
Heliyon 9 (2023) e13416

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Quantum walk processes in quantum devices

Anandu Kalleri Madhu a, Alexey A. Melnikov b,∗, Leonid E. Fedichkin b,c, 
Alexander P. Alodjants d,e, Ray-Kuang Lee a,f ,g,h

a Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
b Valiev Institute of Physics and Technology, Russian Academy of Sciences, 117218 Moscow, Russia
c Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
d ITMO University, 197101 St. Petersburg, Russia
e Quantum Light Engineering Laboratory, Institute of Natural and Exact Sciences, South Ural State University (SUSU), 454080 Chelyabinsk, Russia
f Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
g Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
h Center for Quantum Technology, Hsinchu 30013, Taiwan
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Simulation and programming of current quantum computers as Noisy Intermediate-Scale 
Quantum (NISQ) devices represent a hot topic at the border of current physical and information 
sciences. The quantum walk process represents a basic subroutine in many quantum algorithms 
and plays an important role in studying physical phenomena. Simulating quantum walk processes 
is computationally challenging for classical processors. With an increasing improvement in qubits 
fidelity and qubits number in a single register, there is a potential to improve quantum walks 
simulations substantially. However, efficient ways to simulate quantum walks in qubit registers 
still have to be explored. Here, we explore the relationship between quantum walk on graphs 
and quantum circuits. Firstly, we discuss ways to obtain graphs provided quantum circuit. We 
then explore techniques to represent quantum walk on a graph as a quantum circuit. Specifically, 
we study hypercube graphs and arbitrary graphs. Our approach to studying the relationship 
between graphs and quantum circuits paves way for the efficient implementation of quantum 
walks algorithms on quantum computers.

1. Introduction

Random walks on graphs naturally appear in different physical processes [1–4] and computational subroutines [5–9]. In order 
to study these physical processes and implement algorithms, there is a need for efficient ways to simulate random walks [10,11]. 
Quantum walks, quantum analogues of (classical) random walks [12–18], naturally appear in physical processes when studied 
at a quantum level. Quantum interference, which is at the heart of quantum walks [19–24], potentially enables to accelerate 
energy transfer in Fenna-Matthews-Olson complexes [25–27] and quantum photonic circuits [28,29]. Understanding quantum 
walk advantage in particle transfer requires efficient simulation techniques and graph classification algorithms [30–32]. Simulating 
quantum walks is computationally a #P-hard problem, which makes classical simulators inefficient for the task [33,34]. In this regard, 
efficiently simulating quantum walks in quantum devices, especially in quantum computers available now represents an important 
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Fig. 1. A schematic relation between graphs and quantum circuits.

task for understanding quantum transport advantages [35,36], and for quantum algorithms implementation [37] as quantum walks 
represent a universal model of quantum computation [38,39].

However, existing quantum computers are NISQ devices, and possess limited capabilities due to a small number of qubits [40]. 
In this sense, the simulation of quantum walks on large-scale graphs with such devices represents an important and non-trivial task.

In this work, we study the practical possibilities to run Continuous-Time Quantum Walk (CTQW) processes in NISQ devices. The 
paper is mainly structured into two main parts as shown in Fig. 1. In the first section, we discuss about how to obtain graphs given 
a quantum circuit. We talk about two different kinds of graphs: i) hypercubes and ii) arbitrary graphs. In the second section, we 
discuss how to obtain a quantum circuit given a graph. We talk about how to simulate the CTQW on a graph using a quantum 
circuit. In particular, we discuss simulating hypercube graphs and arbitrary graphs. As an example of simulating an arbitrary graph, 
we simulate a 4 node “paw” graph on a quantum computer. We also discuss the technique of Hamiltonian simulation for simulating 
arbitrary unitary state evolution in a quantum computer.

