Linear Algebra, EE 10810/EECS 205004
 Quiz 1.5-1.6

Integrity: There is NO space to cross the Red Line !!

1. Show that if S_{1} and S_{2} are subsets of a vector space \mathcal{V} such that $S_{1} \subseteq S_{2}$, then $\operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)$.
2. Determine whether the following sets are linearly dependent or linearly independent

$$
\left\{\left(\begin{array}{cc}
1 & -2 \tag{1}\\
-1 & 4
\end{array}\right), \quad\left(\begin{array}{cc}
-1 & 1 \\
2 & -4
\end{array}\right)\right\} \quad \text { in } \quad \overline{\bar{M}}_{2 \times 2}(\mathcal{R})
$$

3. Prove that, let \mathcal{V} be a vector space, and let $\mathcal{S}_{1} \subseteq \mathcal{S}_{2} \subseteq \mathcal{V}$. If \mathcal{S}_{1} is linear dependent, then \mathcal{S}_{2} is linearly dependent.
