Linear Algebra, EE 10810/EECS 205004
 Quiz 6.3-6.4

\qquad
(Dated: December 30th, 2020)

Integrity: There is NO space to cross the Red Line !!

1. Find the minimal solution to the following system of linear equations

$$
\begin{array}{r}
x+y-z=0 \\
2 x-y+z=3 \tag{1}\\
x-y+z=2
\end{array}
$$

2. Let \mathcal{V} be a complex inner product space, and let \hat{T} be a linear operator on \mathcal{V}. Define

$$
\begin{equation*}
\hat{T}_{1} \equiv \frac{1}{2}\left(\hat{T}+\hat{T}^{*}\right), \quad \text { and } \quad \hat{T}_{2}=\frac{1}{2 i}\left(\hat{T}-\hat{T}^{*}\right) \tag{2}
\end{equation*}
$$

(a) Prove that \hat{T}_{1} and \hat{T}_{2} are self-adjoint.
(b) Suppose also that $\hat{T}=\hat{U}_{1}+i \hat{U}_{2}$, where \hat{U}_{1} and \hat{U}_{2} are self-adjoint. Prove that $\hat{U}_{1}=\hat{T}_{1}$ and $\hat{U}_{2}=\hat{U}_{2}$.
(c) Prove that \hat{T} is normal if and only if $\hat{T}_{1} \hat{T}_{2}=\hat{T}_{2} \hat{T}_{1}$.

