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Abstract
We analyze the existence, stability and mobility of gap solitons in a periodic photonic structure
with nonlocal nonlinearity. Within the Bragg region of bandgaps, gap solitons exhibit better
stability and higher mobility due to the combinations of nonlocality effect and the oscillation
nature of Bloch waves. Using linear stability analysis and calculating the Peierls–Nabarro
potentials, we demonstrate that gap solitons can revive a nontrivial breather-like collision even
in the periodic systems with the help of nonlocal nonlinearity. Such interesting behaviors of gap
solitons in nonlocal nonlinear photonic crystals are believed to be useful in optical switching
devices.
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1. Introduction

Solitary waves are self-guided wavepackets as they propagate
in nonlinear media, remaining localized and preserving their
own shape. However, they are dramatically altered when they
collide with one another. Strictly speaking, only the special
case of Kerr nonlinearity is integrable by the inverse scattering
transform method. The soliton belongs to a special family
of solitary waves that are unaffected by collisions. They are
particle-like wavepackets supported by nonlinear action and
their collision behavior strongly depends upon the relative
phase between the interacting solitons [1]. With such an
asymptotically linear superposition of nonlinear interactions,
a new window of soliton-based photonics can be employed
in different optical switching devices and communication
systems [2].

During the last decade, photonic crystals, artificial
periodic structures with modulation in the refractive index,
provide an efficient control of wave transmission and
localization, making it possible to tailor dispersion, diffraction
and emission of electromagnetic waves [3]. A combination
of Kerr nonlinear material and photonic crystals, nonlinear
photonic crystals have revealed a wealth of nonlinear
optical phenomena and, in particular, self-trapped nonlinear
localized modes in the form of so-called gap solitons [4–6].

Gap solitons are unique solutions which can be formed
both in focusing or defocusing media, depending on the
dispersion/diffraction characteristics caused by the photonic
lattices [7]. Current technology in reconfigurable optical
lattices, such as photorefractive crystals [8] and nematic liquid
crystals [9], also paves a new way to control solitary waves by
varying the lattice depth and period.

With both benefits from photonic crystals and solitons,
gap solitons are believed to be an important key footstone in
soliton-driven photonics. For Kerr-type nonlinear photonic
crystals, the bifurcation and stability of gap solitons in the
internal reflection (IR) and Bragg gap (BG) regimes are studied
with local nonlinear response [10]. However, when the gap
soliton exceeds a certain threshold power level, it suffers
from a limited mobility in the transverse directions due to
the fact that lattice potentials draw great concerns for various
switching and routing operations [11–13]. Recently it has
been predicted that with nonlocality solitons can move across
the lattice very easily in the internal reflection region [14].
Such a nonlocal effect comes to play an important role
as the characteristic response function of the medium is
comparable to the transverse content of the wavepacket [15].
Experimental observations of nonlocal responses have also
been demonstrated in various systems, such as photorefractive
crystals [16], nematic liquid crystals [17], thermo-optical
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materials [18] and Bose–Einstein condensates of 52Cr atoms
with long range dipole–dipole interactions [19]. The study
of nonlocal nonlinearity brings new features in solitons [20],
such as modification of modulation instability [21], azimuthal
instability [22] and transverse instability [23]. Suppression
of collapse in multidimensional solitons [24], change of the
soliton interaction [25], formation of soliton bound states [26]
and unique families of dark–bright soliton pairs [27] are also
recently predicted.

For a nonlocal nonlinear medium, the nonlocality is
known to improve the stability of solitons due to the diffusion
mechanism of nonlinearity. Nevertheless, to the best of our
knowledge, the existence, stabilities, mobilities and collisions
of gap solitons in Bragg regions have not been reported. We
herein extend the concept of gap solitons in nonlocal nonlinear
photonic crystals [14] from internal reflection to Bragg gap
regimes. The propagation and stability of gap solitons with
an imprinted transverse index modulation under the influence
of a nonlocal effect are studied. With the oscillation nature of
wavepackets in the Bragg regions, we show that gap solitons
are better stabilized and mobilized even with a small degree of
nonlocality.

This work is organized as follows, first we show that in
the bandgap region a nonlinear Bloch wave can support bright
soliton solutions. Families of even and odd modes of bright gap
solitons imprinted onto the Bloch wave in local and nonlocal
nonlinearities are found numerically. Then the modulational
instability of these nonlocal gap soliton families are analyzed
by standard linear stability analysis, and the Peierls–Nabarro
(PN) potentials that inhibit the mobility of the gap solitons are
also calculated in terms of nonlocality. Finally, we address the
transverse mobility and soliton interactions under the influence
of the nonlocal effect with the presence of periodic potentials.
Based on the dramatic reduction of the PN potential barrier
for gap solitons in Bragg regions, we demonstrate a nontrivial
breather-like collision between gap solitons, which should be
useful for optical switching devices based on soliton collisions.

