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tanglement between probe field and atomic polarization are demonstrated in single- and double-Λ configurations,
respectively. Even though a larger degree of the squeezing parameter in the continuous variable helps to establish
stronger quantum correlations, the inseparability criterion is satisfied only within a finite range of the squeezing
parameter. The results obtained in the present studymay be useful for guiding experimental realization of quantum
memory devices for applications in quantum information and computation. © 2015 Optical Society of America
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1. INTRODUCTION

It is believed that the quantum network has a greater potential
than the classical one in providing many powerful applications
for quantum information science [1,2]. Not only theoretical
schemes [3–10], but also experimental implementations
[11–14] are demonstrated in various systems, intending to
manipulate and control the quantum objects. Among the can-
didates as quantum bits, photon, the quanta of light, is the fast-
est and robust carrier in the quantum network. For the storage
and retrieval of optical information, an electromagnetically in-
duced transparency (EIT) system serves as an ideal quantum
interface between photon and atoms [15,16]. Based on quan-
tum coherent interference, the profile as well as the phase of
optical information are well controllable and perfectly preserved
in the adiabatic condition [17,18]. Moreover, instead of using a
classical light source, nonclassical states are also investigated in
the EIT system, in order to map the quantum state of light onto
atomic ensembles as a quantum memory device [19–23].

Recently, experimental progress includes the slowing down
of squeezed vacuum pulses [24,25] and the storage of squeezed
states for several microseconds [26–28]. Since the photon sta-
tistics of squeezed light differs from the Poisson distribution, a
full quantum theory for the storage and retrieval of nonclassical
light is needed. Based on the perturbed quantum fluctuations,
for quasi-continuous wave inputs, EIT media become opaque
for squeezed states, with an oscillatory transfer of the initial
quantum properties between the probe and pump fields

[29]. The entanglement in quantum fluctuation of electromag-
netic fields is possible to be preserved or to be produced
through an EIT medium [30]. Furthermore, through the pic-
ture of dark-state polaritons, quantum state transfer between
optical pulse and atomic polarization is clearly illustrated dur-
ing the storage and retrieval process [31–33].

In addition to the quantum state transfer, in this work, we
introduce squeezed dark-state polaritons by the corresponding
squeezed operator, and study the quantum correlation and en-
tanglement of noise fluctuations in the quadrature components
during the storage and retrieval process. As one may expect,
when the squeezing parameter r � 0 (a coherent state), there
is no quantum correlation between probe field and atomic
polarization, while with a larger degree of the squeezing param-
eter, the stronger quantum correlation is established. In
contrast, an inseparability criterion to guarantee an entangle-
ment state is satisfied only with a finite range of the squeezing
parameter. Extension to a double-Λ configuration is also stud-
ied, in order to reveal the conditions to have mutual entangle-
ment among the noise correlations of two probe fields, and one
common atomic polarization. With successful implementation
on the storage and retrieval of light with nonclassical light
sources, our results pave the way to implement the quantum
interface between a photon and atomic system.

The remaining part of this paper is organized as follows. In
Section 2, we start from the picture of quantized dark-state
polaritons, and derive related quadrature variance in the noise
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fluctuations for the field and atomic operators. Quantum cor-
relation and entanglement between field and atomic polariza-
tion operators during storage and the retrieval process is
demonstrated. Especially, in Section 3, we address the insepa-
rability condition in the continuous variables for the quadrature
components of field and atomic operators in a single-Λ con-
figuration. The generalization to a double-Λ configuration is
extended in Section 4, where the quantum variances of two
quantized probe fields and atomic polarization are shown.
Finally, we give a brief conclusion in Section 5.

