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Beam splitters allow us to superpose two continuous single-mode quantum systems. To study the behavior of their
strong mode mixing dynamics, we consider variable beam splitters and their dynamics using Wigner’s phase space
distribution, W, the evolution of which is governed by the continuity equation ∂

∂τ
W=−∇ · J . We derive the form

of the corresponding Wigner current, J , of each outgoing mode after tracing out the other. The influence of the
modes on each other is analyzed and visualized using their respective Wigner distributions and Wigner currents.
This allows us to perform geometrical analyses of the mode interactions, casting new light on beam splitter behav-
ior. Several of the presented results should be immediately testable in experiments. © 2025 Optica Publishing Group.
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1. INTRODUCTION

In quantum optics, beam splitters are often used to entangle two
matched modes [1] in order to study the behavior of one out-
going mode conditioned on the state of the other. Such studies
traditionally focus on the states alone, typically in Fock space or
using phase space representations [2–4].

Here, we show that, instead of focusing on the state alone,
it can be useful to complement such studies by describing and
visualizing the dynamics of the beam splitter interaction using
Wigner’s phase space current, J [5–9], thus presenting beam
splitter behavior in a new light.

Wigner’s description of quantum systems [10] in phase
space, based on Wigner’s distribution W(x , p), has given us
visualizations comparing classical with quantum states [11–16].
Moreover, the associated Wigner current, J , can be constructed
from a variable beam splitter’s fictitious time evolution [9,17]
and allows for a direct visualization of the system dynamics and
its comparison with classical Hamiltonian flows [6,18,19]. No
such current exists to describe ρ’s evolution (no one studies the
commutator [Ĥ, ρ̂] by itself ).

Since the state space for two optical modes is four-
dimensional, we trace out either mode and study the behavior
of the remaining mode through its two-dimensional Wigner
distribution and current. This allows us to study and visualize
the behavior of such systems using the phase space current
vector fields, J , and their “quantum phase portraits” (as two-
dimensional plots). By tracing out one mode, we derive the

expressions for the “effective Moyal brackets” [16,20–22] and
the form of Wigner’s phase space current for the other mode.

We highlight two aspects whose investigation should become
experimentally accessible [9]: the inversion of the direction of
the Wigner current [6,7] associated with the presence of areas in
phase space where the Wigner distribution is negative, and the
pronounced violation of phase space volume conservation [23]
in quantum dynamics.

We emphasize that superposing perfectly matched [1] modes
at a mixing beam splitter is governed by one of the simplest cou-
pling dynamics one can think of. By themselves, matched modes
evolve as equal harmonic oscillators, and their dynamics can be
factored out, while their two-mode interaction Hamiltonian is
simple and bilinear in the modes; see Eq. (8). This permits us
to study how superposed beam splitter modes influence each
other without the complicating effects of a complicated system’s
intrinsic dynamics [7,19,24], allowing us to pinpoint the details
of the mechanism by which mode entanglement is responsible
for the non-classical behavior [25,26] observed in beam splitter
interactions.

Classical mechanics has benefited enormously from the study
of classical phase space portraits [27]. In the quantum case,
phase space-based approaches allow for the study of “quantum
phase portraits” (collections of momentary snapshots of field
lines arising from the integration of the vector field J [6,18]).
There is no other formulation of quantum theory [28] that
allows for such an intuitive way of studying quantum dynamics
and is so reminiscent of classical dynamics studies [20]. Plotting
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J and its quantum phase space portraits allows us to apply geo-
metrical reasoning that sheds new light on the behavior of beam
splitters.

Section 2 introduces Wigner’s continuity equation and
phase space current, J . In Section 3, we derive its form for
variable beam splitters. Section 4 presents several examples and
highlights interesting features of their phase space dynamics.
Subsection 4.B highlights the occurrence of singular phase space
volume changes, and Subsection 4.C shows that this is due to
mode entanglement. Our conclusions, in Section 5, put our
findings into context.

2. WIGNER DISTRIBUTION AND ITS
CONTINUITY EQUATION

At first glance, it might appear that the study of conditional
dynamics, since it involves sudden “collapses” due to measure-
ments, seems to leave no room for a continuous description
by a continuity equation with a current J . After all, we know
that Schrödinger’s equation does not describe measurement
collapses.