2. Nonlocal solitons in Bragg gaps

We consider a wavepacket propagating along the z axis
in the nonlocal nonlinear photonic crystals with a Kerr-
type nonlinearity and an exponential-type nonlocal response,
which can be modeled by the modified nonlinear Schrödinger
equation:
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where � is the envelope function of the wavepacket, x is the
transverse coordinate and n(x, z) is the refractive index profile
induced by the exponential-type kernel function responding
to the intensity soliton intensity [28]. V (x) is the periodic
potential provided externally in the transverse direction. The
coefficient d stands for the degree of nonlocality which governs
the diffusion strength of the refractive index.

2.1. Linear band diagram

The periodicity of potential V (x) in equation (1) suggests
that the stationary states can be expanded by Bloch waves
�(x, z) = f (x)eikx+ibz , where f (x + T ) = f (x) is a
periodic function with period T . If the medium is linear,
n(x, z) = 0, we can drop the nonlinear index response and
rewrite equation (1) in terms of f (x):

(
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+ ik
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)
f = b f, (5)

where k is the transverse wavevector of the wavepacket
and b is the longitudinal wavevector. The linear wave
spectrum consists of bands of eigenvalues bn,k in which k(b)

is a real wavenumber of the amplitude-bounded oscillatory
Bloch waves. The bands are separated by gaps where the
wavefunctions are not stationary with Im(b) �= 0. In the
absence of nonlinearity, the solution at the band edge is exactly
a periodic stationary Bloch wave; in contrast, in the presence of
Kerr nonlinearity, bright gap solitons arise from the forbidden
gaps that are characterized by a band diagram without any
nonlinearities. Figure 1(a) shows the linear bandgap diagram
on the plane (b, V0) that is obtained by solving the linear
eigenvalue problem in equation (5). Bloch wave patterns at
the band edge of the first, second, third and fourth band are
plotted in figure 1(b) for a comparison. In the numerical
calculations, we employ V (x) = −3 cos(4x) as an example
and the corresponding dispersion relations are depicted in
figure 2 where the value of the longitudinal wavevector b for
each band edge is addressed. Based on our definitions, a semi-
infinite total internal region exists for b > 0 while finite Bragg
gap regions exist for b < 0, as indicated in figure 2.

2.2. Bright gap soliton in nonlocal medium

By applying the Bloch solution near the band edge of the
linear eigenvalue problem as an initial trial solution, we find
different families of bright gap solitons �(x, z) = u(x)eibz

numerically with the conventional relaxation technique and the
boundary conditions u(±∞) ≈ 0. Families of nonlinear gap
soliton solutions are found, as shown in figure 3(a). Here the
bifurcation curves for gap solitons of odd mode and even mode
in the internal reflection and the first Bragg gap regions through
the relations of b and soliton power U as defined in equation (4)
are shown by dashed and solid lines, respectively. The two
distinct types of solitons, on-site (odd mode) and off-site (even
mode), are defined by their relative position of the center
of the wave functions with respect to the external periodic
potential [14, 29]. In other words, those that are centered on the
minimum and maximum potential of the lattice are classified as
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Figure 1. (a) The bandgap spectrum of a Bloch wave at band edge in
the linear region for different wavevector b and potential depth V0.
The shaded area shows allowed bands for longitudinal wave vector b.
(b) Solid lines correspond to wavefunctions of the Bloch state at the
band edges, marked by A, B, C and D; while dashed lines indicate
periodic potentials, V (x) = −V0 cos(2πx/T ).

Linear Band Diagram for V(x) =  – 3Cos(4x)
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Figure 2. The linear bandgap diagram for the longitudinal and
transverse wavevectors, b–k, with the periodic function
V (x) = −3 cos(4x) used. Different gap regions are marked as
internal reflection and Bragg gap regions.

on-site and off-site accordingly. Solutions of these gap solitons
for on-site and off-site modes in the first Bragg gap region for
different strengths of nonlocality d = 0, 0.5 and 2 are plotted
in figures 3(b) and (c), corresponding to the dashed and solid
curves in figure 3(a). However, we adopt a negative potential in
the calculations herein, then the solutions of on-site and off-site
modes differ from those given in [14, 29].

