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Abstract
Dynamics of vortex pairs with the same and opposite circulations are studied theoretically in
nonlocal nonlinear media with different intervortex separations. We demonstrate that the
nonlocal nonlinear response not only leads to a dramatic suppression of the elliptical
instabilities but also helps in the formation of quasi-stable rotating and breathing bound states
for vortex–vortex and vortex–antivortex (vortex dipole) pairs, respectively.
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1. Introduction

During the past decade, nonlocal solitons have been a hot
subject because the nonlocality has a profound impact on
the stabilization of soliton formations [1]. Nonlocality is an
inherent property in many different fields of physics. Nonlocal
nonlinearity can be found in various systems, such as lead
glass with thermal conduction [2, 3], atomic vapors with
diffusion of charge carriers [4] and photorefractive materials
with the drift of photoexcited charges [5]. Nonlocality can
also be represented as a long-range interaction of constituent
molecules or particles. This happens, for example, in nematic
liquid crystals with a reorientational nonlinearity [6, 7] or
in Bose–Einstein condensates (BECs) with different types of
long-range interactions [8–10].

In optics, many works have shown that nonlocality
can drastically affect the propagation of spatially optical
solitons. Nonlocality can support stable dipole [11, 12]
and multi-pole solitons [13, 14]. In optical lattices with
a nonlocal nonlinearity, some unique properties of the
propagation of solitons, such as self-bending [15], mobility
[16] and gap solitons [17–19], have been investigated
extensively. The nonlocality can provide a long-range force
between solitons [3], leading to the formation of bound
states for both out-of-phase bright [20, 21] and dark
solitons [22–24]. Experimental and theoretical studies have
shown that the nonlocality plays an important role for
incoherent solitons [25–29]. The nonlocality can suppress the

modulation instability [30, 31] and transverse instability [32],
and prevent the catastrophic collapse of high-dimensional
optical beams [33]. Nonlocal nonlinearity also sustains vector
coupled solitons, including vector dipole soliton pairs [34,
35], multi-pole vector solitons [36, 37], two-color vector
solitons [38–40], bright and dark solitons [41], vector
vortex [42] and necklace solitons [43].

It is known that a vortex is a universal signature
of phase singularity, which has been studied in different
areas of both linear [44] and nonlinear systems [45]
from classical fluids to ultracold quantum gases. In
optics, propagation and manipulation of vortices have been
investigated extensively in various nonlinear media for their
possible applications in optical communication and quantum
information processing [46]. In local media, the light-induced
refractive index change is a local function of the light
intensity. Because of azimuthal instability, the vortex solitons
will split and break up [47], which can only be stable in
media with the introduction of competing nonlinearities [48].
However, in nonlocal media, the nonlinear response of the
medium in a particular location depends on the light intensity
in a certain neighborhood of this location [1]. Due to the
long-range interactions, the nonlocality can surely support
such stable vortex structures with different angular momenta,
such as azimuthons [49–51] and vortex solitons [2, 52–54].
The stabilization and dynamics of vortex solitons are solely
determined by the nonlocal response function [55–59].

Although a single vortex carries orbital angular momen-
tum, vortex pairs, vortex–vortex or vortex–antivortex (vortex
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dipole), undergo different instabilities beyond a coherent
superposition. A pair of vortices with the same circulations is
energetically unfavorable when considered as a higher-order
vortex. Only vortex pairs with opposite circulations can
be stable, which forms a bound state [60]. Instead, vortex
dipoles, a pair of vortices with equal and opposite circulations,
are a basic topological structure to carry linear momentum.
Recently, vortex dipoles have drawn considerable attention
in several different physical systems, including optics, BECs
and exciton–polariton condensates [61]. In optics, the dipole
soliton vortex can be considered as coherent states of dipole
solitons carrying a nonzero topological charge [62]. The
experimental observation of a fractional vortex dipole has
been demonstrated in 2009 [63]. In very recent years, the
vortex dipoles are also demonstrated in BECs [64, 65], with
anisotropic dipolar–dipolar nonlocal interactions [66].

