Linear Algebra, EE 10810/EECS 205004 Quiz .21 – 2.2

Integrity: There is NO space to cross the Red Line !!

1. Let $\overline{\overline{A}}$ and $\overline{\overline{B}}$ be $n \times n$ matrices. Recall the trace of $\overline{\overline{A}}$ is defined by

$$\operatorname{tr}(\overline{\overline{A}}) = \sum_{i=1}^{n} A_{ii}.$$
(1)

Prove that $\operatorname{tr}(\overline{\overline{AB}}) = \operatorname{tr}(\overline{\overline{BA}})$ and $\operatorname{tr}(\overline{\overline{A}}) = \operatorname{tr}(\overline{\overline{A^t}})$.

2. Let $\overline{\overline{A}}$ and $\overline{\overline{B}}$ be $n \times n$ invertible matrices. Prove that

- (a) $\overline{\overline{AB}}$ is invertible.
- (b) $(\overline{\overline{AB}})^{-1} = \overline{\overline{B^{-1}A^{-1}}}.$

3. For each matrix $\overline{\overline{A}}$ and ordered basis β , find $[\hat{L}_A]_\beta$ and an invertible matrix $\overline{\overline{Q}}$ such that $[\hat{L}_A]_\beta = \overline{\overline{Q^{-1}}\overline{AQ}}$.

$$\overline{\overline{A}} = \begin{pmatrix} 1 & 3\\ 1 & 1 \end{pmatrix}, \text{ and } \beta = \left\{ \begin{pmatrix} 1\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ 2 \end{pmatrix} \right\}$$
(2)