2. Simulating quantum walks on graphs

Single particle CTQW on graphs is studied in this paper. A quantum particle can be located in one of the 𝑑 positions on a graph 
with 𝑑 vertices, or in a superposition of these positions. A quantum state of this particle can be thought of as a state of a 𝑑-level 
system as shown in Eq. (1):

||𝜓𝑑 (𝑡)⟩ = 𝑑−1∑
𝑖=0

𝛼𝑖(𝑡) |𝑖⟩ (1)

where |𝛼𝑖(𝑡)|2 being the detection probability in vertex 𝑖 at a time 𝑡 and verifying in Eq. (2):

𝑑−1∑
𝑖=0

|𝛼𝑖(𝑡)|2 = 1 (2)

The evolution of this quantum state is governed by the Hamiltonian with nearest-neighbour hopping terms given by Eq. (3):

𝐴 = ℏΩ
𝑑−1∑
𝑖,𝑗=0

𝐴𝑖𝑗 |𝑖⟩ ⟨𝑗| = ℏΩ𝐴, (3)

where 𝐴 is an adjacency matrix of a graph on which the quantum walk is performed, 𝐴𝑖𝑗 are the elements of this matrix and Ω is the 
hopping frequency.

The unitary quantum state evolution is hence a solution to the Schrödinger equation, which is given by

||𝜓𝑑 (𝑡)⟩ = e−𝑖Ω𝑡𝐴 ||𝜓𝑑 (0)⟩ . (4)

Note that 𝐴 is not necessarily symmetric – the weights 𝐴𝑖𝑗 are complex parameters and can, in general, lead to a chiral quantum 
walk on a weighted graph [41,42].

Exponentiation of the Ω𝑡𝐴 matrix is computationally challenging for large 𝑑. In the case of using a quantum computer, however, 
it is known that some unitary matrices can be efficiently implemented in time logarithmic in 𝑑. However, as the form of a Hermitian 
matrix 𝐴 is arbitrary, we cannot efficiently implement any quantum walk on a quantum computer. In the general case, the matrix 
𝐴 is described by (𝑑2 − 𝑑)∕2 independent complex-valued variables, which means in the worst case, one would need to apply 𝑂(𝑑2)
operations making exponential speedup impossible. In this paper, we explore the set of matrices 𝐴, for which efficient implementation 
is possible, and demonstrate this implementation on the IBM Q quantum device.

3. Obtaining graphs given quantum circuits

In this section, we discuss how to obtain graphs given a quantum circuit. A quantum circuit corresponds to a unitary state 
evolution of a Hamiltonian. This Hamiltonian represents the CTQW of a particle on a graph. The adjacency matrix of this graph is 
obtained from the underlying unitary represented by the quantum circuit. Therefore, every quantum circuit corresponds to a graph 
on which CTQW are implemented. In this section, we briefly discuss obtaining two families of graphs: i) hypercubes; ii) arbitrary 
2

graphs.
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Fig. 2. (a) Quantum circuit for a CTQW implemented on 𝑛 separable qubits. (b) Two different ways to encode a state of a walking particle on a hypercube graph: 
one qudit (left), and 𝑛 separable qubits (right). Quantum and classical simulation of CTQW on(c) a 3-dimensional hypercube and (d) a 20-dimensional hypercube. 
Each plot shows a probability distribution of particle position on a graph at different times, corresponding to quantum circuit parameters 𝜙 = −𝜋∕2, 𝜆 = 𝜋∕2 and 
𝜃 = 2Ω𝑡 = 𝜋∕2, 𝜋, 3𝜋∕2, 2𝜋. The blue circles and orange triangles correspond to execution on the classical simulator and the quantum IBM Q device, respectively. 
Hamming distance indicates the distance at which the particle propagated starting from the initial state labeled as “00 … 0”.