And yet, in experiments, we often change a system parameter
continuously such that, instead of physical time, we study the
dependence on this parameter, playing the role of an “effective
time” in a fictitious evolution [9,17]. And we execute the mea-
surement, inducing a collapse, after the parameter-mediated
interaction is over. In this case, we can still characterize the
behavior of a system as continuously evolving (and then being
terminated by a measurement [9]).

The time evolution of Wigner’s quantum phase space distri-
bution W(x , p, τ ) [29,30], for a one-dimensional continuous
system, is governed by its phase space current J and obeys the
continuity equation [23,31,32]:

∂W(x , p, τ )
∂τ

+∇ · J (x , p, τ )= 0, (1)

where ∇= ( ∂
∂x
, ∂
∂p
) is the phase space divergence operator

with respect to position x and momentum p , τ is time, and
J = (J x , J p)

ᵀ has two components and is a function of W and
the system Hamiltonian H(x , p, τ ).

We specifically study the use of beam splitters as mode mixers.
Small variations in reflectivity r allow us to invoke a continu-
ous description using an effective Hamiltonian and thus the
continuity equation (1) [33].

In our approach, the study of details and changes of the
Wigner distributions is underpinned by plots of their phase
space current J together with J ’s field lines. This complements
the standard treatment of beam splitter behavior in terms of
photon statistics [2] or their effects on wavefunctions [3].

3. CURRENT J FROM MOYAL’S BRACKET

We will now remind the reader of how Wigner’s and
Schrödinger’s formulations of quantum theory are connected
mathematically [16].

Consider a single-mode operator given in coordinate rep-
resentation 〈x − y |Ô|x + y 〉 = O(x − y , x + y ). To map
to Wigner’s phase space formulation, we employ the Wigner

transform,W[Ô], [16,20,34]:

W[Ô](x , p)=
∫
∞

−∞

dy O
(

x −
y
2
, x +

y
2

)
e

i
~ py . (2)

If Ô is a (normalized) single-mode density matrix ρ̂, then the
associated normalized distribution in the Wigner formulation is
the Wigner distribution:

W(x , p, τ )≡
W[ρ̂]
2π~

. (3)

The Wigner transform of the von Neumann time evolution
equationW[ ∂ρ̂

∂τ
=

1
i~ [Ĥ, ρ̂]] is

∂W
∂τ
= {{H,W}}, (4)

in which the Groenewold–Moyal bracket [16,21,22] is the
quantum version of the Poisson bracket with the explicit form:

{{ f , g }} =
2

~
f (x , p) sin

[
~
2

(←−
∂

∂x

−→
∂

∂ p
−

←−
∂

∂ p

−→
∂

∂x

)]
g (x , p),

(5)
where arrows indicate the “direction” of differentiation:

f
−→
∂
∂x g = g

←−
∂
∂x f = f ∂

∂x g .
Equation (4) can be rewritten as the divergence of Wigner’s

phase space current [7,23,35], yielding Eq. (1).

A. Contrast with Schrödinger Equation

We note that Eq. (1) is the Fourier transform [Eq. (2)] of the von
Neumann equation (4), just as W(x , p) is the Fourier transform
of the density matrixρ(x , x ′).

The Fourier transform [Eq. (2)] is invertible; in fact, it is a
unitary map: Wigner’s and the Schrödinger–von Neumann
formulation are therefore unitarily equivalent.

Additionally, to the Schrödinger–von Neumann formu-
lation, Wigner’s formulation of quantum theory has the great
advantage of allowing us to visualize quantum dynamics in
phase space more directly since W is real-valued [30,36,37].
Compared to other quantum phase space distributions [38],
Wigner’s [10] is special [39–41] and intuitive [37,42]; here, we
use it exclusively.

Additionally, unlike formulations of quantum physics that
are not based on phase space [28], Wigner’s formulation allows
us to use the continuity equation (1), and hence Wigner’s phase
space current J and its quantum phase portraits.

Recent experimental work shows that the reconstruction of
Wigner’s phase space current J and its effects on the evolution
of the system can be studied with high resolution [9].

B. Beam Splitter and Its Effective Hamiltonian

We consider an ensemble of measurements performed on a sys-
tem of two modes â and b̂, which arise from perfectly matched
incoming modes a in and bin after being mixed through interac-
tion at a “perfect” lossless two-mode beam splitter with variable
transmissivity.