It is also known that a nonzero intervortex separation
in a vortex pair would induce a symmetry breaking in the
translational direction, i.e. the elliptical instability [67, 68]
which can scale the strain imposed on each vortex core.
As a vortex pair is formed with a nonzero separation, it
was revealed in the fluid dynamics that the streamlines in
the core of each vortex have an elliptical shape for the
involved Kelvin modes, for which the related instabilities
are coined as elliptical instability [67]. To provide a deeper
understanding of superfluid phenomena, in this paper, we
demonstrate that the nonlocal nonlinear response leads to a
dramatic suppression of the elliptical instabilities both for
pairs of vortices with the same and opposite circulations.
Moreover, with a close analogy to point vortices in a fluid,
we reveals that vortex–vortex and vortex–antivortex pairs
in strong nonlocal nonlinear media evolve into quasi-stable
rotating and breathing bound states, respectively.

2. Basic model and equation

In nonlocal nonlinear media the propagation of a paraxial
optical beam with the scalar field envelope ψ is governed by
the nonlinear Schrödinger equation

i
∂ψ

∂z
+
∂2ψ

∂x2 +
∂2ψ

∂y2 + ψ

∫
R(r− r′)I(r′, z) d2r′ = 0, (1)

where I(r, z) = |ψ(x, z)|2 is the beam intensity and R(r) is
the nonlocal response function with the degree of nonlocality
denoted by σ [30]. Generally, the nonlocal response is
determined by the physics of the underlying nonlinear
process [2, 4, 6, 8].

We first seek analytically the approximate solution of the
vortex pairs by using the variational approach through the
Lagrangian density of equation (1), i.e.

L =
i
2

(
ψ∗
∂ψ

∂z
− ψ

∂ψ∗

∂z

)
−

(∣∣∣∣∂ψ∂x

∣∣∣∣2 + ∣∣∣∣∂ψ∂y

∣∣∣∣2
)

+
1
2 |ψ |

2
∫

R(r− r′)I(r′, z) d2r′. (2)

The most important issue of the variational approach
is to choose an appropriate ansatz of the optical vortex

dipole solitons. Compared with an optical vortex, the
similar phenomena of vortex dipoles, tripoles, quadrupoles
and clusters have also been investigated previously in
Bose–Einstein condensation [69, 70]. Thus, in this work, we
take the following class of variational ansatz for the optical
vortex dipole solitons, which was used to study the vortex and
antivortex pairs in a trapped two-dimensional BEC [71]:

ψ = A(x− a+ iy)(x+ a± iy)Exp
(
−

x2
+ y2

2w2 + ikz

)
,(3)

where A, w and k are the amplitude, beam width and
wavenumber of the vortex, respectively. A vortex–vortex
(vortex–antivortex) pair is denoted by the +(−) sign,
corresponding to a pair of vortices with equal and the same
(opposite) circulation, and a is related to the separation of two
vortex cores. For convenience, we also consider here the case
of a Gaussian nonlocal response [54]:

R(r) = (πσ 2)−1 exp(−r2/σ 2). (4)

Although the Gaussian response nonlocality is not a realistic
known physical system, it can describe the behaviors of
solitons in nonlocal media physically and simply. It has
also been shown that, as long as the response function is
monotonically decaying, the physical properties of soliton
solutions do not depend strongly on its shape [72].

The analytical results are summarized in figure 1, where
we plot the powers for vortex–vortex and vortex–antivortex
pairs versus the beam width w and wavenumber k,
respectively. From figure 1(a), one can see that, when two
vortices are overlapping exactly, a = 0, the formation power
decreases as the beam width increases, which is similar to the
case of a scalar vortex in local and nonlocal media [35]. But
with a nonzero intervortex separation, as shown for a = 0.6,
the constructive interference between two vortices makes the
power–beam width relation for vortex–vortex pair reach a
minimum value around w = 0.5, which corresponds to the
minimum of the Hamiltonian of the system [73]. To avoid a
huge formation power of a zero intervortex separation for a =
0, we fixed the beam width to w = 1, in order to demonstrate
a clear comparison of dynamics for different intervortex
separations As shown in figure 1(b), both the powers for
vortex–vortex and vortex–antivortex increase when k and σ
increase.