2. SQUEEZED DARK-STATE POLARITONS IN A
SINGLE-Λ CONFIGURATION

We begin with the EIT system in a single-Λ configuration, as
illustrated in Fig. 1. Here, two copropagating beams pass
through a three-level atomic ensemble in the z direction, with
the total number of atoms denoted by N . The probe field ex-
cites the transition from the state j1i to the state j3i, which is
treated by the quantum field operator Ê�z; t� in the slowly vary-
ing envelope approximation. The transition between j2i and
j3i is driven resonantly by a classical coupling field with the
Rabi frequency denoted by Ωc�t�, which is a time-dependent
function during the storage and retrieval process. In the
Heisenberg picture, the interaction Hamiltonian for such a
single-Λ EIT system is given as [15,16]

Ĥ � −�ℏg σ̂31Ê � ℏΩc σ̂32 �H:C:�; (1)

where σ̂μν � jμihνj �μ; ν � 1; 2; 3� is used as the collective
atomic operator, the atom-field coupling strength for the
transition j1i↔j3i is denoted by the constant g , and H.C.
represents the Hermitian conjugate.

It is known that with the low-intensity approximation,
hσ̂11i ≈ 1, and adiabatic limit, σ̂12 ≈ − g

Ωc
Ê, the propagation

of quantum fields in EIT media can be described by the
dark-state polariton [32,33],

Ψ̂�z; t� � cos θ�t�Ê�z; t� −
ffiffiffiffiffi
N

p
sin θ�t�σ̂; (2)

which is a linear superposition of field and atomic operators.
Here, σ̂ ≡ σ̂12 is used for the atomic polarization between
two lower states, j1i and j2i. In general, the rules of commu-
tation relation for bosonic fields Ê and atomic polarization σ̂ are
different, i.e.,

�Ê�z; t�; Ê†�z; t1�� � T δ�t − t1�; (3)

�σ̂�z; t�; σ̂†�z; t1�� � −
σ̂22 − σ̂11

N
T δ�t − t1�; (4)

where T is the characteristic time scale. Here, we have applied
the equal space commutation relations and a single longitudinal
mode for the field and atomic systems is used, too. However, if
we assume that the atomic system is originally in the ground
state, hσ̂22 − σ̂11i ≈ −1 [34], this dark-state polariton Ψ̂�z; t� is
a quasi-particle satisfying the Bosonic commutation relation

�Ψ̂�z; t�; Ψ̂†�z; t1�� ≈ T δ�t − t1�; (5)

where the characteristic time scale T can be obtained by requir-
ing T −1

R
T
0 �Ψ̂�z; t�; Ψ̂†�z; t1��dt � 1. However, the commuta-

tion relations between the dark-state polariton and field
(atomic) operators are

�Ψ̂�z; t�; Ê†�z 0; t1�� � cos θ�t�T δ�t − t1�; (6)

�Ψ̂�z; t�; σ̂†�z 0; t1�� � −
sin θ�t�ffiffiffiffiffi

N
p T δ�t − t1�: (7)

Under the picture of dark-state polaritons, the governing equa-
tion of motion during the storage and retrieval process is�

∂
∂t

� vg�t�
∂
∂z

�
Ψ̂�z; t� � 0; (8)

where the group velocity of dark-state polartion is given by
vg�t� � c cos2 θ�t�, with the speed of light in the vacuum c,
and θ�t� � tan−1�g ffiffiffiffiffi

N
p

∕Ωc�t�� accounts the mixing angle as
a function of time. Without any decay mechanism, the evolu-
tion of a dark-state polariton is described by changing the value
of Ωc�t� with respect to the time. When θ�t� � 0, or
Ωc�t�∕g → ∞, the dark-state polariton is said to be a photon-
like state, i.e., Ψ̂ � Ê; while θ�t� � π∕2, or Ωc�t�∕g � 0, the
dark-state polariton is an atom-like state, i.e., Ψ̂ � −

ffiffiffiffiffi
N

p
σ̂.