The associated unitary mode mixing operator [2,43],
transforming the bosonic optical-mode field operators,
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(
â
b̂

)
= B̂(θ)

(
â in

b̂in

)
B̂†(θ), (6)

is given by

B̂(θ)= exp

[
θ

2

(
â inb̂†

in − â †
inb̂in

)]
≡ exp

[
−iτ ĤM

]
, (7)

with the effective Hamiltonian

ĤM = i
π

2

(
â inb̂†

in − â †
inb̂in

)
=
π

2

(
x̂a p̂b − p̂a x̂b

)
. (8)

Our choices (together with the fact that the reflection ampli-
tude is r = sin(π2 τ), and t = cos(π2 τ) is the transmission
amplitude) allow us to choose the range τ ∈ [0, 1], which
parameterizes the behavior, ranging from no mode-mixing at
τ = 0 (complete transparency) via all intermediate values, where
the modes are being mixed, to eventually no mixing at τ = 1,
due to total reflection at the beam splitter.

In an implementation of the variable beam splitter as
a two-mode fiber coupler, τ parameterizes the coupling
length; implemented as a Mach–Zehnder interferometer it
parameterizes changes of the phase shifter angle.

The Wigner transform of the associated von Neumann equa-
tion gives the evolution equation of the two-mode Wigner dis-
tribution Wab =Wab(xa , pa , xb, pb, τ ):

∂W[ρ̂]
∂τ

= 2π~
∂Wab

∂τ
=W

[ π
2i~

[(
x̂a p̂b − p̂a x̂b

)
, ρ̂ab

]]
.

(9)

C. Wigner Current for Mixed Modes

Let us assume that we choose mode a as auxiliary, to be traced
out of the state ρ̂ab. Then the Wigner transform of the von
Neumann equation (9) for the partial trace density matrix ρ̂b ,
occupying the remaining mode b, is

2π~
∂Wb

∂τ
=
π

2
W
[

1

i~
Tra {[x̂a p̂b, ρ̂ab] − [ p̂a x̂b, ρ̂ab]}

]
,

(10)
and hence, using the cyclicity of the trace and Eqs. (3) and (4),

∂Wb

∂τ
=
π

2
({{pb,Tra {xa Wab}}} − {{xb,Tra {pa Wab}}}) ,

(11)
where {{pb,Tra {xa•}}} and {{−xb,Tra {pa•}}} are the
“effective Moyal brackets” taking Wab as an argument; see
Eq. (4).

Applying Eq. (5) leads to

∂Wb

∂τ
= −

π

2

[
xb

←−−
∂

∂xb

−−→
∂

∂ pb
Tra {pa Wab} + pb

←−−
∂

∂ pb

−−→
∂

∂xb
Tra {xa Wab}

]
.

(12)
According to the continuity equation (1), this is rewritten as

[7,23,35]

∂Wb

∂τ
=−

π

2

(
∂
∂xb
∂
∂ pb

)
·

(
Tra {xa Wab}

Tra {pa Wab}

)
=−∇b · Jb, (13)

Fig. 1. Wigner distributions Wa\b of modes a (left panels) and b
(right panels). The top row shows the initial states, and the bottom
row shows the evolved states together with their vector fields J a\b as
overlays. As a guide to the eye, the J -fields are integrated, yielding
white-yellow-blue (coloring according to | J |) field lines that represent
momentary snapshots of the J -fields. Thick black frames surround an

area of size ~ in phase space. B(34.5%) represents mixing at a beam
splitter with 34.5% reflectivity. The initial states are a coherent state
and a single-photon Fock state: |ψa 〉|ψb〉 = |α = 4i/

√
2〉 ⊗ |1〉.

where the Wigner current of mode b, conditioned on the state of
mode a , is

Jb(xb, pb, τ )=+
π

2

(
Tra {xa Wab}(xb, pb, τ )

Tra {pa Wab}(xb, pb, τ )

)
. (14)

An analogous calculation yields the Wigner current, Ja , of
mode a , conditioned on the state of mode b, as

Ja (xa , pa , τ )=−
π

2

(
Trb{xb Wab}(xa , pa , τ )

Trb{pb Wab}(xa , pa , τ )

)
. (15)

D. Contrast with Classical Mechanics

We would like to stress that, despite the existence of continuity
equations, currents, and phase portraits in quantum phase space
formulations [5,6,18,31,32,44,45], in general, trajectories in
quantum phase space do not exist [23]. We neither discuss paths
(such as Feynman’s, which do not have to follow equations of
motion) nor center-of-mass trajectories, as famously discussed
by Heisenberg in his 1927 paper on interpretations of observed
particle trajectories [46].