3.1. Quantum walks on hypercubes

Hypercube graphs represent a starting point towards studying graphs with a large number of vertices connected non-trivially. To 
simulate quantum walks on hypercubes, one needs to establish a mapping. Firstly, an encoding of the particle’s position in the space 
of qubits needs to be defined. Secondly, a sequence of quantum gates must be specified, which corresponds to a unitary defined by an 
adjacency matrix. Here we consider two possibilities of mappings, although there could be more, which correspond to an exponential 
reduction of the number of qubits compared to the graph vertices. The first possibility is based on using separable qubits, whereas the 
second possibility requires entangled qubits. In both cases the state ||𝜓𝑑 (𝑡)⟩ is simulated on a classical simulator and IBM Q quantum 
devices.

The first mapping is demonstrated in Fig. 2(b). Instead of describing a quantum particle’s position as a state of a single 𝑑-level 
quantum system, we can think of the position as a state of an 𝑛 = log2 𝑑 qubits system. These two different ways of encoding a 
quantum walker state are shown in Fig. 2(b) for cube graphs. Both cube graphs in Fig. 2(b) have the same adjacency matrix 𝐴hc. 
The two graphs’ difference is only in the vertex labeling: decimal (left cube, from 0 to 7) and binary (right cube, from 000 to 111) 
encoding choices. The binary encoding choice replaces a 𝑑-level quantum system, qudit, with multiple 2-level systems, qubits.

In addition to the quantum walkers state mapping, we also specify the mapping for unitary operations defined by the graph 
edges. The binary labelling is shown in Fig. 2(b) on the right helps us to see that two vertices are connected by a bit-flip operation. 
Moreover, each 𝑖-th bit-flip corresponds to a walk on the 𝑖-th axis. Therefore, a walk on a hypercube is a sequence of independent 
bit-flip operations. In other words, CTQW on an arbitrary 𝑛-dimensional hypercube can be decomposed into CTQW on 𝑛 independent 
line graphs. The same can be observed by decomposing the 𝐴hc matrix as in Eq. (5):

𝐴hc =
𝑛−1∑
𝑖=0

𝐼
⊗𝑖

2 ⊗𝐴line
𝑖

⊗ 𝐼
⊗𝑛−1−𝑖

2 . (5)

Moreover, as a direct consequence of the above identity, the unitary matrix that is a function of 𝐴 is equal to

𝑈 (𝐴hc) = e−𝑖Ω𝑡𝐴hc =
(
e−𝑖Ω𝑡𝐴line

)⊗𝑛

, (6)

where 𝐴line = |0⟩ ⟨1|+ |1⟩ ⟨0| represents an adjacency matrix of a two-vertex line graph.

We next implement the CTQW on 𝑛-dimensional hypercubes in qubit registers of IBM Q. Because of the unitary operations 
simplified form, obtained in Eq. (6), we implement 𝑛 identical CTQW on a line. Each quantum walk on the line is simulated by a 
single-qubit unitary that evolves the qubit state |𝜓 (𝑖)

2 ⟩ shown in Fig. 2(a). For the simulation, we use the 𝑈3 gate given by Eq. (7) in 
3

Qiskit to evolve the CTQW during the time 𝑡 = 𝜃∕2Ω:
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𝑈3(𝜃,𝜙, 𝜆) =
⎡⎢⎢⎢⎣

cos 𝜃

2 − e𝑖𝜆 sin 𝜃

2

e𝑖𝜙 sin 𝜃

2 e𝑖(𝜆+𝜙) cos 𝜃

2

⎤⎥⎥⎥⎦ . (7)

A combined CTQW circuit, which is composed of the 𝑈3 gates is depicted in Fig. 2(a). The initial position of the simulated particle 
is defined by the initial quantum state ||𝜓2𝑛 (0)⟩ = |𝜓 (1)

2 (0)⟩ ⊗⋯ ⊗ |𝜓 (𝑛)
2 (0)⟩. Because of the symmetry of hypercube graphs, without 

the loss of generality, the initial vertex will always be “00 … 0” and ||𝜓2𝑛 (0)⟩ = |00…0⟩. Simulating the evolution of ||𝜓2𝑛 (𝑡)⟩ with the 
specified initial condition, we observe the detection probabilities 𝑝𝑘 = |⟨𝑘|𝜓2𝑛 (𝑡)⟩|2 by repeating the circuit execution on the IBM Q 
quantum device.