Based on the quantized polariton field operator, Ψ̂�z; t�, in
the following we introduce the squeezed state for dark-state
polaritons by defining a squeezing operator Ŝ�ξ�:

Ŝ�ξ� � exp

�
ξ�

2

Z
T

0

Ψ̂2dt −
ξ

2

Z
T

0

Ψ̂†2dt
�
; (9)

where ξ � reiδ denotes the degree of noise squeezing, with the
squeezing parameter r � jξj and the related squeezing angle δ.
The corresponding squeezed vacuum state for a dark-state po-
lariton is represented in the basis of jψiin � Ŝ�ξ�j0i, which is
composited by the vacuum state of fields and ground state of
atomic polarization, i.e., j0i � j0ifield ⊗ j1iatom. If θ � 0, the
squeezing operator is Ŝ�ξ� � exp�ξ�

2

R
T
0 dtÊ2 − ξ

2

R
T
0 dtÊ†2� and

our initial state is jψiin � jξifieldj1iatom, which consists of an
initial squeezed field and all the atoms being in ground state
j1i. On the other hand, if θ � π∕2, the squeezing operator
is Ŝ�ξ� � exp�N ξ�

2

R
T
0 dtσ̂2 − N ξ

2

R
T
0 dtσ̂†2� and our initial state

becomes jψiin � j0ifieldjξiatom, which means that the field state
is just the vacuum state and the atomic polarization state be-
comes the spin-squeezed state. With this squeezing operator
Ŝ�ξ� working on the bare state j0i, we can consider all the
physical situations in our cases.

Fig. 1. EIT system considered in a single-Λ configuration, where
the transitions j1i↔j3i and j2i↔j3i are driven resonantly by a quan-
tized probe field, Ê, and a classical coupling field, denoted by its Rabi
frequency Ωc , separately.
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In practice, it would be much easier to generate the squeezed
dark-state polariton by preparing a squeezed field with all the
atoms in the ground state, i.e., by setting θ � 0. As for the
question on how to prepare the squeezed dark-state polariton
in general, it is an interesting and important issue [35–41].
Even though the squeezed operator Ŝ introduced in Eq. (9)
is quadratic, however, it is related to the generation of squeezed
light in the nonlinear process. In our scenario, we do not take
this generation process into consideration, since the main pur-
pose of this work is on the transfer between field and atomic
polarization.

For the quantum noises in continuous variables, we have the
related quadrature operator as X̂Ψ � Ψ̂� Ψ̂† for the ampli-
tude (in-phase) fluctuations. With above definitions, the quad-
rature variance of dark-state polaritons is found to be

ΔX 2
Ψ ≡ inhψ jΔX̂ 2

Ψjψiin;
� cos2 θ�t�ΔX 2

E � N sin2 θ�t�ΔX 2
σ

−
ffiffiffiffiffi
N

p
sin θ�t� cos θ�t��hX̂ E X̂ σi � hX̂ σX̂ Ei�: (10)

Here, the first and second terms, i.e., ΔX 2
E ≡ inhψ jΔX̂ 2

Ejψiin
and ΔX 2

σ ≡ inhψ jΔX̂ 2
σjψiin, are the corresponding quadrature

variances of field and atomic parts, with the in-phase quadra-
ture components X̂ E � Ê � Ê† and X̂ σ � σ̂ � σ̂† defined for
the field and atomic operators, respectively. It can be seen that
for a dark-state polariton, the quadrature variances of field and
atomic operators are added together by the time-dependent co-
efficient θ�t�, or Ωc�t�, during the storage and retrieval process.
Furthermore, we also have contributions from the correlation
between the field and atomic ensemble, i.e., hX̂ EX̂ σi
and hX̂ σX̂ Ei.

Consider the possible experimental demonstration, where
one can use a squeezed light source for the probe field. For
a given initial quadrature variance, ΔX 2

Ψ�t � 0� ≡ ΔX 2
in, we

can manipulate the distribution of quantum noise fluctuations
between the field and atomic parts. That is,

ΔX 2
E �

�
Ωc
g

�
2�ΔX 2

in� � N�
Ωc
g

�
2 � N

; (11)

ΔX 2
σ �

1

N

2
4
�
Ωc
g

�
2 � N �ΔX 2

in��
Ωc
g

�
2 � N

3
5; (12)

which can be obtained by substituting Eq. (2) into Eq. (10)
along with the commutation relations shown in Eqs. (6)
and (7). One can see that in the limit Ωc∕g → ∞, we have
ΔX 2

E � ΔX 2
in and ΔX 2

σ � 1∕N for a photon-like dark-state
polariton. In the other limit, Ωc∕g � 0, the noise fluctuations
for an atom-like dark-state polariton are ΔX 2

E � 1
and ΔX 2

σ � ΔX 2
in∕N .