In comparison to the local nonlinear medium, d = 0
in figure 3(a), the nonlocality effect increases the formation
power for gap solitons as expected. As a result, the gap soliton
solutions, both even and odd modes, have a broader width
of profile and a smaller level of amplitude. Compared to the
solitons in the first Bragg gap region, gap soliton solutions in
the internal reflection region have a smooth envelope function
and no oscillation tails [14]. These Bragg gap soliton solutions

d=0.5d=0 d=2

d=2d=0.5d=0

(c)

(a)

(b) odd mode (on-site)

even mode (off -site)

Figure 3. (a) Families of even modes (solid) and odd modes (dashed)
of gap solitons for different nonlocality in the internal reflection and
the first Bragg gap regions. Field profiles of odd modes (on-site) (b)
and even modes (off-site) (c) in the first Bragg gap region for
different strength of nonlocalities, d = 0, 0.5 and 2 are shown with a
fixed wavenumber vector b = −2. The dashed, solid and dotted lines
are the field u(x), nonlinear index modulation n(x) and periodical
potential V (x), respectively.

are not only localized wavepackets, but also have similar
oscillatory tails as linear Bloch modes in the bands. In
particular, the oscillatory tails are significant near the edge of
the linear band. Additionally, the nonlinear refractive index
distribution n(x) in the internal reflection region has a smooth
symmetric bell-like shape without pronounced local maxima
on top of it.

When physical realization is concerned, the nonlocal
parameter d varies over a wide range of values. For
example, in a lead glass which is a nonlinear thermal–optical
material [18], the nonlocal refractive response is proportional
to the temperature distribution induced by absorption of optical
power. Therefore, the nonlinear refractive index distribution
can be described by a heat transfer equation that equivalently
provides an ‘infinite range of nonlocality’ [18]. In separate
experiments of nonlocal dark soliton interactions [30, 31], the
nonlocal response is modeled by a modified Bessel function
of the second kind, which has a characteristic width of 22 μm
while the corresponding soliton width is 105 μm. As suggested
by [30], for a given wavelength of solitary wave λ, normalizing
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Figure 4. Modulation instability of gap soliton with different nonlocalities, d . The growth rates of the small perturbations Im(δ) in the
internal reflection (IR) and the first Bragg gap (BG) regions are shown in (a) and (b), respectively.

the length with respect to the wavevector k = 2π
λ

of the
optical field yields the degree of nonlocality 197.4 and soliton
width 942.5. Although the nonlocal coefficient is very large,
it is comparable to the soliton width, which we discussed
intensively in this paper. Compared to simulations herein,
the width of gap solitons is roughly 3 (for on-site modes)
and 4 (for off-site modes) when the characteristic widths
of the response function range from 0.5 to 2. The ratio
of soliton width and characteristic width of the response
function in the experiment by Fischer et al [31] matches our
simulation parameters in a satisfactory manner. Therefore the
experimental conditions are in good agreement with the current
model and parameters used under a fair comparison. Moreover,
in a Bose–Einstein condensate, such as 52Cr atoms [19, 32], the
manipulation of the strength of the long range interaction can
be achieved within a very wide range from zero to infinity by an
external magnetic field through Feshbach resonances [33]. The
experimental evidence and realization provide great support for
the current model and the parameters discussed herein.

In the following, we would show that the oscillation nature
of a Bloch wave makes solitons in the Bragg gap regions
exhibit better stability and higher mobility.

2.3. Stability of gap solitons

The stability of gap soliton solutions is calculated through
linear stability analysis, with the perturbed gap soliton
solutions

u = u0(x)eibz + ε[p(x)eiδz + q(x)e−iδ∗z]eibz, (6)

n = n0 + �n, (7)

where ε � 1, u0(x) is the unperturbed solution and Im{δ}
indicates the growth rate of the perturbations. We linearize
equations (6) and (7) around the stationary solution and obtain,
to the first order in ε, the linear eigenvalue problem for the
perturbation modes:

(
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We solve the eigenvalue problem in equation (8) for unstable
eigenfunctions with imaginary or complex propagation
constant δ by a conventional linear matrix solver. It turns out
that the off-site (even mode) soliton family is modulationally
stable while the on-site (odd mode) soliton family is not [10].
Figures 4(a) and (b) illustrate that the nonlocal effect
significantly reduces the growth rate of the unstable spectral
mode for on-site solitons in the internal reflection [14] as
well as the first Bragg gap regions. Furthermore, on-site
gap solitons in the first Bragg gap region experience stronger
suppression of instability than the case in the internal reflection
region.

As seen in figure 4 clearly, with a small strength of
nonlocality the modulation instability of gap solitons in the
Bragg gap region is impressively suppressed. A simple reason
is that the nonlocal effect can smooth over the oscillation tails
of refractive index n due to the diffusion mechanism. In
other words, the smoothness of refractive index n indicates
that the effective potential Veff = V (x) − n(x) becomes
more broadened. Therefore, as the strength of the long range
interaction increases, soliton solutions become more stable due
to the broadening effect of the effective potential, especially
in the Bragg gap region. Because gap soliton solutions in the
Bragg gap regions possess oscillation tails and their profiles
extend more apparently in space, in such a way the nonlocal
effect becomes more apparent to smooth out the effective
potential and to stabilize solitons.