As a result of the simulations, we obtained the particle’s probability to be in different vertices of the hypercubes in different time 
steps. The results for graphs with 𝑛 = 3 and 𝑛 = 20 are given in Fig. 2(c) and Fig. 2(d), respectively. The results demonstrate that 
starting from the “00...0” initial node, the quantum particle moves along the graph reaching the furthest node “11...1” with almost 
unit probability at time 𝑡 = 𝜋∕2Ω. The same holds for both 𝑛 = 3 and 𝑛 = 20. Indeed, for any dimension 𝑛, the time for a perfect particle 
transfer is constant 𝑡 = 𝜋∕2Ω. This is expected since we evolved the walk through separable qubits independently. In the results shown 
in Fig. 2(c)-(d), classical simulated results are shown as blue circles and quantum simulated results are shown as orange triangles. 
We observe that for times 𝑡 = 𝜋∕4Ω and 𝑡 = 3𝜋∕4Ω the quantum simulated probability distribution matches the classical simulated 
probability distribution with an error in probability below 0.05 for all data points. In cases of 𝑡 = 𝜋∕2Ω and 𝑡 = 𝜋∕Ω, however, the 
errors in quantum simulation go up to 0.15 for 𝑛 = 3, and up to 0.8 for 𝑛 = 20. In addition, the errors are counter-intuitively lower for 
𝑡 = 𝜋∕Ω compared to 𝑡 = 𝜋∕2Ω, which is explained by the underlying quantum system symmetry. However, in the case of separable 
qubits, the quantum simulation does not provide any more advantage than classical simulation since we haven’t used any entangled 
qubits for the simulation.

3.2. Quantum walks on arbitrary graphs

Not all unitary operations are efficiently implementable on a quantum computer, hence not all graphs 𝐴 with 𝑑 vertices can be 
implemented with 𝑂 (log𝑑) qubits in time 𝑂 (poly(log𝑑)). Nonetheless, as we demonstrated in the previous section, for the hypercube 
graphs it is possible. By studying CTQW on hypercubes, and providing different implementations of the same process, we conclude 
that some implementations are more feasible than others. To see what other graphs have a feasible and efficient implementation on 
a quantum device, we propose the following.

To find out which graphs can be efficiently implemented on a quantum computer, we explore different quantum circuits that are 
efficiently implementable on the IBM Q quantum computer. Each of these quantum circuits represent some specific unitary operation 
𝑈 , which has a corresponding adjacency matrix 𝐴(𝑈 ). Because of the form of evolution 𝑈 = e−𝑖Ω𝑡𝐴 in Eq. (4), 𝐴(𝑈 ) = 𝑖 log(𝑈 )∕Ω𝑡. The 
logarithm of a unitary matrix is not uniquely defined, however [43]. First, adding a term 2𝜋𝑘𝐼 , 𝑘 ∈ with 𝐼 being the identity matrix 
does not introduce a change in matrix 𝐴. Second, adding a global phase 𝑐 ∈  to a unitary 𝑈 ′ = 𝑐𝑈 does not change the particle’s 
quantum walk dynamics. The freedom in phase leads to the possibility to add a term 𝜑𝐼 , 𝜑 ∈ to any adjacency matrix without 
affecting the quantum walk simulation. Third, one adds a complete graph with a factor 2𝜋𝑘𝐴complete∕𝑛Ω𝑡, 𝑘 ∈, without introducing 
a change in 𝑈 . This is a consequence of 𝐴complete∕𝑛 being an idempotent matrix with 𝑛 – number of qubits. This condition is only 
valid if 𝐴complete∕𝑛 commutes with U. Finally, combining all three possibilities to modify 𝐴 together, we obtain

𝐴 = 𝑖

Ω𝑡
log(𝑈 ) +𝜑𝐼 + 2𝜋𝑘

𝑛Ω𝑡
𝐴complete, (8)

with free parameters 𝑘 ∈ , and 𝜑 ∈. In addition to the derived Eq. (8), multiplying 𝐴 by an arbitrary factor 𝑏 ∈ leads to an 
effective rescaling of the transition frequency Ω′ = Ω∕𝑏, which broadens the set of available 𝐴 even more.