Consider typical experimental conditions in the realization
of EIT phenomena, such as the systems of cold 87Rb atoms, we
have �Ωc∕g�2 ≪ N . In this scenario, since the dark-state polar-
tion is in the atom-like state, the quantum fluctuation of a
dark-state polariton is dominated by the atomic quadrature

variance. With this condition, the quadrature variances can
be approximated by

ΔX 2
E ≃ 1 −

1

N

�
Ωc

g

�
2

�1 − ΔX 2
in�; (13)

ΔX 2
σ ≃

1

N

�
ΔX 2

in �
1

N

�
Ωc

g

�
2

�1 − ΔX 2
in�
�
: (14)

We want to remark that when the initial quadrature of the in-
put state is a coherent state, i.e., ΔX 2

in � 1, the noise variance
in the field component remains the same as that of vacuum
states, while the quantum fluctuation in the atomic component
corresponds to that of a spin coherent state. That is, when a
coherent state is used as the input (a classical light source), both
the quantum noise variance in the field and atomic components
are independent from the value of control field, Ωc�t�.

Naively, one may take an EIT media as a linear system and
expect a complete transfer for the nonclassical properties from
input field to the atomic system under the picture of dark-state
polaritons. Nevertheless, due to the last term in Eq. (10),
nontrivial quantum correlations between the field and atomic
operators will be shown through the quantum noise squeezing.
Here, the quantum correlation between field and atomic com-
ponents of a dark-state polartion has the form

hX̂ E X̂ σi � hX̂ σX̂ Ei �
Ωc∕g

�Ωc∕g�2 � N
�1 − ΔX 2

in�; (15)

which can be obtained through the commutation relations be-
tween the dark-state polariton and field (atomic) operators,
shown in Eqs. (6) and (7). Again, for an initial coherent state,
ΔX 2

in � 1, the quantum correlation between field and atomic
operators is zero. In Fig. 2, we show the quantum correlation
between the field and atomic polarization, hX̂ EX̂ σi, as a func-
tion of the normalized control field, Ωc∕g , for different values
of the squeezing parameter, r. As expected, the more nonclass-
ical properties there are, with a larger value of the squeezing
parameter r, the stronger quantum correlation is. Moreover,
when the dark-state polariton can be approximated by a
photon-like state �Ωc∕g → ∞� or an atom-like state �Ωc∕g �
0�, the quantum correlation becomes zero as well. That is, the
quantum correlation exists only with a superposition of
partial-photon and partial-atom states.

Fig. 2. Quantum correlation between the field and atomic polari-
zation, hX̂ E X̂ σi, shown as a function of the normalized control field,
Ωc∕g , for different values of the squeezing parameter, r. Here, the
number of atoms is fixed at N � 10.
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3. INSEPARABILITY CONDITION FOR
SQUEEZED DARK-STATE POLARITONS

Next, we study the entanglement between the quadrature com-
ponents of a field and atomic ensemble, by using the insepa-
rability criterion for bipartite continuous variables [42,43].
Only when the following inequality is satisfied, a bipartite sys-
tem is said to be entangled,

I c ≡ Δ�X̂ E − X̂ σ�2 � Δ�Ŷ E � Ŷ σ�2 < 2� 2

N
; (16)

where X̂ E and X̂ σ correspond to the in-phase quadrature com-
ponents, while Ŷ E ≡ −i�Ê − Ê†� and Ŷ σ ≡ −i�σ̂ − σ̂†� are the
out-of-phase quadrature operators for field and atomic opera-
tors, respectively. To have a clear comparison, we normalize
this inseparability criterion, i.e.,

