Linear Algebra, EE 10810/EECS 205004
 Quiz . $21-2.2$

Student ID:; Your Name: ...
(Dated: October 21st, 2020)

Integrity: There is NO space to cross the Red Line !!

1. Prove that \mathcal{T} is a linear transformation, find bases for both $N(\mathcal{T})$ and $R(\mathcal{T})$, and calculate the nullity and rank of \mathcal{T}.
(a) $\mathcal{T}: \mathcal{R}^{3} \rightarrow \mathcal{R}^{2}$ defined by $\mathcal{T}\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, 2 a_{3}\right)$.
(b) $\mathcal{T}: P_{2}(\mathcal{R}) \rightarrow P_{3}(\mathcal{R})$ defined by $\mathcal{T}(f(x))=x f(x)+f^{\prime}(x)$.
2. Let \mathcal{V} and \mathcal{W} be finite-dimensional vector spaces and $\mathcal{T}: \mathcal{V} \rightarrow \mathcal{W}$ be linear.
(a) Prove that if $\operatorname{dim}(\mathcal{V})<\operatorname{dim}(\mathcal{W})$, then \mathcal{T} cannot be onto.
(b) Prove that if $\operatorname{dim}(\mathcal{V})>\operatorname{dim}(\mathcal{W})$, then \mathcal{T} cannot be one-to-one.
3. Let $\hat{\mathcal{T}}: \mathcal{R}^{2} \rightarrow \mathcal{R}^{3}$ be defined by $\hat{\mathcal{T}}\left(a_{1}, a_{2}\right)=\left(a_{1}-a_{2}, a_{1}, 2 a_{1}+a_{2}\right)$. Let β be the standard ordered basis for \mathcal{R}^{2} and $\gamma=\{(1,1,0),(0,1,1),(2,2,3)\}$.
(a) Computer $[\hat{\mathcal{T}}]_{\beta}^{\gamma}$.
(b) If $\alpha=\{(1,2),(2,3)\}$, compute $[\hat{\mathcal{T}}]_{\alpha}^{\gamma}$.
