walks on Boundary for Solving PDEs, Walter de Gruyter, 2013.

https://github.com/q-ml/quantum-walks-quantum-devices
https://doi.org/10.1016/j.heliyon.2023.e13416
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib3F253D20B29EAEEC1CCBF55B82C93055s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibA22B3E90A79285A4AE66DBDD930A29D9s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibD4EF85B876B73730B776D34B2075EFA7s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib4A5B8EF2B7E74EDA8952EA93480A57CCs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibFD40F4261AAD1F290C70E9A480A6CBC9s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibC423B5D7223BCF7049BDF9FC18A278CBs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib2BD08DEAACF9058E6DCD665100E3FBC6s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib1D3AA383D2F7D34085FFAA01899E3254s1

Heliyon 9 (2023) e13416A.K. Madhu, A.A. Melnikov, L.E. Fedichkin et al.

[9] C. Gkantsidis, M. Mihail, A. Saberi, Random walks in peer-to-peer networks: algorithms and evaluation, Perform. Eval. 63 (2006) 241.

[10] D.T. Gillespie, Monte Carlo simulation of random walks with residence time dependent transition probability rates, J. Comput. Phys. 28 (1978) 395.

[11] M.B. Cohen, J. Kelner, J. Peebles, R. Peng, A. Sidford, A. Vladu, Faster algorithms for computing the stationary distribution, simulating random walks, and more,
in: 57th Annual Symposium on Foundations of Comp. Sci., 2016, pp. 583–592.

[12] Y. Aharonov, L. Davidovich, N. Zagury, Quantum random walks, Phys. Rev. A 48 (1993) 1687.

[13] J. Kempe, Quantum random walks: an introductory overview, Contemp. Phys. 44 (2003) 307.

[14] N. Konno, Quantum Walks in Quantum Potential Theory, Springer, 2008, pp. 309–452.

[15] S.E. Venegas-Andraca, Quantum walks: a comprehensive review, Quantum Inf. Process. 11 (2012) 1015.

[16] E. Farhi, S. Gutmann, Quantum computation and decision trees, Phys. Rev. A 58 (1998) 915.

[17] K. Manouchehri, J. Wang, Physical Implementation of Quantum Walks, Springer, Berlin, Heidelberg, 2013.

[18] L. Fedichkin, F. Meshchaninov, Analysis and applications of quantum walks, J. Math. Sci. 252 (2020) 104.

[19] H. Krovi, T.A. Brun, Hitting time for quantum walks on the hypercube, Phys. Rev. A 73 (2006) 032341.

[20] D. Solenov, L. Fedichkin, Continuous-time quantum walks on a cycle graph, Phys. Rev. A 73 (2006) 012313.

[21] L. Fedichkin, D. Solenov, C. Tamon, Mixing and decoherence in continuous-time quantum walks on cycles, Quantum Inf. Comput. 6 (2006) 263.

[22] A.A. Melnikov, L.E. Fedichkin, Quantum walks of interacting fermions on a cycle graph, Sci. Rep. 6 (2016) 34226.

[23] Q.-P. Su, Y. Zhang, L. Yu, J.-Q. Zhou, J.-S. Jin, X.-Q. Xu, S.-J. Xiong, Q. Xu, Z. Sun, K. Chen, et al., Experimental demonstration of quantum walks with initial
superposition states, npj Quantum Inf. 5 (2019) 1.

[24] W.-X. Cui, Y. Xing, L. Qi, X. Han, S. Liu, S. Zhang, H.-F. Wang, Quantum walks in periodically kicked circuit qed lattice, Opt. Express 28 (2020) 13532.

[25] G.S. Engel, T.R. Calhoun, E.L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R.E. Blankenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum
coherence in photosynthetic systems, Nature 446 (2007) 782.

[26] M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, Environment-assisted quantum walks in photosynthetic energy transfer, J. Chem. Phys. 129 (2008)
174106.

[27] E. Harel, G.S. Engel, Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2), Proc. Natl. Acad. Sci. 109 (2012)
706.

[28] F. Flamini, N. Spagnolo, F. Sciarrino, Photonic quantum information processing: a review, Rep. Prog. Phys. 82 (2018) 016001.

[29] A. Bazhenov, M. Nikitina, A.P. Alodjants, High temperature superradiant phase transition in quantum structures with a complex network interface, Opt. Lett. 47
(2022) 3119.

[30] A.A. Melnikov, L.E. Fedichkin, A. Alodjants, Predicting quantum advantage by quantum walk with convolutional neural networks, New J. Phys. 21 (2019)
125002.

[31] A.A. Melnikov, L.E. Fedichkin, R.-K. Lee, A. Alodjants, Machine learning transfer efficiencies for noisy quantum walks, Adv. Quantum Technol. 3 (2020) 1900115.