I c ≡
I c

2� 2
N
≡ 1� 2

1� 1
N

�
F �Ωc∕g; r; δ�

Ω2
c

g2 � N

�
<1; (17)

where the numerator in the brackets in Eq. (17) is defined as

F �Ωc∕g; r; δ� ≡
�
Ω2

c

g2
� 1

�
sinh2 r − 2

Ωc

g
sinh r cosh r cos δ:

(18)

The nonseparation condition is guaranteed only when
F �Ωc∕g; r; δ� is smaller than 0. According to the inseparability
condition shown in Eq. (18), it is obvious that for a coherent
state at the input, r � 0, we do not have nonseparated states,
i.e., F � 0, no matter what the value of the control field Ωc�t�
is. Moreover, the existence of entanglement is independent
from the number of atoms, N , despite that the value of
I c �I c� changes with the number of atoms.

In order to demonstrate the inseparability condition, in
Fig. 3(a), we show the surface obtained by requiring the func-
tion F �Ωc∕g; r; δ� in Eq. (18) to be zero, which gives the
border between separated and nonseparated states. Here, the
parameter space is expanded by the normalized control field
Ωc∕g , the degree of the squeezing parameter r, and the related
squeezing angle δ. Only the colored region, beneath the surface
but above the plane r � 0, supports the nonseparated states
from squeezed dark-state polaritons during the storage and
retrieval process.

To give a clear illustration, we project the parameter space
satisfying the inseparability condition into the planes of
�Ωc∕g; δ�, �δ; r�, and �Ωc∕g; r� in Figs. 3(b), 3(c), and 3(d),
respectively. As the same scenario in the quantum correlation
between the field and atomic polarization shown in Fig. 2, it
can be seen in Fig. 3(b) that the nonseparated states (the col-
ored regions) are also not supported when Ωc∕g � 0 or
Ωc∕g → ∞. Moreover, these nonseparated states are measured
dominantly along the angle δ � 0, as shown in Fig. 3(c), due to
the reason that we have assumed the phase difference between
the field and atomic operators is zero. However, as shown in
Fig. 3(d), the nonseparated states are only supported within a
finite range of the squeezing parameter, r. Counterintuitively,
for a larger degree of the squeezing parameter, which is believed
to possess more nonclassical properties, the corresponding
inseparability criterion happens to be invalid.

Fig. 3. (a) Surface for the inseparability condition, defined by re-
quiring the function F �Ωc∕g; r; δ� � 0, shown in Eq. (18). The
parameter space is expanded by the normalized control field Ωc∕g ,
the degree of the squeezing parameter r, and the squeezing angle δ.
The contour plots are obtained by projecting the surface into the plane
of (b) �Ωc∕g; δ�, (c) �δ; r�, and (d) �Ωc∕g; r�, respectively, with the
other parameter shown in the markers. The colored regions indicate
the parameter space that F �Ωc∕g; r; δ� < 0.

Research Article Vol. 32, No. 7 / July 2015 / Journal of the Optical Society of America B 1387



The reason why only a finite range of the squeezing param-
eter supports nonseparated states can be illustrated in the
following way. In terms of the quadrature variances, the insepa-
rability criterion in Eq. (16) can be rewritten as

I c −
�
2� 2

N

�

� �ΔX 2
E � ΔY 2

E � ΔX 2
σ � ΔY 2

σ � −
��

2� 2

N

��

−2�hX̂ EX̂ σi − hŶ EŶ σi�
≡ V − V CS − C < 0: (19)

From the above expansion, it can be seen that to satisfy the
inseparability criterion, we have competing terms in
Eq. (19). They correspond to the sum of total variances of field
and atomic fluctuations both in the in-phase and out-of-phase
quadratures, V ≡ ΔX 2

E � ΔY 2
E � ΔX 2

σ � ΔY 2
σ , the sum of

variance for the coherent photon and coherent atomic states,
V CS ≡ 2� 2∕N , and the difference in the quantum correla-
tions between them in two orthogonal quadratures,
C ≡ 2hX̂ E X̂ σi − 2hŶ EŶ σi. For a coherent state, the last term
is zero, C � 0, for there is no quantum correlation existed. As a
result, we do not have nonseparated states with an input of
coherent states. Nevertheless, a nonclassical state cannot always
ensure the inseparability. In Fig. 4, we plot the curves for
V − V CS and C , as a function of the squeezing parameter,
r. From Fig. 4, we can see that the entanglement can only
happen when the quantum correlations between field and
atomic fluctuations are stronger than the total sum of quadra-
ture variances, i.e., C > �V − V CS�.