The derived Eq. (8) helps us to obtain a variety of adjacency matrices of potential interest given the unitary transformation. Our 
implementation of the unitary transformations, in turn, is adjusted to the quantum device’s connectivity. From the quantum device’s 
connectivity limitations, it is possible to simulate which 𝑈 (𝐴) are easily implementable with 𝑘-depth quantum circuits. For this, we 
automated sampling of random circuits that implement perfect transport from the state “0 … 00” to the state “1 … 11” with a circuit 
depth up to 5. We obtained these circuits to find feasible 𝑈 , and from it, feasible graphs 𝐴(𝑈 ). In the case of 4 qubits, we obtained a 
graph shown in Fig. 3(b), by randomly implementing 𝑈3 and CNOT gates. The corresponding quantum circuit is given in Fig. 3(a). 
Given that the initial state is “0000”, the circuit’s transformation is equivalent to unitary in Eq. (6). However, for the general initial 
particle’s position, i.e., general ||𝜓16(0)⟩, the transformation is different from the hypercubes cases. This difference can be observed 
from the disconnected graph shown in Fig. 3(b) compared to a fully connected graph of a 4-dimensional cube in Fig. 4(b). Quantum 
and classical simulation results in Fig. 3(c) demonstrate the chiral nature of the graph. Indeed, starting from ||𝜓16(0)⟩ = |0000⟩, particle 
ends in |1111⟩, however starting from ||𝜓16(0)⟩ = |1111⟩ brings the particle to the “0110” vertex. The simulations performed for the 
initial state ||𝜓16(0)⟩ = |1010⟩ show that the particle is bounded to the subspace of the “1010” and “0010” vertices. Note that the 
fidelities of all the quantum simulations in Fig. 3 are above 0.75.

4. Obtaining quantum circuits given graphs

In the section above, we have discussed how to obtain graphs given quantum circuits. In this section, we discuss obtaining 
quantum circuits corresponding to CTQW of a particle on a graph. The adjacency matrix 𝐴 of a graph corresponds to the Hamiltonian 
4

of the CTQW of a particle on that graph. Therefore, to represent a graph as a quantum circuit, we simulate the unitary state evolution 
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Fig. 3. (a) A 4-qubit quantum circuit consisting of 𝑈3(𝜃 = 𝜋, 𝜙 = −𝜋∕2, 𝜆 = 𝜋∕2) and CNOT gates with a circuit depth of 5. (b) A weighted graph generated from a 
4-qubit quantum circuit with 𝑈3 and CNOT gates on which we evolved a CTQW starting from the node “0000” and ending up in “1111” with probability one. Weights 
are not shown. (c) Quantum and classical simulation results for a quantum walk on the graph (b). Each plot shows a probability distribution of particles position on a 
graph for different initial conditions: ||𝜓16(0)⟩ = |0000⟩, |1111⟩, and |1010⟩. The blue circles and orange triangles correspond to execution on the simulator and the IBM 
Q quantum register, respectively. Vertex labels correspond to vertices in (b).