[32] A. Kryukov, R. Abramov, L.E. Fedichkin, A. Alodjants, A.A. Melnikov, Supervised graph classification for chiral quantum walks, Phys. Rev. A 105 (2022) 022208.

[33] X. Qiang, T. Loke, A. Montanaro, K. Aungskunsiri, X. Zhou, J.L. O’Brien, J.B. Wang, J.C. Matthews, Efficient quantum walk on a quantum processor, Nat.
Commun. 7 (2016) 1.

[34] F. Acasiete, F.P. Agostini, J.K. Moqadam, R. Portugal, Implementation of quantum walks on IBM quantum computers, Quantum Inf. Process. 19 (2020) 1.

[35] N.C. Harris, G.R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F.N. Wong, T. Baehr-Jones, M. Hochberg, et al., Quantum transport
simulations in a programmable nanophotonic processor, Nat. Photonics 11 (2017) 447.

[36] C. Maier, T. Brydges, P. Jurcevic, N. Trautmann, C. Hempel, B.P. Lanyon, P. Hauke, R. Blatt, C.F. Roos, Environment-assisted quantum transport in a 10-qubit
network, Phys. Rev. Lett. 122 (2019) 050501.

[37] C.-C. Chen, S.-Y. Shiau, M.-F. Wu, Y.-R. Wu, Hybrid classical-quantum linear solver using noisy intermediate-scale quantum machines, Sci. Rep. 9 (2019) 1.

[38] A.M. Childs, Universal computation by quantum walk, Phys. Rev. Lett. 102 (2009) 180501.

[39] A.M. Childs, D. Gosset, Z. Webb, Universal computation by multiparticle quantum walk, Science 339 (2013) 791.

[40] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2 (2018) 79.

[41] Z. Zimboras, M. Faccin, Z. Kadar, J.D. Whitfield, B.P. Lanyon, J. Biamonte, Quantum transport enhancement by time-reversal symmetry breaking, Sci. Rep. 3
(2013) 2361.

[42] D. Lu, J.D. Biamonte, J. Li, H. Li, T.H. Johnson, V. Bergholm, M. Faccin, Z. Zimborás, R. Laflamme, J. Baugh, S. Lloyd, Chiral quantum walks, Phys. Rev. A 93
(2016) 042302.

[43] T.A. Loring, Computing a logarithm of a unitary matrix with general spectrum, Numer. Linear Algebra Appl. 21 (2014) 744.

[44] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm, arXiv :1411 .4028, 2014.

[45] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, M. Lukin, Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term
devices, Phys. Rev. X 10 (2020) 021067.

[46] M. Christandl, N. Datta, A. Ekert, A.J. Landahl, Perfect state transfer in quantum spin networks, Phys. Rev. Lett. 92 (2004) 187902.

[47] D.W. Berry, G. Ahokas, R. Cleve, B.C. Sanders, E-ficient quantum algorithms for simulating sparse Hamiltonians, Commun. Math. Phys. 270 (2007) 359.

[48] A.M. Childs, R. Kothari, Simulating sparse Hamiltonians with star decompositions, in: Conf. on Quantum Comput., Commun., and Cryptogr., Springer, 2010,
pp. 94–103.

[49] A.M. Childs, On the relationship between continuous- and discrete-time quantum walk, Commun. Math. Phys. 294 (2010) 581.

[50] D.W. Berry, A.M. Childs, Black-box Hamiltonian simulation and unitary implementation, preprint, arXiv :0910 .4157, 2009.

[51] D.W. Berry, A.M. Childs, R. Cleve, R. Kothari, R.D. Somma, Exponential Improvement in Precision for Simulating Sparse Hamiltonians, Forum of Mathematics,
Sigma, vol. 5, Cambridge University Press, 2017.

[52] D.W. Berry, A.M. Childs, R. Cleve, R. Kothari, R.D. Somma, Simulating Hamiltonian dynamics with a truncated Taylor series, Phys. Rev. Lett. 114 (2015) 090502.

[53] D.W. Berry, A.M. Childs, R. Kothari, Hamiltonian simulation with nearly optimal dependence on all parameters, in: Proc. - Annu. IEEE Symp. Found. Comput.
Sci. FOCS, IEEE, 2015, pp. 792–809.