4. SQUEEZED DARK-STATE POLARITONS IN A
DOUBLE-Λ CONFIGURATION

In the single-Λ configuration discussed above, quadrature fluc-
tuations between the field and atomic parts can be entangled
within some parameter space. However, in the practical

experimental setup, one may need to measure both the quan-
tum noise fluctuations of the probe field as well as the variance
of the atomic ensemble, via homodyne detection schemes. Due
to the difficulties in measuring the collective atomic operators,
here, we extend the concept of dark-state polaritons from a
single-Λ configuration to a double-Λ one, in order to have pos-
sible experimental realizations with the output fields arriving at
a detection apparatus. As illustrated in Fig. 5, now we have two
quantized probe fields, Ê1 and Ê2, driving resonantly to the
transitions j1i↔j3i and j1i↔j4i, with the corresponding cou-
pling strengths g1 and g2, respectively. At the same time, two
classical coupling fields, denoted by its Rabi frequency Ω1�t�
and Ω2�t�, drive the transitions j2i↔j4i and j2i↔j3i,
simultaneously.

Due to the share of a common atomic polarization, σ̂12, we
can extend the concept of dark-state polaritons to describe the
storage and retrieval process in such a double-Λ configuration
[44,45]. In this picture, the corresponding quantized dark-state
polariton, Ψ̂, is composited by two probe field operators, Ê1

and Ê2, and the atomic polarization operator, σ̂ ≡ σ̂12, i.e.,

Ψ̂ � cos θ cos ϕÊ1 � cos θ sin ϕÊ2 −
ffiffiffiffiffi
N

p
sin θσ̂; (20)

with the mixing angles θ�t�, between the field and atomic
polarization, and ϕ�t�, between two probe fields defined as

θ�t� ≡ tan−1
�
g1

ffiffiffiffiffi
N

p

Ω1

�
1� g21Ω2

2

g22Ω2
1

�
−1∕2�

;

ϕ�t� ≡ tan−1�g1Ω2∕g2Ω1�:

With the same concept for the squeezed operator introduced
in Eq. (9), the corresponding squeezed state of dark-state polar-
itons in a double-Λ configuration is defined as jξi ≡ Ŝj0i≡
j0iE1

⊗ j0iE2 ⊗ j1iatom. The quadrature variance of this
dark-state polariton is found to be

Fig. 4. Competition between the terms �V − V SC� and C in the
inseparability criterion, shown in Eq. (19). Here, V � ΔX 2

E�
ΔY 2

E � ΔX 2
σ � ΔY 2

σ and V CS � 2� 2∕N are the sum of quadrature
variances in the bipartite system and coherent states, respectively,
while C � 2hX̂ E X̂ σi − 2hŶ E Ŷ σi denotes the difference in the
quantum correlations between two orthogonal quadratures. Other
parameters used are Ωc∕g � 0.3 and δ � 0.

Fig. 5. EIT system considered in a double-Λ configuration, where
the transitions j1i↔j3i and j1i↔j4i are driven resonantly by two
quantized probe fields, Ê1 and Ê2, while two classical coupling fields,
denoted by its Rabi frequencyΩ1 andΩ2 drive the transitions j2i↔j3i
and j2i↔j4i, simultaneously.
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ΔX 2
Ψ � N sin2 θ�t�ΔX 2

σ

� cos2 θ�t�cos2 ϕ�t�ΔX 2
1 � cos2 θ�t�sin2 ϕ�t�ΔX 2

2

� cos θ�t� cos ϕ�t� sin ϕ�t��hX̂ 1X̂ 2i � hX̂ 2X̂ 1i�
−

ffiffiffiffiffi
N

p
sin θ�t� cos θ�t� cos ϕ�t��hX̂ 1X̂ σi � hX̂ σX̂ 1i�

−
ffiffiffiffiffi
N

p
sin θ�t� cos θ�t� sin ϕ�t��hX̂ 2X̂ σi � hX̂ σX̂ 2i�;