We remind the reader that trajectories are integral curves
that obey the equations of motion and describe the transport of
probability. In quantum mechanics, these do not generally exist
since phase space velocities would develop singularities [23].

Although trajectories do not exist, we can determine phase
space field lines, the integral curves of J at a fixed time; see the
lower panels of Fig. 1 (and also Fig. 3). Specifically, in classical
mechanics’ phase space settings, such curves are also known as
phase curves, and their collection as phase portraits, which is
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Fig. 2. Layout as in Fig. 1. The initial states are two single-photon
Fock states: |ψa 〉|ψb〉 = |1〉 ⊗ |1〉 (see the top right panel of Fig. 1),
and the modes a and b behave identically. Insets in the panels on the
left column (brown frames) show plots of the x component J x (x , 0)
along the x axis. Insets in the panels on the right column (blue frames)
show plots of the x componentwx (x , 0) along the x axis and that it is
singular when W = 0.

why we introduce the term “quantum phase portraits” to denote
such collections of field lines.

Let us briefly explain why singular volume changes occur
in quantum phase space. In classical physics, the current fac-
torizes into density and the classical phase space velocity field
[23] j = ρv; therefore, v = j/ρ. In quantum dynamics, how-
ever, attempting this approach, namely, defining the quantum
phase space velocity field, w= J /W , typically yields singular
values somewhere in phase space since the Moyal bracket con-
tains derivatives of W , which is why zeros of W do not need
to coincide with those of J ; see Fig. 2. Therefore, the degen-
eracy between zeros of W and J is typically lifted, and when
W is zero, w= J /W is singular; see insets in the right column
of Fig. 2. Liouville’s classical phase space volume conserva-
tion is described by the condition ∇ · v = 0; the equivalent
quantum expression ∇ ·w can assume values with infinite
magnitude [23].

This causes trajectory approaches to be flawed, as they are
based on w, and so they develop singularities and singular
changes in phase space volumes when W = 0; in short, there are
no trajectories in quantum phase space [23].

One should avoid using the unfortunate term “quantum
Liouville equation,” which has caused great confusion when
researchers talk about so-called “quantum characteristics” in
phase space and try to implement trajectories-based code on

Fig. 3. Layout as in Fig. 1, with two equally strongly squeezed
vacua: |ψa 〉|ψb〉 = |z= 2, θ = 0〉 ⊗ |z= 2, θ =−π/3〉 as initial
states.

computers [23]. Instead, correctly set up and efficient “exact”
numerical codes for the propagation of Wigner’s distribution
using spectral methods do exist [47], also in the case of nonlinear
wave equations [24] and nonseparable Hamiltonians [48].

4. RESULTS FOR VARIOUS FIELD STATES

In this section, we consider initially unentangled states
|ψa 〉|ψb〉 = |ψa 〉 ⊗ |ψb〉 for the incoming beam splitter
modes a in and bin, using the following notation:

N-photon Fock states are denoted by |N〉, degenerate
squeezed vacuum states exp[ 12 (ζ

∗â2
− ζ â †2)]|0〉 by |z= |ζ |,

θ = arg(ζ )〉, and Glauber coherent states exp[αâ †
− α∗â ]|0〉

by |
√

2α = x + ip〉.

A. Energy and Purity Changes

Figure 1 illustrates that the modes can exchange energy: mode
a loses and b gains energy. The J -fields are integrated, yielding
white-yellow-blue field lines that expand and converge, hinting
at the fact that phase space volumes are not conserved [23].