3. Vortex pairs with same circulations

With the variational results, we employ the found ansatz
solution as an input for numerical simulations of equation (1)
directly by using the split step beam propagation method.
In all of our simulations, we set the initial beam width as
w = 1. In figures 2–4, we demonstrate the dynamics and
stability properties of vortex–vortex pairs in nonlocal media
with various degrees of the nonlocality, i.e. σ = 0.1, 1.5 and
10, respectively. It is known that a weak nonlocality cannot
suppress the azimuthal instability of vortex solitons [35,
52]. In this case, as shown in figure 2, vortex–vortex pairs
experience a symmetry-breaking instability, split into several
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Figure 1. The power of the vortex dipoles versus the beam width (a) and wavenumber (b) with the parameters σ = 1 for (a) and a = 0.6,
w = 1 for (b). P1 and P2 are the power of the vortex–vortex and vortex–antivortex pairs, respectively.

Figure 2. Symmetric breaking of in-phase vortex dipole solitons in
weakly nonlocal media with σ = 0.1. The parameters are a = 0 (a),
a = 0.2 (b) and a = 0.8 (c). |E|2 represents the intensity of vortex
dipoles.

filaments, and fly away to each other. However, the breaking
dynamics is very different and depends crucially on the
intervortex separation parameter a. When a = 0, the intensity
of the vortex–vortex pair is uniform along the azimuthal
direction, which represents a circularly symmetric vortex with
double charges, resulting in four fundamental solitons with
equal intensities (figure 2(a)). For a nonzero separation, as
shown in figure 2(b) with a = 0.2, the uniformity of intensity
along azimuthal directions is broken: the vortex pair splits into
two groups of fundamental solitons with different intensities,
When the intervortex separation is comparable to the beam
width, for example, a = 0.8 in figure 2(c), the intensity of
the vortex–vortex pair has two peaks in the opposite position,
and only splits into two fundamental dipole-like solitons as a
manifestation of the elliptic instability of vortex cores [67].

Dynamics of the vortex–vortex pair changes with a
moderate degree of nonlocality, which induces a mutual
self-trapping to stabilize vortex pairs, as shown in figure 3 for
σ = 1.5. When the intervortex separation a is zero and small,
it is obvious that the nonlocality can effectively suppress the
azimuthal instability of vortex–vortex pairs. For instance, the
vortex–vortex pair with a = 0 is stable at the propagation
distance z = 20 (figure 3(a)) whereas it has already broken
at a shorter propagation distance z = 2 in weakly nonlocal
media (figure 2(a)). An interesting dynamics is found with a

Figure 3. Dynamics of in-phase vortex dipole solitons in
moderately nonlocal media with σ = 1.5. The parameters are
a = 0 (a), a = 0.2 (b) and a = 0.8 (c).

moderate nonlocality, that a vortex–vortex pair with zero or a
small separation only breaks up into three filaments, instead of
four filaments in weakly nonlocal media. This result indicates
that the nonlocality can suppress the azimuthal instability,
resulting in the decrease of the numbers of filament beams.
But for a larger value of separation, a = 0.8 in figure 3(c),
we can see that a moderate nonlocality still cannot suppress
the splitting and expansion of the vortex–vortex pair because
now the induced symmetry breaking comes predominantly
from elliptical instability instead of azimuthal instability. This
vortex–vortex pair will ensure stability only in the strongly
nonlocal regime, as shown in figure 4(c).

We show in figure 4 the quasi-stable propagation of
vortex–vortex pairs in strongly nonlocal media with σ = 10.
A stronger nonlocality can average out all spatial variations
of the intensity distribution and induce an effective attractive
potential to suppress the azimuthal instability [43], resulting
in the formation of a stationary vortex–vortex pair. When
a = 0 or small (a = 0.2), the vortex–vortex pair evolves into
a rotating one and ‘breathes’ along the propagation distance,
with a slight modulation of the intensity along the vortex
rings, as shown in figures 4(a) and (b). Instead, with a larger
separation as shown in figure 4(c) for a = 0.8, a vortex–vortex
pair carries two angular momenta resulting in a nonuniform
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Figure 4. Quasi-stable in-phase vortex dipole solitons in strongly
nonlocal media with σ = 10. The parameters are a = 0 (a),
a = 0.2 (b) and a = 0.8 (c).

intensity distribution. Then a quasi-stable bound state for
the vortex–vortex pair with a dipolar intensity distribution
can survive, which possesses a counterclockwise rotation
along the propagation distance. It should be emphasized that
previous work has demonstrated the similar phenomena of
rotation also happened to multi-vortex solitons in nonlocal
media [59].