(21)

where X̂ i ≡ Êi � Ê†
i , i � 1; 2, denotes the in-phase quadrature

component of the probe field, Êi. Again, for a given initial
noise variance in the in-phase quadrature component,
ΔX 2

Ψ�t � 0� ≡ ΔX 2
in, the corresponding partition of noise

variances in the quadrature components for two probe fields
and atomic polarization operators are

ΔX̂ 2
1 �

�
Ω1

g1

�
2
ΔX 2

in �
�
Ω2

g2

�
2 � N�

Ω1

g1

�
2 �

�
Ω2

g2

�
2 � N

; (22)

ΔX̂ 2
2 �

�
Ω1

g1

�
2 �

�
Ω2

g2

�
2
ΔX 2

in � N�
Ω1

g1

�
2 �

�
Ω2

g2

�
2 � N

; (23)

ΔX̂ 2
σ �

1

N

2
4
�
Ω1

g1

�
2 �

�
Ω2

g2

�
2 � NΔX 2

in�
Ω1

g1

�
2 �

�
Ω2

g2

�
2 � N

3
5: (24)

The quantum correlation between each probe field, Êi, and the
atomic components has the form

hX̂ iX̂ σi �
Ωi∕gi

�Ω1∕g�2 � �Ω2∕g�2 � N
�1 − ΔX 2

in�; (25)

which shares a similar formula as that in a single-Λ configura-
tion shown in Eq. (15), except for the addition terms from two
prob fields in the denominator. The quantum correlation
between the quadrature components of two fields is found
to have the form

hX̂ 1X̂ 2i �

�
Ω1

g1

��
Ω2

g2

�
�
Ω1

g1

�
2 �

�
Ω2

g2

�
2 � N

�ΔX 2
in − 1�: (26)

In Fig. 5, we show the quantum correlation between two probe
fields, hX̂ 1X̂ 2i, as a function of the normalized control fields,
Ωi∕gi, i � 1; 2, for different values of the squeezing parameter,
r. When the second probe field is fixed as a constant, for
example Ω2∕g2 � 1, the quantum correlation between two
probe-field vanishes as Ω1∕g1 � 0 or Ω1∕g1 → ∞.
Moreover, due to the phase shift, π, defined for the dark-state
polariton in Eq. (20), the correlation between two probe fields
is negative (anticorrelated).

Below, we show the normalized inseparability criterion for
the mutual entanglement among the two probe fields and
atomic polarization, denoted as I c�E1; E2�, I c�E1; σ�, and
I c�E2; σ�, respectively,

I c�Ei ;σ� � 1�
�

2

1� 1∕N

�24 G�Ωi∕gi; r;δ��
Ω1

g1

�
2 �

�
Ω2

g2

�
2 �N

3
5<1;

(27)

I c�E1; E2� � 1�
�

2

1� 1

�24H�Ω1∕g1;Ω2∕g2; r; δ��
Ω1

g1

�
2 �

�
Ω2

g2

�
2 � N

3
5<1;

(28)
where

G�Ωi∕gi; r; δ� ≡
��

Ωi

g i

�
2

� 1

�
sinh2 r

− 2
Ωi

g i
sinh r cosh r cos δ; (29)

H�Ω1∕g1;Ω2∕g2; r; δ� ≡
��

Ω1

g1

�
2

�
�
Ω2

g2

�
2
�
sinh2 r

� 2
Ω1

g1

Ω2

g2
sinh r cosh r cos δ:

(30)

For a given squeezing degree r, we can immediately find the
parameter space to satisfy the inseparability condition to ensure
entanglement.