Let us consider roughly balanced beam splitters for mixing
modes, with initial states such as two single photons or different
squeezed states. It is known that for such strongly mixing beam
splitters, the modes become strongly entangled with each other
(Fig. 2 describes Hong–Ou–Mandel interference [49]), while
the individual modes become fairly impure by themselves:
throughout phase space, the distributions Wa\b become positive
and widely spread out; see Figs. 2 and 3.
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Here, the Wigner current patterns can reveal further details of
such purity destroying dynamics [25]. In the top row of Fig. 2,
the central inflow fills the negative region around the origin
without affecting the positive torus very much, leading to fully
mixed states (middle row).

B. Changes in Phase Space Volumes

It is known that the formation of “negative regions,” where the
Wigner distribution has negative values, implies that phase
space volumes are not conserved. Here, this is underpinned in
a visual way by the observation of radially outward- or inward-
pointing star-current patterns; see Figs. 1 and 2. According to
Gauss’ law (or the flux theorem), this implies the existence of
sources or sinks of the local probability current J . Such local
changes of Wigner’s quasi-probability density distribution are
alien to classical physics but required in the quantum case, also
for conservative systems [23].

In the case of Fig. 2, we can explicitly consider this lack of
volume conservation. The current fields are strictly radial, but
the insets in the panels of the right column of Fig. 2 show that
the magnitude of w does not drop off with the inverse radius
R−1
= 1/

√
x 2 + p2. Thus, ∇ ·w 6= 0, and quantum phase

space volumes are not conserved. This is not necessarily surpris-
ing since we look at a subsystem of a coupled system and tracing
out the partner system means that the subsystem is not governed
by a conservative Hamiltonian. However, what is impossible in
classical physics is the occurrence of singular velocity fields [23];
see the explanation in Section 3.D and the insets in the right
column of Fig. 2.

In the next subsection, we explain the occurrence of singular
phase space volume changes and their connection with mode
entanglement.

C. Negative Values of W from Entanglement

For beam splitters, the Liouville condition for phase space
volume conservation can be maximally violated ; phase space
volume changes can be singular: |∇ ·w| =∞. We explained
the possibility for such singularities occurring in terms of the
lifting of the degeneracy in the formation of zeros of J and W ;
see Subsection 3.D.

Yet, at a first careless glance, it is surprising to find singularities
in w for Hamiltonians [Eq. (8)] bilinear in x and p since only
the “classical” looking linear term [23,50] of the Moyal bracket
[Eq. (5)] is present in evolution equation (12).

Why do we find singularities inw (such as those shown in the
insets of the right column of Fig. 2)?

The reason is mode entanglement [25,26]:
The system can form zeros in W while, simultaneously, J

does not vanish. Again, the degeneracy in the formation of zeros
of J and W are lifted, causing singularities in w. As a generic
example, let us consider the x component of Jb [Eq. (14)]. It
is proportional to Tra {xa Wab}(xb, pb, τ ), and this expression
is generally not proportional to Wb , if modes a and b are entan-
gled . Hence, when Wb forms a negative region, it vanishes on
the boundary of that region, and there wb = Jb/Wb can form
singularities.

Fig. 4. Layout as in Fig. 1. The initial state is a three-photon Fock
state and squeezed vacuum: |ψa 〉|ψb〉 = |3〉 ⊗ |z= 1.2, θ = 0〉.

Such singular phase space volume changes, or rather, their
signature—nonzero J , while the density W vanishes—have so
far not been observed experimentally.

D. Phases and Fluctuations

We remark that it might seem surprising to note that Eqs. (15)
and (14) for Ja and Jb are of the same mathematical form if the
indices a and b are swapped, except for the presence of a minus
sign for Ja . Yet, Ja ’s and Jb ’s current plots in Fig. 2 are identi-
cal. This is due to the fact that the definitions of the beam splitter
modes carry relative phases that are imprinted within Wab, cor-
rectly compensating for Ja ’s minus sign.

Figure 3 shows that the squeezed states affect each other in
a geometrically transparent fashion: the large fluctuations in
the direction of the anti-squeezed quadrature dominate the
direction in which the current broadens the state in the other
mode. This type of geometrical reasoning also explains quali-
tatively how the symmetry breaking seen in the left column of
Fig. 4 arises: the non-classical phase space-interference fringes
[14] in the a -mode’s Fock state wash out more quickly in the p
direction than the x direction since the b-mode is squeezed in its
x direction and anti-squeezed in p .

