Linear Algebra, EE 10810/EECS 205004
 Quiz 1.6

Student ID:; Your Name: ...
(Dated: October 14th, 2020)

Integrity: There is NO space to cross the Red Line !!

1. Prove that
of $\overline{\bar{M}}_{n \times n}(F)$,
if $\left\{\overline{\bar{A}}_{1}, \overline{\bar{A}}_{2}, \ldots, \overline{\bar{A}}_{k}\right\}$ is a linearly independent subset,
then $\left\{\left(\overline{\bar{A}}_{1}\right)^{t},\left(\overline{\bar{A}}_{2}\right)^{t}, \ldots,\left(\overline{\bar{A}}_{k}\right)^{t}\right\} \quad$ is also linearly independent.
2. Do the polynomials $\left(x^{3}-2 x^{2}+1\right),\left(4 x^{2}-x+3\right)$, and $(3 x-2)$ generate $P_{3}(\mathcal{R})$?
3. Use the Lagrange interpolation formula to construct the polynomial of smallest degree whose graph contains the following points:

$$
(-2,-6), \quad(-1,5), \quad(1,3)
$$

