Linear Algebra, EE 10810/EECS 205004 Quiz .21 – 2.2

Integrity: There is NO space to cross the Red Line !!

- 1. Prove that \mathcal{T} is a linear transformation, find bases for both $N(\mathcal{T})$ and $R(\mathcal{T})$, and calculate the nullity and rank of \mathcal{T} .
 - (a) $\mathcal{T}: \mathcal{R}^3 \to \mathcal{R}^2$ defined by $\mathcal{T}(a_1, a_2, a_3) = (a_1 a_2, 2a_3).$
 - (b) $\mathcal{T}: P_2(\mathcal{R}) \to P_3(\mathcal{R})$ defined by $\mathcal{T}(f(x)) = x f(x) + f'(x)$.

2. Let \mathcal{V} and \mathcal{W} be finite-dimensional vector spaces and $\mathcal{T}: \mathcal{V} \to \mathcal{W}$ be linear.

- (a) Prove that if $\dim(\mathcal{V}) < \dim(\mathcal{W})$, then \mathcal{T} cannot be *onto*.
- (b) Prove that if $\dim(\mathcal{V}) > \dim(\mathcal{W})$, then \mathcal{T} cannot be *one-to-one*.

- 3. Let $\hat{\mathcal{T}} : \mathcal{R}^2 \to \mathcal{R}^3$ be defined by $\hat{\mathcal{T}}(a_1, a_2) = (a_1 a_2, a_1, 2a_1 + a_2)$. Let β be the standard ordered basis for \mathcal{R}^2 and $\gamma = \{(1, 1, 0), (0, 1, 1), (2, 2, 3)\}.$
 - (a) Computer $\left[\hat{\mathcal{T}}\right]_{\beta}^{\gamma}$.
 - (b) If $\alpha = \{(1,2), (2,3)\}$, compute $\left[\hat{\mathcal{T}}\right]_{\alpha}^{\gamma}$.