2.4. Mobility and collision of gap solitons

In this section we study the mobility of these gap soliton
solutions by calculating their Peierls–Nabarro (PN) potential
barrier which is introduced as the height of an effective
periodic potential generated by the lattice discreteness. The
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Figure 5. (a) PN potential height δH versus different nonlocality d with a comparison of gap solitons in the internal reflection (IR) and the
first Bragg gap (BG) regions. (b) Gap solitons’ propagation trajectories in the Bragg gap (BG) region with fixed d = 0.5 and U = 9 but
different initial kinetic energies (α = 0.03, 0.07 and 0.15).

PN potential barrier defines the minimum energy required to
move the center of mass of a localized wavepacket by one
lattice site [34]. Extending this definition to the continuous
system, we can define the PN potential barrier as the difference
of the system Hamiltonian between odd modes (on-site) and
even modes (off-site), i.e.

δH = Hodd − Heven, (9)

where

H =
∫ ∞

−∞

[∣∣∣∣∂u

∂x

∣∣∣∣
2

− 1

2
|u|2 n

]
dx . (10)

Consequently, the PN potential states the smallest amount
of energy that a gap soliton needs to gain in order to start
moving along the lattice. In terms of PN potential, the
threshold power for forming localized gap solitons [13] in
nonlocal nonlinear media is considered as the maximum power
with vanishing PN barrier. For example, figure 5(a) illustrates
that changing the nonlocality from d = 0.1 and 1.0 leads to
the increase of threshold power to form a localized gap soliton
from U = 4 up to U = 9. It is clearly seen that in the
first Bragg gap region the PN potential barrier is drastically
reduced in comparison to the local nonlinearity d = 0, as well
as the internal reflection region, as shown in figure 5(a). With
the oscillation tails similar to the linear Bloch waves, nonlocal
solitons in the Bragg gap regions are more stable and more
movable than those in the internal reflection band [14]. The
higher the barrier δH , the larger the incident kinetic energy
required to overcome the barrier. The reduction of the PN
barrier is confirmed by numerical simulations of equation (1)
for gap solitons with fixed power but different initial kinetic
energies. The initial conditions for figure 5(b) are set with
u(x, z = 0) = u0eiαx , where u0 is the stationary solution in the
Bragg gap region and α stands for the transverse momentum
at incidence. When the soliton crosses the lattice it radiates
and loses energy. Eventually these gap solitons are captured
by one of the lattice channels. However, while the nonlocality
effect comes into play, the total effective potential is reduced
by the long range interaction. These nonlocal gap solitons are

Figure 6. Collision of two solitons in photonic crystals with local (a)
and nonlocal (b) nonlinearities. The degree of nonlocality is set as
d = 0.5.

more free to move in the transverse direction due to a lower PN
potential height.

Based on the results of the PN potential barrier reduction
for solitons in the Bragg gap regions with nonlocality,
we demonstrate a potential-free collisions between two gap
solitons within the photonic crystals. It is well known
that, without periodic potentials, solitons experience periodic
collisions as a breather when they are relatively in-phase. The
breather collision between two localized gap solitons incident
at 0◦ with respect to its propagation direction is destroyed
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in the periodic systems due to the confinement of the PN
potential barrier, as shown in figure 6(a) for the local case
with d = 0. In this case the soliton power U = 4 exceeds
the limit that results in the acceleration of the soliton during
the collision process [35]. But with a nonlocal nonlinear
response, in figure 6(b) we show that gap solitons (U =
4) can revive a breather-like collision even in the periodic
systems and expand over 10 lattice cycles due to increased
long range interaction. In principle, the collisions between
gap solitons are very complicated and unpredictable due to the
interplays among nonlinearity, periodic potential height and
dispersion/diffraction effects. Nonetheless, in this simulation,
with only a small strength of nonlocality, d = 0.5, one clearly
sees that the gap soliton interaction in nonlocal nonlinearity
tends to exhibit a lattice-free breather-like wavepacket as
a result of decreased PN barrier and increased long range
interaction.

3. Conclusion

In conclusion, we demonstrate the existence of gap soliton
solutions in nonlocal nonlinear photonic crystals in the internal
reflection and Bragg gap regions. The stability and mobility
of such novel gap solitons are obtained by calculating the
linear stability spectrum and Peierls–Nabarro potential barrier.
Compared to the internal reflection region, nonlocal gap
solitons in the Bragg gap regions become not only more stable
but also more movable due to the oscillation tails of Bloch
wavepackets. Moreover we reveal that it is possible to have
breather-like collisions between gap solitons with the help of
a small value nonlocal effect. Supported by the result of
this study and current technology on controllable nonlocal
nonlinear media, such as photorefractive crystals, nematic
liquid crystals and thermo-optical materials, we believe that the
results in this work should provide a new way for soliton-based
photonic devices.
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