Linear Algebra, EE 10810/EECS 205004
 Quiz 5.1-5.3

Student ID:; Your Name: ..
(Dated: December 2nd, 2020)

Integrity: There is NO space to cross the Red Line !!

1. Use Cramer's rule with ratios $\operatorname{det}\left(\overline{\bar{B}}_{i}\right) / \operatorname{det}(\overline{\bar{A}})$ to solve $\overline{\bar{A}} \vec{x}=\vec{b}$. Also find the inverse matrix $(\overline{\bar{A}})^{-1}=\overline{\bar{C}}^{t} / \operatorname{det}(\overline{\bar{A}})$.

$$
\overline{\bar{A}} \vec{x}=\vec{b} \quad \text { is } \quad\left(\begin{array}{lll}
2 & 6 & 2 \tag{1}\\
1 & 4 & 2 \\
5 & 9 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

2. Prove Theorem 5.5: Let \hat{T} be. a linear operator on a vector space \mathcal{V}, and let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}$ be distinct eigenvalues of \hat{T}. If $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ are the corresponding eigenvectors of \hat{T}, then $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is linearly independent.
3. For the following linear operators \hat{T} on a vector space \mathcal{V}, test \hat{T} for diagonalizability, and if \hat{T} is diagonalizable, find a basis β for \mathcal{V} such that $[\hat{T}]_{\beta}$ is a diagonal matrix:
(a) $\mathcal{V}=P_{3}(\mathcal{R})$ and \hat{T} is defined by $\hat{T}(f(x))=f^{\prime}(x)+f^{\prime \prime}(x)$, respectively.
(b) $\mathcal{V}=\mathcal{R}^{3}$ and \hat{T} is defined by

$$
\hat{T}\left(\begin{array}{l}
a_{1} \tag{2}\\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{r}
a_{2} \\
-a_{2} \\
2 a_{3}
\end{array}\right)
$$