We remark that, according to Eqs. (14) and (15), the beam
splitter [Eq. (7)] only mixes the positions xa and xb with each
other, and the momenta pa and pb with each other. There is no
cross-mixing of positions with momenta [3].

It is not always obvious how Eqs. (14) and (15) for Jb and
Ja give rise to the described phenomena. After all, the relative
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Fig. 5. Layout as in Fig. 1. The initial state is a three-photon Fock
state and coherent state: |ψa 〉|ψb〉 = |3〉 ⊗ |α = 2(1+ i)/

√
2〉.

phases that govern the direction of the dynamics (another exam-
ple, for a tunnelling scenario, can be found in the discussion
around Fig. 2 of Ref. [6]) are “hidden” in the expressions for Wab

of Eqs. (14) and (15). In the case of Fig. 3, for example, initially
(for small beam splitter reflectivities), the relative phases are
such that the distributions become smeared out, but later on
(for much greater reflectivities) the process, instead, narrows
the distributions. All this, while the forms of Eqs. (14) and (15)
remain unchanged, the expressions for Wab have changed.

The Wigner current inverts its direction when W is negative
[7], and such inversions (current moves against the prevailing
direction) are clearly displayed in the lower right panels of Figs. 1
and 5.

5. CONCLUSION

We have shown how the Wigner current for coupled systems
can be determined after tracing out one or the other subsystem.
We specified this for the case of variable beam splitters and
highlighted various aspects of the corresponding phase space
dynamics. It is straightforward to apply the calculations in
Section 3 to other forms of interaction Hamiltonians coupling
two systems.

We emphasized that the effective Moyal brackets describing
the conditional beam splitter dynamics show features familiar
from systems coupled to environments far from thermal equi-
librium: energy or purity are not conserved in each subsystem.
Energy and purity can go up or down.

We specifically highlighted aspects of the quantum phase
space dynamic, which our analysis has unearthed as being
experimentally accessible when using variable beam splitters
and which, in quantum optics, can be difficult to generate and
experimentally investigate otherwise. These are: the formation
of negative areas of the Wigner distributions, the inversion of
Wigner’s phase space currents associated with these negative
areas, and the pronounced violation of phase space volume
conservation [23] in quantum dynamics, which are all tied to
the entanglement between the two mode [25,26].

Traditionally, states and how they change over time are stud-
ied; here we suggest to additionally use the vector fields Ja and
Jb . It allows us to apply geometrical reasoning to extract quantita-
tive and qualitative information of how their interaction drives
the system dynamics. This is one of the main findings of this
work and one of its main motivations.

We hope that the approach laid out in this work can also lead
to new ideas about how to tailor Hamiltonians [8] and states
(here, depending on the “other mode” that is traced over) to gen-
erate interesting new quantum states and quantum dynamics.
We anticipate that the geometrical reasoning demonstrated here
can also be applied in other multimode cases with other cou-
plings and will help with the detailed analysis of the dynamics
of such systems, based on the analysis of Wigner’s phase space
current J .

Funding. Ministry of Science and Technology of Taiwan (112-2123-M-
007-001, 112-2119-M-008-007, 112-2119-M-007-006); Office of Naval
Research Global; International Technology Center Indo-Pacific (ITC IPAC);
Army Research Office (FA5209-21-P-0158); University of Tokyo.

Acknowledgment. This work was partially supported by the Ministry
of Science and Technology of Taiwan, the Office of Naval Research Global, the
International Technology Center Indo-Pacific (ITC IPAC) and Army Research
Office, and the collaborative research program of the Institute for Cosmic Ray
Research (ICRR) at the University of Tokyo.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are
not publicly available at this time but may be obtained from the authors upon
reasonable request.

REFERENCES AND NOTES
1. U. M. Titulaer and R. J. Glauber, “Density operators for coherent

fields,” Phys. Rev. 145, 1041–1050 (1966).
2. R. A. Campos, B. E. Saleh, and M. C. Teich, “Quantum-mechanical

lossless beam splitter: Su(2) symmetry and photon statistics,” Phys.
Rev. A 40, 1371–1384 (1989).

3. U. Leonhardt, “Quantum statistics of a lossless beam splitter: Su(2)
symmetry in phase space,” Phys. Rev. A 48, 3265–3277 (1993).