4. Vortex pairs with opposite circulations: vortex
dipoles

By reversing the sign in equation (3), the nonlinear
dynamics for vortex–antivortex pairs, vortex dipoles, are
totally different. In figure 5, we demonstrate the comparison
of dynamics for vortex–antivortex pairs in weakly (figures
5(a) and (c) with σ = 0.1) and strongly nonlocal media
(figures 5(b) and (d) with σ = 10), respectively. Unlike the
counterpart of vortex–vortex pairs, with a zero separation a =
0, a vortex–antivortex pair does not break up into filaments
but decays into a quasi-stable bright soliton (figure 5(a)).
According to equation (3) the total field distribution for a
vortex–antivortex pair represents a beam without carrying
any angular momentum. A similar scenario happens for
vortex–antivortex pairs with a stronger degree of nonlocality
(figure 5(b)). Thus a vortex–antivortex pair will not split by
the azimuthal instability but only decay into a quasi-stable
bright soliton.

In contrast, the cancellation of angular momentum for
a vortex–antivortex pair with a larger separation turns its
propagation into two filaments in a weakly nonlocal medium
(figure 5(c)), as a vortex–vortex pair shown in (figure 2(c)),
but moving towards the −y direction. We also numerically
confirmed that the moving direction is always perpendicular
to the connection direction of the two vortex core when two
vortices with contrary angular momentum were placed along
an arbitrary direction (not shown). The motion of such a
vortex–antivortex pair comes from the nonvanishing effective
linear momentum, i.e. for the separation set in the x direction
as shown in equation (3). As for a positive or negative y

Figure 5. Dynamics of out-of-phase vortex dipoles in weakly
(σ = 0.1 for (a) and (c)) and strongly nonlocal media (σ = 10 for
(b) and (d)). The parameters are a = 0 (a) and (b), and a = 0.8 (c)
and (d).

direction, there should be no preference, but in numerical
simulations, such a symmetry-breaking phenomenon comes
from our numerical method used. In the strongly nonlocal
limit, instead of forming a rotating bound state shown in
figure 4(c), a quasi-stable breathing bound state is revealed
for vortex–antivortex pairs as shown in figure 5(d) with
a = 0.8. The nonlocality of the nonlinear medium response
supports quasi-periodic transformations between different
symmetries of self-trapped optical beams [74]. By considering
the nonlinear system approximately into a linear one in the
strongly nonlocal limit, such a breathing bound state, with a
periodically changing but asymmetric profile, can be viewed
as superpositions of Laguerre–Gaussian beams.

Before the conclusion, we would like to address the
comparison of our current work to previous studies on the
dynamics of vortex solitons in nonlocal media. In [58], the
authors studied vortices in strong nonlocal nonlinear media
(thermal optical nonlinearity) which are subject to the preset
boundary. Buccoliero et al considered a general vortex in
the form of generalized Gaussian beams in nonlocal media
and showed the spiraling of a particular array of vortices
under propagation [59]. In contrast, we emphasize that, in this
paper, our current work aims at the dynamics of vortex–vortex
and vortex–antivortex pairs, which differs considerably from
these earlier studies. On the one hand, the link for this
system to elliptical instability of vortex–antivortex pairs is
first revealed here and, on the other hand, this work also
reveals the formation of moving (in the transverse direction)
the quasi-stable bright soliton from the vortex–antivortex
pair under the balance between linear momentum and strong
nonlocality.
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5. Conclusion

In summary, we demonstrate a variety of dynamics both
for vortex–vortex and vortex–antivortex pairs in nonlocal
nonlinear media. In addition to the suppression of azimuthal
instability, we show that the nonlocal nonlinear response
also suppress elliptical instability and forms quasi-stable
rotating or breathing states for vortex pairs depending on their
circulations.
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