[54] G.H. Low, I.L. Chuang, Optimal Hamiltonian simulation by quantum signal processing, Phys. Rev. Lett. 118 (2017) 010501.
9

[55] G.H. Low, I.L. Chuang, Hamiltonian simulation by qubitization, Quantum 3 (2019) 163.

http://refhub.elsevier.com/S2405-8440(23)00623-0/bibECE5B7E757C7D164486D3CBC8387EA55s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibBDDFD62F478E199AD0520AEE91C8CF1Cs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib51280C5AEC5C7CE00F1A582BBF9C3EDEs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib51280C5AEC5C7CE00F1A582BBF9C3EDEs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib5CBC6FA5421F3A46394A077993DEFE97s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibA5BC36400CEDFF8FA69318394E1C97E9s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib87CFA246636425995B0EF58BE813A767s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib4700BD8B1482B80CCF8BCD17D0A92B02s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib333BBD634E0B47B80D76EC4F64D2D928s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib4F09C9321159BDBC9902694738F4985Bs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib64A5F751D4AA886919FF90C6378336EDs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib9E189DD5B1EB66AAD682F0D119F23BE5s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib283A918CD3747D5EECBD05E18E093E4Fs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibA7D92E593950DAFE9098F287921FD0DFs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib38F908371032C28920C710DA3FD76675s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibB13E8236A8A1E966816A3461665BF4FFs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibB13E8236A8A1E966816A3461665BF4FFs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibB0FD62B988B588729DD7F37413C4DCD9s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibD1103E6CE8AAE6DF79B4FA997E3F1C47s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibD1103E6CE8AAE6DF79B4FA997E3F1C47s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib6D99B1442BC159C9F03FCE7B870D708Ds1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib6D99B1442BC159C9F03FCE7B870D708Ds1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib5CC79490AB6C6BC7CB1F09B2EDBF6BABs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib5CC79490AB6C6BC7CB1F09B2EDBF6BABs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib9A7E8601FCCE8B26295B5B1AEA9978BBs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibE818712CF8029335B8DF52BE9668F61Es1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibE818712CF8029335B8DF52BE9668F61Es1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib27C0991601FA37690952F00063A6F4A8s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib27C0991601FA37690952F00063A6F4A8s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibA8C702C411D3073E061801620306303Cs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib4B54351A08A384EEDEC2B75878C86441s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib6BB5A4E7C9BB1AFC8F3A1BE45D92DE15s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib6BB5A4E7C9BB1AFC8F3A1BE45D92DE15s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib04DAB655B224095E23AD235C5DF4ED28s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibF9FDB97B75CD6BD666AF71D83C8ABBD0s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibF9FDB97B75CD6BD666AF71D83C8ABBD0s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib7C8233842C53FB3339282445B2CB4EC4s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib7C8233842C53FB3339282445B2CB4EC4s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibB0F2ACBB94CABF35CEFE7B0C61F39238s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib1783F70D4654EC81FF03188392A61F42s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib7B5941472EE9BEADF93EB348A23D771Es1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib479AD4865A902D490280E9C4EAAE3CB6s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibC2AC84068474793C1625C0BC567BFB81s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibC2AC84068474793C1625C0BC567BFB81s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib17F0CC37C8755B5F5531B99F74507B4Bs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib17F0CC37C8755B5F5531B99F74507B4Bs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibAC6C9D096AD171F8ABA78B22FAA2585Ds1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib96D05EA075FF02BFEFB61347EE18B3B3s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibC68C2CBEB4308F2911FBD72739E38D2Fs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibC68C2CBEB4308F2911FBD72739E38D2Fs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibD033C5F72FE279E3DAB21FAFB4FCE56Cs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibDBC58389188A979464039F9D39C5EA82s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib872D9F7AAE089431D9082E2A08EC9F57s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib872D9F7AAE089431D9082E2A08EC9F57s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib4B120966F435E284D910191C3D80FBFBs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bib49868C961E4CD22D8E17AD308420125As1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibC15526AA743400B628371C25A6BB8DBBs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibC15526AA743400B628371C25A6BB8DBBs1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibE476297302D1F4AF5F79BBC27D5F9288s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibD72734F30EF0C1E914452B90AABA8054s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibD72734F30EF0C1E914452B90AABA8054s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibE71B97B4036E57355754F1305400F0C2s1
http://refhub.elsevier.com/S2405-8440(23)00623-0/bibC8D7E830B6A3404373A885A2DAEDA79Ds1

	Quantum walk processes in quantum devices
	1 Introduction
	2 Simulating quantum walks on graphs
	3 Obtaining graphs given quantum circuits
	3.1 Quantum walks on hypercubes
	3.2 Quantum walks on arbitrary graphs

	4 Obtaining quantum circuits given graphs
	4.1 Quantum walks on hypercubes
	4.2 Simulating arbitrary graphs using quantum circuits
	4.3 Hamiltonian simulation

	5 Conclusion
	CRediT authorship contribution statement
	Funding statement
	Declaration of competing interest
	Data availability
	Appendix A Supplementary material
	References