Fig. 4. (a)-(b) Mapping an 𝑛-dimensional hypercube graph to a line graph. Examples for 𝑛 = 3 (a) and 𝑛 = 4 (b) are shown. Weights 𝛽 are defined in Eq. (11). (c) 
Quantum circuit for a CTQW implemented for 𝑡 = 𝜋∕2Ω on four entangled qubits. (d) Quantum and classical simulation results for implementing a CTQW on a 
weighted line with 4 vertices. Each plot shows a probability distribution of particles position on a graph at different times: 𝑡 = 𝜋∕4Ω, 𝜋∕2Ω, 3𝜋∕4Ω, and 𝜋∕Ω. The 
blue circles and orange triangles correspond to execution on the simulator and the IBM Q quantum register, respectively. Hamming distance indicates the distance at 
which particle propagated starting from the initial state corresponding to an excited state of the 𝑞0 qubit.

of the Hamiltonian corresponding to the adjacency matrix of the graph. In this section, we discuss how to simulate: i) hypercube 
graphs; ii) arbitrary graphs on a quantum computer using quantum circuits.

4.1. Quantum walks on hypercubes

A different mapping can be used to simulate a CTQW on a hypercube. In this mapping, one exploits the fact that there is an 
equal probability of detecting a particle in vertices with the same Hamming distance. By taking all the symmetries into account, one 
obtains a weighted line graph. The mapping procedure is shown in Fig. 4 for 𝑛 = 3 (a) and 𝑛 = 4 (b). To construct the Hamiltonian 
5

that governs the time evolution of the quantum walk in the mapped space, we use 𝑋𝑌 coupling terms, where:
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𝑋 =
⎡⎢⎢⎣
0 1

1 0

⎤⎥⎥⎦ , (9)

and

𝑌 =
⎡⎢⎢⎣
0 − 𝑖

𝑖 0

⎤⎥⎥⎦ , (10)

are the Pauli matrices as represented in Eq. (9) and Eq. (10) respectively. The nodes of the weighted line graph are implemented as 
qubits and are expressed as 𝑋 and 𝑌 terms in our Hamiltonian. The weights of the edges of the graph are specified by the strength of 
the couplings between qubits. In our Hamiltonian, we represent them as coefficients of the 𝑋𝑌 coupling terms 𝛽𝑖,𝑖+1 =

√
(1 + 𝑖)(𝑛− 𝑖), 

where n is the dimension of the hypercube and the indices i represent qubits or nodes of the graph. The Hamiltonian that governs 
the quantum walk in the mapped space can be defined for an arbitrary 𝑛:

𝐻hc→line = 1
2

𝑛−1∑
𝑖=0

𝛽𝑖,𝑖+1
(
𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1

)
. (11)

Implementing a quantum walk in this mapping has an advantage of the exponential reduction of the number of qubits, as there are 
only (𝑛 + 1) qubits needed for 𝑛-dimensional hypercube CTQW implementation. This is similar to the mapping with separable qubits 
considered before, which required 𝑛 qubits.

For the simulation of CTQW on a hypercube with this mapping, we have to implement the above Hamiltonian in Eq. (11) on the 
IBM quantum computer. Here, we simulate a hypercube of dimension 𝑛 = 3 mapped to a weighted line graph. The corresponding 
Hamiltonian for the weighted line graph can be obtained from Eq. (11) for 𝑛 = 3 as shown in Eq. (12),

𝐻hc→line =
√
3
2

(𝑋0𝑋1 + 𝑌0𝑌1) + (𝑋1𝑋2 + 𝑌1𝑌2) +
√
3
2

(𝑋2𝑋3 + 𝑌2𝑌3). (12)

The 16 × 16 adjacency matrix of the line graph corresponds to this Hamiltonian. Since the terms of the Hamiltonian do not 
commute, we use Trotter decomposition to simulate the Hamiltonian. Trotter decomposition can be used to accurately simulate the 
Hamiltonian’s unitary time evolution by breaking it up into a series of short time-steps as shown in Eq. (13)

exp

[
−𝑖

𝑚∑
𝑗=1

𝐻𝑗𝑡

]
=

𝑚∏
𝑗=1

exp
[
−𝑖𝐻𝑗𝑡

]
+O(𝑚2𝑡2), (13)

where 𝑚 is the number of time-steps.