4. M. Dakna, L. Knöll, and D.-G. Welsch, “Quantum state engineering
using conditional measurement on a beam splitter,” Eur. Phys. J. D 3,
295–308 (1998).

5. H. Bauke and N. R. Itzhak, “Visualizing quantum mechanics in phase
space,” arXiv (2011).

6. O. Steuernagel, D. Kakofengitis, and G. Ritter, “Wigner flow reveals
topological order in quantum phase space dynamics,” Phys. Rev.
Lett. 110, 030401 (2013).

7. M. Oliva and O. Steuernagel, “Quantum Kerr oscillators’ evolution in
phase space: Wigner current, symmetries, shear suppression, and
special states,” Phys. Rev. A 99, 032104 (2019).

8. W. F. Braasch, O. D. Friedman, A. J. Rimberg, et al., “Wigner current
for open quantum systems,” Phys. Rev. A 100, 012124 (2019).

9. Y.-R. Chen, H.-Y. Hsieh, J. Ning, et al., “Experimental reconstruction
of Wigner phase-space current,” Phys. Rev. A 108, 023729 (2023).

https://doi.org/10.1103/PhysRev.145.1041
https://doi.org/10.1103/PhysRevA.40.1371
https://doi.org/10.1103/PhysRevA.40.1371
https://doi.org/10.1103/PhysRevA.40.1371
https://doi.org/10.1103/PhysRevA.48.3265
https://doi.org/10.1007/s100530050177
https://doi.org/10.48550/arXiv.1101.2683
https://doi.org/10.1103/PhysRevLett.110.030401
https://doi.org/10.1103/PhysRevLett.110.030401
https://doi.org/10.1103/PhysRevLett.110.030401
https://doi.org/10.1103/PhysRevA.99.032104
https://doi.org/10.1103/PhysRevA.100.012124
https://doi.org/10.1103/PhysRevA.108.023729


200 Vol. 42, No. 2 / February 2025 / Journal of the Optical Society of America B Research Article

10. E. Wigner, “On the quantum correction for thermodynamic
equilibrium,” Phys. Rev. 40, 749–759 (1932).

11. M. V. Berry and N. L. Balazs, “Evolution of semiclassical quantum
states in phase space,” J. Phys. A 12, 625–642 (1979).

12. H. J. Korsch and M. V. Berry, “Evolution of Wigner’s phase-space
density under a nonintegrable quantum map,” Physica D 3, 627–636
(1981).

13. U. Leonhardt and H. Paul, “Measuring the quantum state of light,”
Prog. Quantum Electron. 19, 89–130 (1995).

14. W. P. Schleich,QuantumOptics in Phase Space (Wiley, 2001).
15. W. H. Zurek, “Sub-Planck structure in phase space and its relevance

for quantum decoherence,” Nature 412, 712–717 (2001).
16. T. L. Curtright, D. B. Fairlie, and C. K. Zachos, A Concise Treatise on

QuantumMechanics in Phase Space (World Scientific, 2014).
17. A. I. Lvovsky, “Squeezed light,” arXiv [quant-ph] (2016).
18. D. Kakofengitis and O. Steuernagel, “Wigner’s quantum phase space

flow in weakly-anharmonic weakly-excited two-state systems,” Eur.
Phys. J. Plus 132, 381 (2017).

19. M. Oliva and O. Steuernagel, “Dynamic shear suppression in quan-
tum phase space,” Phys. Rev. Lett. 122, 020401 (2019).

20. J. Hancock, M. A. Walton, and B. Wynder, “Quantum mechanics
another way,” Eur. J. Phys. 25, 525–534 (2004).

21. J. E. Moyal, “Quantum mechanics as a statistical theory,” Proc.
Cambridge Philos. Soc. 45, 99–124 (1949).

22. H. J. Groenewold, “On the principles of elementary quantum
mechanics,” Physica 12, 405–460 (1946).

23. M. Oliva, D. Kakofengitis, and O. Steuernagel, “Anharmonic quan-
tum mechanical systems do not feature phase space trajectories,”
Physica A 502, 201–210 (2018).

24. O. Steuernagel, P. Yang, and R.-K. Lee, “On the formation of lines in
quantum phase space,” J. Phys. A 56, 015306 (2023).

