Linear Algebra, EE 10810/EECS 205004
 Quiz .21-2.2

Student ID: \qquad . ; Your Name:
(Dated: October 28th, 2020)

Integrity: There is NO space to cross the Red Line !!

1. Let $\overline{\bar{A}}$ and $\overline{\bar{B}}$ be $n \times n$ matrices. Recall the trace of $\overline{\bar{A}}$ is defined by

$$
\begin{equation*}
\operatorname{tr}(\overline{\bar{A}})=\sum_{i=1}^{n} A_{i i} . \tag{1}
\end{equation*}
$$

Prove that $\operatorname{tr}(\overline{\overline{A B}})=\operatorname{tr}(\overline{\overline{B A}})$ and $\operatorname{tr}(\overline{\bar{A}})=\operatorname{tr}\left(\overline{\overline{A^{t}}}\right)$.
2. Let $\overline{\bar{A}}$ and $\overline{\bar{B}}$ be $n \times n$ invertible matrices. Prove that
(a) $\overline{\overline{A B}}$ is invertible.
(b) $(\overline{\overline{A B}})^{-1}=\overline{\overline{B^{-1} A^{-1}}}$.
3. For each matrix $\overline{\bar{A}}$ and ordered basis β, find $\left[\hat{L}_{A}\right]_{\beta}$ and an invertible matrix $\overline{\bar{Q}}$ such that $\left[\hat{L}_{A}\right]_{\beta}=\overline{\overline{Q^{-1}} \overline{\overline{A Q}}}$.

$$
\overline{\bar{A}}=\left(\begin{array}{ll}
1 & 3 \tag{2}\\
1 & 1
\end{array}\right), \quad \text { and } \quad \beta=\left\{\binom{1}{1},\binom{1}{2}\right\}
$$