Noting that Trotter decomposition is currently widely used in the framework of Quantum Approximate Optimization Algorithm 
(QAOA), which uses both quantum and classical computer resources, see, e.g., [44,45]. In practice, if the number of variational 
parameters is large enough, QAOA can solve the MaxCut problem with high enough accuracy.

Ideally, a larger number of time-steps in the decomposition leads to more accurate results. But in our case, we have to keep in 
mind the depth of the circuit, as a larger circuit depth can lead to an accumulation of errors. In our Trotter decomposition, we keep 
the number of time-steps at 𝑚 = 6 to have a smaller circuit depth without compromising the accuracy of the results. In general, as 
the dimension of the hypercube increases, the circuit depth increases by a factor of two gates. The corresponding quantum circuit 
obtained for the CTQW simulation is given in Fig. 4(c). The circuit consists of 𝑅𝑧 and 

√
𝑋 gate. The 𝑅𝑧 is defined in Eq. (14) as,

𝑅𝑧(𝜃) =
⎡⎢⎢⎢⎣
e−𝑖

𝜃

2 0

0 e𝑖
𝜃

2

⎤⎥⎥⎥⎦ . (14)

The 
√

𝑋 gate is defined in Eq. (15) as,

√
𝑋 =

⎡⎢⎢⎣
1 + 𝑖 1 − 𝑖

1 − 𝑖 1 + 𝑖

⎤⎥⎥⎦ . (15)

In this mapping, the nodes of the line are encoded using one-hot encoding. In this encoding, the states are represented by bit 
strings, which consist of “1” at nodes where the particle can be found and zeros elsewhere. Therefore, the total Hilbert space of the 
CTQW gets reduced to these states. The described encoding helps in error-correcting all the other states those are not valid in the 
one-hot encoding, which we obtain while implementing the CTQW on IBM Q devices.

For 𝑛 = 3 hypercube, which is shown in Fig. 4(a), we can compare this evolution of the CTQW mapped to a line with the CTQW 
implemented on individual qubits as shown in Fig. 2(c). We observe that the walk’s evolution on each time step is similar for both 
implementations if we correct the experimental errors occurring during the implementation. The quantum and classical simulation 
results are shown in Fig. 4(d). Compared to the simulation results in Fig. 2(c), the probabilities mismatch has two origins: errors 
6

because of the Trotterization procedure, and error because of the larger depth of the experimental quantum circuit. In both Fig. 2
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Fig. 5. (a) A ‘paw’ graph with 4 nodes labelled in order is shown (b) Quantum circuit for a CTQW implemented for 𝑡 = 𝜋∕2Ω on the ‘paw’ graph. (c) Quantum 
and classical simulation results for implementing a CTQW ‘paw’ graph with 4 vertices. Each plot shows a probability distribution of particles position on a graph at 
different times: 𝑡 = 𝜋∕4Ω, 𝜋∕2Ω, 3𝜋∕4Ω, and 𝜋∕Ω. The blue circles and orange triangles correspond to execution on the simulator and the IBM Q quantum register, 
respectively. Vertex labels indicate the labelling of different vertices of the graph.

and Fig. 4, the transport between opposite hypercube vertices should be noticed. In the case of the implementation shown in Fig. 4, 
also corresponds to transport in quantum spin networks [46].

4.2. Simulating arbitrary graphs using quantum circuits

In this section, we discuss how an arbitrary graph can be mapped to a quantum circuit. We know that the adjacency matrix of a 
graph corresponds to the Hamiltonian which governs the state evolution of the quantum particle on the graph. Therefore, in order 
to simulate a graph on a quantum computer, we need to find an efficient way to decompose the unitary matrix which corresponds 
to the state evolution of the Hamiltonian into Pauli matrices. Hamiltonian simulation method finds an efficient decomposition of the 
unitary state evolution of a Hamiltonian into a product of Pauli terms which in turn, can be simulated in a quantum computer by 
using gates which are native to the architecture. We can use the Hamiltonian simulation technique to simulate a graph on a quantum 
computer by mapping the graph to a quantum circuit.