To access these nonclassical properties at the output of
atomic ensembles, one can measure the correlations between
two probe fields through a homodyne detection. In this scenario,
we show in Fig. 6 the conditions to generate entanglement in the
two probe fields, while only one of the input probe fields needs to
have nonclassical properties. The entanglement is achieved
through the collective atoms. Moreover, in Fig. 7, the condition
to have entanglement between two probe fields is revealed as a
function of two control fields, Ω1 and Ω2. By requiring H < 0
in Eq. (30), we have the following inseparability condition for
two probe fields that are bounded by two curves:�

Ω2

g2

�
− �A−�−1

�
Ω1

g1

�
� 0; (31)

�
Ω2

g2

�
− �A��−1

�
Ω1

g1

�
� 0; (32)

Fig. 6. Quantum correlation between two probe fields in a double-
Λ configuration, hX̂ 1X̂ 2i, shown as a function of the normalized con-
trol field, Ω1∕g1, for different values of the squeezing parameter, r.
Here, the other parameters used are Ω2∕g2 � 1 and N � 10.
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with A	 ≡ − coth�r� cos δ	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth2 r cos2 δ − 1

p
. These two

curves are plotted in red and blue colors, shown in Fig. 7(a).
The colored region within these two curves is the parameter
space to have entangled probe fields, i.e., I c�E1; E2� < 0. In ad-
dition to r � 1, we also show the region to support field–field
entanglement for the squeezing parameter r � 2 in Fig. 7(c). As
the same scenario in a single-Λ configuration, only a finite range
of the squeezing parameter supports nonseparable states.

Beside direct measurement on the quantum fluctuations in
two probe fields in the output, in this double-Λ scheme, we can
also infer the nonseparability between one of the probe fields
and collective atomic excitations indirectly. In Fig. 7(b), we
demonstrate the entanglement regions for these two probe
fields and field–atomic ensembles. By requiring G < 0 in
Eq. (29), the criterion to have entanglement between the out-
put probe field, E1 or E2, and the atomic ensemble, i.e.,
I c�Ei ; σ� < 0, can be achieved when the Rabi frequencies of
coupling fields fall in between

B− < Ωi∕gi < B�; (33)

where B	 ≡ coth�r� cos δ	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth2 r cos2 δ − 1

p
. In this way,

one can measure the output probe fields through a state-of-
the-art quantum detection scheme, which is readily and reliably
realized in presently available systems.

However, in terms of the quantized operators, Ê1, Ê2, and σ̂,
we can take such a double-Λ configuration as a tripartite sys-
tem. From the inseparability criterion for field–atom and field–
field quadrature components given in Eqs. (27) and (28), it
requires that both G�Ωi∕gi; r; δ� and H�Ωi∕gi; r; δ� must be
negative values simultaneously, in order to have a tripartite en-
tanglement. It is the phase difference between field and atomic
components in the definition of a dark-state polariton shown in
Eq. (20), which automatically results in a π phase shift in the
squeezing angle. In such a double-Λ configuration, it is impos-
sible to support the coexistence of mutual entanglements
among field–field and field–atom simultaneously for this
tripartite system.

5. CONCLUSION

In summary, we have introduced the squeezed operator for
dark-state polaritons in EIT media, including single- and
double-Λ configurations. We show that quantum squeezed
state transfer from a field to atomic ensemble can be achieved
by a time-dependent coupling field, and reveal the quantum
correlation and noise entanglement between probe field and
atomic polarization. Even though a larger degree of the squeez-
ing parameter in the quadrature components helps to establish
stronger quantum correlations, the inseparability criterion is

Fig. 7. Regions to support nonseparated states between field–field and field–atom quadrature components, i.e., I c�Ei ; σ� and I c�E1; E2�, as a
function of the normalized control fields. (a) I c�E1; E2� < 0 at r � 1, δ � π. (b) I c�Ei ; σ� < 0 at r � 1, δ � 0. (c) I c�E1; E2� < 0 at r � 2,
δ � π. (d) I c�Ei ; σ� < 0 at r � 2, δ � 0.
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satisfied only within a finite range of the squeezing parameter.
The results in our work provide the possible condition to
implement the quantum interface between a photon and
atomic system.
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