25. M. S. Kim, W. Son, V. Bužek, et al., “Entanglement by a beam splitter:
nonclassicality as a prerequisite for entanglement,” Phys. Rev. A 65,
032323 (2002).

26. X.-B. Wang, “Theorem for the beam-splitter entangler,” Phys. Rev. A
66, 024303 (2002).

27. D. D. Nolte, “The tangled tale of phase space,” Phys. Today 63, 33–38
(2010).

28. There are several different formulations of quantum theory,
Schrödinger’s, Heisenberg’s, the phase space formulations due to
Wigner, Moyal, and Groenewold (and their offshoots due to Glauber
and Sudarshan, Husimi, and others), Feynman’s path integrals, the
de Broglie–Bohm and many-worlds interpretation, spontaneous
collapse models, and others. Here, we only use Wigner’s formulation
[42].

29. W. B. Case, “Wigner functions and Weyl transforms for pedestrians,”
Am. J. Phys. 76, 937–946 (2008).

30. M. Hillery, R. F. O’Connell, M. O. Scully, et al., “Distribution functions
in physics: fundamentals,” Phys. Rep. 106, 121–167 (1984).

31. A. Donoso and C. C. Martens, “Quantum tunneling using entangled
classical trajectories,” Phys. Rev. Lett. 87, 223202 (2001).

32. R. T. Skodje, H. W. Rohrs, and J. VanBuskirk, “Flux analysis, the cor-
respondence principle, and the structure of quantum phase space,”
Phys. Rev. A 40, 2894–2916 (1989).

33. Since only the divergence of the current enters the time evolution
Eq. (1) [35], there can exist ambiguity since purely rotational vector
fields can be added to the current J, and other physical arguments
might have to be employed in order to remove this ambiguity; for an
example, see Ref. [7]. Here, this problem does not occur.

34. D. Cohen, “Lecture notes in quantum mechanics,” arXiv (2018).
35. O. Steuernagel and R.-K. Lee, “Photon creation viewed from

Wigner’s phase space current perspective,” arXiv (2023).
36. C. Kurtsiefer, T. Pfau, and J. Mlynek, “Measurement of the Wigner

function of an ensemble of helium atoms,” Nature 386, 150–153
(1997).

37. P. Grangier, “Make it quantum and continuous,” Science 332,
313–314 (2011).

38. K. E. Cahill and R. J. Glauber, “Density operators and quasiprobabil-
ity distributions,” Phys. Rev. 177, 1882–1902 (1969).

39. A. Royer, “Wigner function as the expectation value of a parity opera-
tor,” Phys. Rev. A 15, 449–450 (1977).

40. G. Manfredi and M. R. Feix, “Entropy and Wigner functions,” Phys.
Rev. E 62, 4665–4674 (2000).

41. J. J. Włodarz, “Entropy and Wigner distribution functions revisited,”
Int. J. Theor. Phys. 42, 1075–1084 (2003).

42. Out of all quantum phase space distributions [38] only Wigner’s
[30] yields the correct projections in Schrödinger’s position
%(x, x, t)=

∫
dpW(x, p, t) and momentum densities %̃(p, p, t)=∫

dxW(x, p, t), while giving the overlap between states in the simple
form |〈ψ1(x, t)|ψ2(x, t)〉|2 = 2π~

∫∫
dxdpW1(x, p, t)W2(x, p, t). We

therefore consider Wigner’s approach [10] as special and intuitive, so
we use it exclusively.

43. U. Leonhardt, “Quantum physics of simple optical instruments,” Rep.
Prog. Phys. 66, 1207–1249 (2003).

44. M. Veronez and M. A. M. de Aguiar, “Phase space flow in the Husimi
representation,” J. Phys. A 46, 485304 (2013).

45. I. F. Valtierra, A. B. Klimov, G. Leuchs, et al., “Quasiprobability
currents on the sphere,” Phys. Rev. A 101, 033803 (2020).

46. W. Heisenberg, “Über den anschaulichen inhalt der quanten-
theoretischen kinematik und mechanik,” Z. Phys. 43, 172–198
(1927).

47. R. Cabrera, D. I. Bondar, K. Jacobs, et al., “Efficient method to gener-
ate time evolution of the Wigner function for open quantum systems,”
Phys. Rev. A 92, 042122 (2015).
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