For example, we simulated a “paw” graph with 4 nodes as shown in Fig. 5. Also, shown is the quantum circuit obtained from 
Hamiltonian simulation using Qiskit implemented on the IBM quantum computer. The feasibility of implementing an arbitrary graph 
on a NISQ device can be evaluated by estimating the complexity of the Hamiltonian simulation method used. The query complexity 
of the Hamiltonian simulation directly depends on the size or complexity of the graph. We will discuss more about Hamiltonian 
simulation methods and their complexity in the next section.

4.3. Hamiltonian simulation

Hamiltonian simulation methods in quantum information science address the problem of efficient simulation of quantum systems. 
The goal of the algorithm is to find an approximation to a unitary matrix U such that, ||𝑈 − e−𝑖Ω𝑡𝐴|| ≤ 𝜖 where 𝜖 is the maximum 
simulation error and ||.|| is the spectral norm. There are different algorithms or techniques with varying complexity used for 
simulating the unitary state evolution of a Hamiltonian in a quantum computer. They can be mainly divided into divide and conquer 
algorithms and quantum walk algorithms. We can use Hamiltonian simulation techniques to simulate an arbitrary graph on a 
quantum computer. The complexity of the algorithm determines how efficiently we can simulate graphs on a quantum computer. 
Therefore, larger complex graphs are more challenging to be simulated on quantum computers. Thus creating the need to improve the 
performance of current Hamiltonian simulation algorithms more important. Some of the most prominent algorithms for Hamiltonian 
simulation along with their query complexities are given in Table 1.

5. Conclusion

We demonstrate the feasibility of NISQ device for implementation of CTQW. Quantum walks are implemented utilizing classical 
and quantum simulation, where quantum simulations are performed on currently available quantum computers of IBM Q. All 
quantum walks are implemented with the number of qubits that scale logarithmically with the graph size.

The presented results consist of two parts. First, a mapping between circuits and graphs is shown. A method to obtain the CTQW 
on a graph corresponding to a quantum circuit is discussed. The quantum circuit is simulated on the state-of-the-art IBM quantum 
7

computer to obtain the graphs. Hypercube graphs and arbitrary graphs are obtained. In the second part, a method to map graphs to 
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Table 1

Algorithms for Hamiltonian simulation along with their 
query complexity where 𝑘 is the sparcity, 𝑡 is the time 
parameter and 𝜖 is the error parameter. Here QW refers 
to Quantum walks and QSP refers to Quantum Signal 
Processing respectively.

Algorithms Complexity

Product formulas [47,48] O(𝑑3𝑡(𝑑𝑡∕𝜖)1∕2𝑘)
Phase estimation on Quantum 

Walks (QW) [49,50]

O(𝑑𝑡∕
√

𝜖)

Fractional queries [51] or 
Truncated Taylor series [52]

O(𝑑2𝑡
log(𝑑2 𝑡∕𝜖)

log log(𝑑2 𝑡∕𝜖)
)

Linear combination of QW [53] O(𝑑𝑡 log(𝑑𝑡∕𝜖)
log log(𝑑𝑡∕𝜖)

)

Quantum Signal Processing [54] O(𝑑𝑡+ log(1∕𝜖))
Qubitization/ QSP [55] O(𝑑2𝑡+ log(1∕𝜖))

the circuit is studied. Hypercubes and arbitrary graphs are simulated on a quantum computer using quantum circuits. Both classical 
and quantum simulation results are obtained and compared. The technique of Hamiltonian simulation is discussed and various 
algorithms for Hamiltonian simulation are listed with their complexities.

With our work, we hence established an analogy between quantum circuits and graphs that allowed us to tackle computationally 
challenging simulation problems. This result paves the way towards the practical realization of quantum advantage in quantum walk 
simulation for algorithm development.
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